
Ext4 Disk Layout
From Ext4

is document aempts to describe the on-disk format for ext4 filesystems. e same general
ideas should apply to ext2/3 filesystems as well, though they do not support all the features that
ext4 supports, and the fields will be shorter.

NOTE: is is a work in progress, based on notes that the author (djwong) made while picking
apart a filesystem by hand. e data structure definitions were pulled out of Linux 3.11 and
e2fsprogs-1.42.8. He welcomes all comments and corrections, since there is undoubtedly plenty
of lore that doesn't necessarily show up on freshly created demonstration filesystems.

Contents

1 Terminology
2 Overview

2.1 Blocks
2.2 Layout
2.3 Flexible Block Groups
2.4 Meta Block Groups
2.5 Lazy Block Group Initialization
2.6 Special inodes
2.7 Block and Inode Allocation Policy
2.8 Checksums
2.9 Bigalloc
2.10 Inline Data

2.10.1 Inline Directories
3 e Super Block
4 Block Group Descriptors
5 Block and inode Bitmaps
6 Inode Table

6.1 Finding an Inode
6.2 Inode Size
6.3 Inode Timestamps

7 e Contents of inode.i_block
7.1 Symbolic Links

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

1 of 43 10/21/2013 10:43 PM

7.2 Direct/Indirect Block Addressing
7.3 Extent Tree
7.4 Inline Data

8 Directory Entries
8.1 Linear (Classic) Directories
8.2 Hash Tree Directories

9 Extended Aributes
9.1 POSIX ACLs

10 Multiple Mount Protection
11 Journal (jbd2)

11.1 Layout
11.2 Block Header
11.3 Super Block
11.4 Descriptor Block
11.5 Data Block
11.6 Revocation Block
11.7 Commit Block

12 Areas in Need of Work
13 Other References

Terminology
ext4 divides a storage device into an array of logical blocks both to reduce bookkeeping
overhead and to increase throughput by forcing larger transfer sizes. Generally, the block size
will be 4KiB (the same size as pages on x86 and the block layer's default block size), though the
actual size is calculated as 2 ^ (10 + sb.s_log_block_size) bytes. roughout this
document, disk locations are given in terms of these logical blocks, not raw LBAs, and not
1024-byte blocks. For the sake of convenience, the logical block size will be referred to as
$block_size throughout the rest of the document.

When referenced in preformatted text blocks, sb refers to fields in the super block, and
inode refers to fields in an inode table entry.

Overview
An ext4 file system is split into a series of block groups. To reduce performance difficulties due
to fragmentation, the block allocator tries very hard to keep each file's blocks within the same
group, thereby reducing seek times. e size of a block group is specified in

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

2 of 43 10/21/2013 10:43 PM

sb.s_blocks_per_group blocks, though it can also calculated as 8 *
block_size_in_bytes. With the default block size of 4KiB, each group will contain 32,768
blocks, for a length of 128MiB. e number of block groups is the size of the device divided by
the size of a block group.

All fields in ext4 are wrien to disk in lile-endian order. HOWEVER, all fields in jbd2 (the
journal) are wrien to disk in big-endian order.

Blocks

ext4 allocates storage space in units of "blocks". A block is a group of sectors between 1KiB and
64KiB, and the number of sectors must be an integral power of 2. Blocks are in turn grouped
into larger units called block groups. Block size is specified at mkfs time and typically is 4KiB.
You may experience mounting problems if block size is greater than page size (i.e. 64KiB blocks
on a i386 which only has 4KiB memory pages). By default a filesystem can contain 2^32 blocks;
if the '64bit' feature is enabled, then a filesystem can have 2^64 blocks.

File System Maximums

32-bit mode 64-bit mode

Item 1KiB 2KiB 4KiB 64KiB 1KiB 2KiB 4KiB

Blocks 2^32 2^32 2^32 2^32 2^64 2^64 2^64

Inodes 2^32 2^32 2^32 2^32 2^32 2^32 2^32

File
System
Size

4TiB 8TiB 16TiB 256PiB 16ZiB 32ZiB 64ZiB

Blocks
Per
Block
Group

8,192 16,384 32,768 524,288 8,192 16,384 32,768

Inodes
Per
Block
Group

8,192 16,384 32,768 524,288 8,192 16,384 32,768

Block
Group
Size

8MiB 32MiB 128MiB 32GiB 8MiB 32MiB 128MiB

Blocks
Per 2^32 2^32 2^32 2^32 2^32 2^32 2^32

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

3 of 43 10/21/2013 10:43 PM

File,
Extents

Blocks
Per
File,
Block
Maps

16,843,020 134,480,396 1,074,791,436 4,398,314,962,956 16,843,020 134,480,396 1,074,791,436

File
Size,
Extents

4TiB 8TiB 16TiB 256TiB 4TiB 8TiB 16TiB

File
Size,
Block
Maps

16GiB 256GiB 4TiB 256PiB 16GiB 256GiB 4TiB

Note: Files not using extents (i.e. files using block maps) must be placed in the first 2^32 blocks
of a filesystem.

Layout

e layout of a standard block group is approximately as follows (each of these fields is
discussed in a separate section below):

Group 0
Padding

ext4
Super
Block

Group
Descriptors

Reserved
GDT Blocks

Data Block
Bitmap

inode
Bitmap

inode
Table

Data
Blocks

1024 bytes 1 block many blocks many blocks 1 block 1 block
many
blocks

many
more
blocks

For the special case of block group 0, the first 1024 bytes are unused, to allow for the installation
of x86 boot sectors and other oddities. e superblock will start at offset 1024 bytes, whichever
block that happens to be (usually 0). However, if for some reason the block size = 1024, then
block 0 is marked in use and the superblock goes in block 1. For all other block groups, there is
no padding.

e ext4 driver primarily works with the superblock and the group descriptors that are found in
block group 0. Redundant copies of the superblock and group descriptors are wrien to some of
the block groups across the disk in case the beginning of the disk gets trashed, though not all

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

4 of 43 10/21/2013 10:43 PM

block groups necessarily host a redundant copy (see following paragraph for more details). If
the group does not have a redundant copy, the block group begins with the data block bitmap.
Note also that when the filesystem is freshly formaed, mkfs will allocate "reserve GDT block"
space aer the block group descriptors and before the start of the block bitmaps to allow for
future expansion of the filesystem. By default, a filesystem is allowed to increase in size by a
factor of 1024x over the original filesystem size.

e location of the inode table is given by grp.bg_inode_table_*. It is continuous range of
blocks large enough to contain sb.s_inodes_per_group * sb.s_inode_size bytes.

As for the ordering of items in a block group, it is generally established that the super block and
the group descriptor table, if present, will be at the beginning of the block group. e bitmaps
and the inode table can be anywhere, and it is quite possible for the bitmaps to come aer the
inode table, or for both to be in different groups (flex_bg). Leover space is used for file data
blocks, indirect block maps, extent tree blocks, and extended aributes.

Flexible Block Groups

Starting in ext4, there is a new feature called flexible block groups (flex_bg). In a flex_bg, several
block groups are tied together as one logical block group; the bitmap spaces and the inode table
space in the first block group of the flex_bg are expanded to include the bitmaps and inode
tables of all other block groups in the flex_bg. For example, if the flex_bg size is 4, then group 0
will contain (in order) the superblock, group descriptors, data block bitmaps for groups 0-3,
inode bitmaps for groups 0-3, inode tables for groups 0-3, and the remaining space in group 0 is
for file data. e effect of this is to group the block metadata close together for faster loading,
and to enable large files to be continuous on disk. Backup copies of the superblock and group
descriptors are always at the beginning of block groups, even if flex_bg is enabled. e number
of block groups that make up a flex_bg is given by 2 ^ sb.s_log_groups_per_flex.

Meta Block Groups

Without the option META_BG, for safety concerns, all block group descriptors copies are kept
in the first block group. Given the default 128MiB(2^27 bytes) block group size and 64-byte
group descriptors, ext4 can have at most 2^27/64 = 2^21 block groups. is limits the entire
filesystem size to 2^21 ∗ 2^27 = 2^48bytes or 256TiB.

e solution to this problem is to use the metablock group feature (META_BG), which is already
in ext3 for all 2.6 releases. With the META_BG feature, ext4 filesystems are partitioned into
many metablock groups. Each metablock group is a cluster of block groups whose group
descriptor structures can be stored in a single disk block. For ext4 filesystems with 4 KB block
size, a single metablock group partition includes 64 block groups, or 8 GiB of disk space. e
metablock group feature moves the location of the group descriptors from the congested first

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

5 of 43 10/21/2013 10:43 PM

block group of the whole filesystem into the first group of each metablock group itself. e
backups are in the second and last group of each metablock group. is increases the 2^21
maximum block groups limit to the hard limit 2^32, allowing support for a 512PiB filesystem.

e change in the filesystem format replaces the current scheme where the superblock is
followed by a variable-length set of block group descriptors. Instead, the superblock and a single
block group descriptor block is placed at the beginning of the first, second, and last block groups
in a meta-block group. A meta-block group is a collection of block groups which can be
described by a single block group descriptor block. Since the size of the block group descriptor
structure is 32 bytes, a meta-block group contains 32 block groups for filesystems with a 1KB
block size, and 128 block groups for filesystems with a 4KB blocksize. Filesystems can either be
created using this new block group descriptor layout, or existing filesystems can be resized
on-line, and the field s_first_meta_bg in the superblock will indicate the first block group using
this new layout.

Please see an important note about BLOCK_UNINIT in the section about block and inode
bitmaps.

Lazy Block Group Initialization

New also for ext4, the inode bitmap and inode tables in a group are uninitialized if the
corresponding flag is set in the group descriptor. is is to reduce mkfs time considerably. If the
group descriptor checksum feature is enabled, then even the group descriptors can be
uninitialized.

Special inodes

ext4 reserves some inode for special features, as follows:

inode Purpose

0 Doesn't exist; there is no inode 0.

1 List of defective blocks.

2 Root directory.

3 User quota.

4 Group quota.

5 Boot loader.

6 Undelete directory.

7 Reserved group descriptors inode. ("resize inode")

8 Journal inode.

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

6 of 43 10/21/2013 10:43 PM

9 e "exclude" inode, for snapshots(?)

10 Replica inode, used for some non-upstream feature?

11
Traditional first non-reserved inode. Usually this is the lost+found directory. See
s_first_ino in the superblock.

Block and Inode Allocation Policy

ext4 recognizes (beer than ext3, anyway) that data locality is generally a desirably quality of a
filesystem. On a spinning disk, keeping related blocks near each other reduces the amount of
movement that the head actuator and disk must perform to access a data block, thus speeding
up disk IO. On an SSD there of course are no moving parts, but locality can increase the size of
each transfer request while reducing the total number of requests. is locality may also have
the effect of concentrating writes on a single erase block, which can speed up file rewrites
significantly. erefore, it is useful to reduce fragmentation whenever possible.

e first tool that ext4 uses to combat fragmentation is the multi-block allocator. When a file is
first created, the block allocator speculatively allocates 8KiB of disk space to the file on the
assumption that the space will get wrien soon. When the file is closed, the unused speculative
allocations are of course freed, but if the speculation is correct (typically the case for full writes
of small files) then the file data gets wrien out in a single multi-block extent. A second related
trick that ext4 uses is delayed allocation. Under this scheme, when a file needs more blocks to
absorb file writes, the filesystem defers deciding the exact placement on the disk until all the
dirty buffers are being wrien out to disk. By not commiing to a particular placement until it's
absolutely necessary (the commit timeout is hit, or sync() is called, or the kernel runs out of
memory), the hope is that the filesystem can make beer location decisions.

e third trick that ext4 (and ext3) uses is that it tries to keep a file's data blocks in the same
block group as its inode. is cuts down on the seek penalty when the filesystem first has to
read a file's inode to learn where the file's data blocks live and then seek over to the file's data
blocks to begin I/O operations.

e fourth trick is that all the inodes in a directory are placed in the same block group as the
directory, when feasible. e working assumption here is that all the files in a directory might
be related, therefore it is useful to try to keep them all together.

e fih trick is that the disk volume is cut up into 128MB block groups; these mini-containers
are used as outlined above to try to maintain data locality. However, there is a deliberate quirk
-- when a directory is created in the root directory, the inode allocator scans the block groups
and puts that directory into the least heavily loaded block group that it can find. is
encourages directories to spread out over a disk; as the top-level directory/file blobs fill up one
block group, the allocators simply move on to the next block group. Allegedly this scheme evens
out the loading on the block groups, though the author suspects that the directories which are

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

7 of 43 10/21/2013 10:43 PM

so unlucky as to land towards the end of a spinning drive get a raw deal performance-wise.

Of course if all of these mechanisms fail, one can always use e4defrag to defragment files.

Checksums

Starting in early 2012, metadata checksums were added to all major ext4 and jbd2 data
structures. e associated feature flag is metadata_csum. e desired checksum algorithm is
indicated in the superblock, though as of October 2012 the only supported algorithm is crc32c.
Some data structures did not have space to fit a full 32-bit checksum, so only the lower 16 bits
are stored. Enabling the 64bit feature increases the data structure size so that full 32-bit
checksums can be stored; however, existing 32-bit filesystems cannot be extended to enable
64bit mode.

Existing filesystems can have checksumming added by running tune2fs -O
metadata_csum against the underlying device. If tune2fs encounters directory blocks that lack
sufficient empty space to add a checksum, it will request that you run e2fsck -D to have the
directories rebuilt with checksums. is has the added benefit of removing slack space from the
directory files and rebalancing the htree indexes. If you _ignore_ this step, your directories will
not be protected by a checksum!

e following table describes the data elements that go into each type of checksum. e
checksum function is whatever the superblock describes (crc32c as of October 2013) unless
noted otherwise.

Metadata Length Ingredients

Superblock __le32
e entire superblock up to the checksum field. e UUID lives
inside the superblock.

MMP __le32 UUID + the entire MMP block up to the checksum field.

Extended
Aributes

__le32
UUID + the entire extended aribute block. e checksum field is
set to zero.

Directory
Entries

__le32
UUID + inode number + inode generation + the directory block up
to the fake entry enclosing the checksum field.

HTREE
Nodes

__le32
UUID + inode number + inode generation + all valid extents +
HTREE tail. e checksum field is set to zero.

Extents __le32
UUID + inode number + inode generation + the entire extent block
up to the checksum field.

Bitmaps
__le32 or
__le16

UUID + the entire bitmap. Checksums are stored in the group
descriptor, and truncated if the group descriptor size is 32 bytes (i.e.

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

8 of 43 10/21/2013 10:43 PM

^64bit)

Inodes __le32
UUID + inode number + inode generation + the entire inode. e
checksum field is set to zero. Each inode has its own checksum.

Group
Descriptors

__le16
If metadata_csum, then UUID + group number + the entire
descriptor; else if uninit_bg, then crc16(UUID + group number + the
entire descriptor). In all cases, only the lower 16 bits are stored.

Bigalloc

At the moment, the default size of a block is 4KiB, which is a commonly supported page size on
most MMU-capable hardware. is is fortunate, as ext4 code is not prepared to handle the case
where the block size exceeds the page size. However, for a filesystem of mostly huge files, it is
desirable to be able to allocate disk blocks in units of multiple blocks to reduce both
fragmentation and metadata overhead. e bigalloc feature provides exactly this ability. e
administrator can set a block cluster size at mkfs time (which is stored in the s_log_cluster_size
field in the superblock); from then on, the block bitmaps track clusters, not individual blocks.
is means that block groups can be several gigabytes in size (instead of just 128MiB); however,
the minimum allocation unit becomes a cluster, not a block, even for directories. TaoBao had a
patchset to extend the "use units of clusters instead of blocks" to the extent tree, though it is not
clear where those patches went-- they eventually morphed into "extent tree v2" but that code
has not landed as of 8/2013.

Inline Data

e inline data feature was designed to handle the case that a file's data is so tiny that it readily
fits inside the inode, which (theoretically) reduces disk block consumption and reduces seeks. If
the file is smaller than 60 bytes, then the data are stored inline in inode.i_block. If the rest
of the file would fit inside the extended aribute space, then it might be found as an extended
aribute "system.data" within the inode body ("ibody EA"). is of course constrains the amount
of extended aributes one can aach to an inode. If the data size increases beyond i_block +
ibody EA, a regular block is allocated and the contents moved to that block.

Inline Directories

e first four bytes of i_block are the inode number of the parent directory. Following that is a
56-byte space for an array of directory entries; see struct ext4_dir_entry. If there is a
"system.data" aribute in the inode body, the EA value is an array of struct
ext4_dir_entry as well.

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

9 of 43 10/21/2013 10:43 PM

e Super Block
e superblock records various information about the enclosing filesystem, such as block
counts, inode counts, supported features, maintenance information, and more.

If the sparse_super feature flag is set, redundant copies of the superblock and group descriptors
are kept only in the groups whose group number is either 0 or a power of 3, 5, or 7. If the flag is
not set, redundant copies are kept in all groups.

e superblock checksum is calculated against the superblock structure, which includes the FS
UUID.

e ext4 superblock is laid out as follows in struct ext4_super_block:

Offset Size Name Description

0x0 __le32 s_inodes_count Total inode count.

0x4 __le32 s_blocks_count_lo Total block count.

0x8 __le32 s_r_blocks_count_lo Reserved block count.

0xC __le32 s_free_blocks_count_lo Free block count.

0x10 __le32 s_free_inodes_count Free inode count.

0x14 __le32 s_first_data_block First data block.

0x18 __le32 s_log_block_size Block size is 2 ^ (10 + s_log_block_size).

0x1C __le32 s_log_cluster_size
Cluster size is (2 ^ s_log_cluster_size) blocks if
bigalloc is enabled, zero otherwise.

0x20 __le32 s_blocks_per_group Blocks per group.

0x24 __le32 s_obso_frags_per_group (Obsolete) fragments per group.

0x28 __le32 s_inodes_per_group Inodes per group.

0x2C __le32 s_mtime Mount time, in seconds since the epoch.

0x30 __le32 s_wtime Write time, in seconds since the epoch.

0x34 __le16 s_mnt_count Number of mounts since the last fsck.

0x36 __le16 s_max_mnt_count Number of mounts beyond which a fsck is needed.

0x38 __le16 s_magic Magic signature, 0xEF53

0x3A __le16 s_state

File system state. Valid values are:

0x0001 Cleanly umounted

0x0002 Errors detected

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

10 of 43 10/21/2013 10:43 PM

0x0004 Orphans being recovered

0x3C __le16 s_errors

Behaviour when detecting errors. One of:

1 Continue

2 Remount read-only

3 Panic

0x3E __le16 s_minor_rev_level Minor revision level.

0x40 __le32 s_lastcheck Time of last check, in seconds since the epoch.

0x44 __le32 s_checkinterval Maximum time between checks, in seconds.

0x48 __le32 s_creator_os

OS. One of:

0 Linux

1 Hurd

2 Masix

3 FreeBSD

4 Lites

0x4C __le32 s_rev_level

Revision level. One of:

0 Original format

1 v2 format w/ dynamic inode sizes

0x50 __le16 s_def_resuid Default uid for reserved blocks.

0x52 __le16 s_def_resgid Default gid for reserved blocks.

ese fields are for EXT4_DYNAMIC_REV superblocks only.

Note: the difference between the compatible feature set and the incompatible feature set is that
if there is a bit set in the incompatible feature set that the kernel doesn't know about, it should
refuse to mount the filesystem.

e2fsck's requirements are more strict; if it doesn't know about a feature in either the
compatible or incompatible feature set, it must abort and not try to meddle with things it
doesn't understand…

0x54 __le32 s_first_ino First non-reserved inode.

0x58 __le16 s_inode_size Size of inode structure, in bytes.

0x5A __le16 s_block_group_nr Block group # of this superblock.

0x5C __le32 s_feature_compat

Compatible feature set flags. Kernel can still
read/write this fs even if it doesn't understand a
flag; fsck should not do that. Any of:

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

11 of 43 10/21/2013 10:43 PM

0x1
Directory preallocation
(COMPAT_DIR_PREALLOC).

0x2
"imagic inodes". Not clear from the code
what this does
(COMPAT_IMAGIC_INODES).

0x4 Has a journal (COMPAT_HAS_JOURNAL).

0x8
Supports extended aributes
(COMPAT_EXT_ATTR).

0x10
Has reserved GDT blocks for filesystem
expansion (COMPAT_RESIZE_INODE).

0x20
Has directory indices
(COMPAT_DIR_INDEX).

0x40
"Lazy BG". Not in Linux kernel, seems to
have been for uninitialized block groups?
(COMPAT_LAZY_BG)

0x80
"Exclude inode". Not used.
(COMPAT_EXCLUDE_INODE).

0x100

"Exclude bitmap". Seems to be used to
indicate the presence of snapshot-related
exclude bitmaps? Not defined in kernel or
used in e2fsprogs
(COMPAT_EXCLUDE_BITMAP).

0x60 __le32 s_feature_incompat

Incompatible feature set. If the kernel or fsck
doesn't understand one of these bits, it should stop.
Any of:

0x1
Compression
(INCOMPAT_COMPRESSION).

0x2
Directory entries record the file type. See
ext4_dir_entry_2 below
(INCOMPAT_FILETYPE).

0x4
Filesystem needs recovery
(INCOMPAT_RECOVER).

0x8
Filesystem has a separate journal device
(INCOMPAT_JOURNAL_DEV).

0x10
Meta block groups. See the earlier
discussion of this feature
(INCOMPAT_META_BG).

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

12 of 43 10/21/2013 10:43 PM

0x40
Files in this filesystem use extents
(INCOMPAT_EXTENTS).

0x80
Enable a filesystem size of 2^64 blocks
(INCOMPAT_64BIT).

0x100
Multiple mount protection. Not
implemented (INCOMPAT_MMP).

0x200
Flexible block groups. See the earlier
discussion of this feature
(INCOMPAT_FLEX_BG).

0x400
Inodes can be used for large extended
aributes (INCOMPAT_EA_INODE). (Not
implemented?)

0x1000
Data in directory entry
(INCOMPAT_DIRDATA). (Not
implemented?)

0x2000
Never used
(INCOMPAT_BG_USE_META_CSUM).
Probably free.

0x4000
Large directory >2GB or 3-level htree
(INCOMPAT_LARGEDIR).

0x8000
Data in inode
(INCOMPAT_INLINE_DATA).

0x64 __le32 s_feature_ro_compat

Readonly-compatible feature set. If the kernel
doesn't understand one of these bits, it can still
mount read-only. Any of:

0x1
Sparse superblocks. See the earlier
discussion of this feature
(RO_COMPAT_SPARSE_SUPER).

0x2
is filesystem has been used to store a file
greater than 2GiB
(RO_COMPAT_LARGE_FILE).

0x4
Not used in kernel or e2fsprogs
(RO_COMPAT_BTREE_DIR).

0x8

is filesystem has files whose sizes are
represented in units of logical blocks, not
512-byte sectors. is implies a very large
file indeed! (RO_COMPAT_HUGE_FILE)

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

13 of 43 10/21/2013 10:43 PM

0x10

Group descriptors have checksums. In
addition to detecting corruption, this is
useful for lazy formaing with uninitialized
groups (RO_COMPAT_GDT_CSUM).

0x20
Indicates that the old ext3 32,000
subdirectory limit no longer applies
(RO_COMPAT_DIR_NLINK).

0x40
Indicates that large inodes exist on this
filesystem (RO_COMPAT_EXTRA_ISIZE).

0x80
is filesystem has a snapshot
(RO_COMPAT_HAS_SNAPSHOT).

0x100 ota (RO_COMPAT_QUOTA).

0x200

is filesystem supports "bigalloc", which
means that file extents are tracked in units
of clusters (of blocks) instead of blocks
(RO_COMPAT_BIGALLOC).

0x400

is filesystem supports metadata
checksumming.
(RO_COMPAT_METADATA_CSUM; implies
RO_COMPAT_GDT_CSUM, though
GDT_CSUM must not be set)

0x68 __u8 s_uuid[16] 128-bit UUID for volume.

0x78 char s_volume_name[16] Volume label.

0x88 char s_last_mounted[64] Directory where filesystem was last mounted.

0xC8 __le32 s_algorithm_usage_bitmap For compression

Performance hints. Directory preallocation should only happen if the
EXT4_FEATURE_COMPAT_DIR_PREALLOC flag is on.

0xCC __u8 s_prealloc_blocks # of blocks to try to preallocate for … files?

0xCD __u8 s_prealloc_dir_blocks # of blocks to preallocate for directories.

0xCE __le16 s_reserved_gdt_blocks
Number of reserved GDT entries for future
filesystem expansion.

Journaling support valid if EXT4_FEATURE_COMPAT_HAS_JOURNAL set.

0xD0 __u8 s_journal_uuid[16] UUID of journal superblock

0xE0 __le32 s_journal_inum inode number of journal file.

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

14 of 43 10/21/2013 10:43 PM

0xE4 __le32 s_journal_dev
Device number of journal file, if the external
journal feature flag is set.

0xE8 __le32 s_last_orphan Start of list of orphaned inodes to delete.

0xEC __le32 s_hash_seed[4] HTREE hash seed.

0xFC __u8 s_def_hash_version

Default hash algorithm to use for directory hashes.
One of:

0x0 Legacy.

0x1 Half MD4.

0x2 Tea.

0x3 Legacy, unsigned.

0x4 Half MD4, unsigned.

0x5 Tea, unsigned.

0xFD __u8 s_jnl_backup_type ?

0xFE __le16 s_desc_size
Size of group descriptors, in bytes, if the 64bit
incompat feature flag is set.

0x100 __le32 s_default_mount_opts

Default mount options. Any of:

0x0001 Print debugging info upon (re)mount.

0x0002
New files take the gid of the containing
directory (instead of the fsgid of the
current process).

0x0004
Support userspace-provided extended
aributes.

0x0008 Support POSIX access control lists (ACLs).

0x0010 Do not support 32-bit UIDs.

0x0020
All data and metadata are commited to the
journal.

0x0040
All data are flushed to the disk before
metadata are commied to the journal.

0x0060
Data ordering is not preserved; data may
be wrien aer the metadata has been
wrien.

0x0100 Disable write flushes.

0x0200
Track which blocks in a filesystem are
metadata and therefore should not be used
as data blocks.

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

15 of 43 10/21/2013 10:43 PM

0x0400
Enable DISCARD support, where the
storage device is told about blocks
becoming unused.

0x0800 Disable delayed allocation.

0x104 __le32 s_first_meta_bg
First metablock block group, if the meta_bg feature
is enabled.

0x108 __le32 s_mkfs_time
When the filesystem was created, in seconds since
the epoch.

0x10C __le32 s_jnl_blocks[17]
Backup copy of the first 68 bytes of the journal
inode.

64bit support valid if EXT4_FEATURE_COMPAT_64BIT

0x150 __le32 s_blocks_count_hi High 32-bits of the block count.

0x154 __le32 s_r_blocks_count_hi High 32-bits of the reserved block count.

0x158 __le32 s_free_blocks_count_hi High 32-bits of the free block count.

0x15C __le16 s_min_extra_isize All inodes have at least # bytes.

0x15E __le16 s_want_extra_isize New inodes should reserve # bytes.

0x160 __le32 s_flags

Miscellaneous flags. Any of:

0x0001 Signed directory hash in use.

0x0002 Unsigned directory hash in use.

0x0004 To test development code.

0x164 __le16 s_raid_stride

RAID stride. is is the number of logical blocks
read from or wrien to the disk before moving to
the next disk. is affects the placement of
filesystem metadata, which will hopefully make
RAID storage faster.

0x166 __le16 s_mmp_interval

seconds to wait in multi-mount prevention
(MMP) checking. In theory, MMP is a mechanism
to record in the superblock which host and device
have mounted the filesystem, in order to prevent
multiple mounts. is feature does not seem to be
implemented…

0x168 __le64 s_mmp_block Block # for multi-mount protection data.

0x170 __le32 s_raid_stripe_width

RAID stripe width. is is the number of logical
blocks read from or wrien to the disk before
coming back to the current disk. is is used by the

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

16 of 43 10/21/2013 10:43 PM

block allocator to try to reduce the number of
read-modify-write operations in a RAID5/6.

0x174 __u8 s_log_groups_per_flex
Size of a flexible block group is 2 ^
s_log_groups_per_flex.

0x175 __u8 s_reserved_char_pad

0x176 __le16 s_reserved_pad

0x178 __le64 s_kbytes_wrien
Number of KiB wrien to this filesystem over its
lifetime.

0x180 __le32 s_snapshot_inum inode number of active snapshot.

0x184 __le32 s_snapshot_id Sequential ID of active snapshot.

0x188 __le64 s_snapshot_r_blocks_count
Number of blocks reserved for active snapshot's
future use.

0x190 __le32 s_snapshot_list
inode number of the head of the on-disk snapshot
list.

0x194 __le32 s_error_count Number of errors seen.

0x198 __le32 s_first_error_time
First time an error happened, in seconds since the
epoch.

0x19C __le32 s_first_error_ino inode involved in first error.

0x1A0 __le64 s_first_error_block Number of block involved of first error.

0x1A8 __u8 s_first_error_func[32] Name of function where the error happened.

0x1C8 __le32 s_first_error_line Line number where error happened.

0x1CC __le32 s_last_error_time
Time of most recent error, in seconds since the
epoch.

0x1D0 __le32 s_last_error_ino inode involved in most recent error.

0x1D4 __le32 s_last_error_line Line number where most recent error happened.

0x1D8 __le64 s_last_error_block Number of block involved in most recent error.

0x1E0 __u8 s_last_error_func[32]
Name of function where the most recent error
happened.

0x200 __u8 s_mount_opts[64] ASCIIZ string of mount options.

0x240 __le32 s_usr_quota_inum Inode number of user quota file.

0x244 __le32 s_grp_quota_inum Inode number of group quota file.

0x248 __le32 s_overhead_blocks Overhead blocks/clusters in fs. (huh?)

0x24C __le32 s_reserved[108] Padding to the end of the block.

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

17 of 43 10/21/2013 10:43 PM

0x3FC __le32 s_checksum Superblock checksum.

Total size is 1024 bytes.

Block Group Descriptors
Each block group on the filesystem has one of these descriptors associated with it. As noted in
the Layout section above, the group descriptors (if present) are the second item in the block
group. e standard configuration is for each block group to contain a full copy of the block
group descriptor table unless the sparse_super feature flag is set.

Notice how the group descriptor records the location of both bitmaps and the inode table (i.e.
they can float). is means that within a block group, the only data structures with fixed
locations are the superblock and the group descriptor table. e flex_bg mechanism uses this
property to group several block groups into a flex group and lay out all of the groups' bitmaps
and inode tables into one long run in the first group of the flex group.

If the meta_bg feature flag is set, then several block groups are grouped together into a meta
group. Note that in the meta_bg case, however, the first and last two block groups within the
larger meta group contain only group descriptors for the groups inside the meta group.

flex_bg and meta_bg do not appear to be mutually exclusive features.

In ext2, ext3, and ext4 (when the 64bit feature is not enabled), the block group descriptor was
only 32 bytes long and therefore ends at bg_used_dirs_count_lo. On an ext4 filesystem with the
64bit feature enabled, the block group descriptor expands to the full 64 bytes described below.

If gdt_csum is set and metadata_csum is not set, the block group checksum is the crc16 of the FS
UUID, the group number, and the group descriptor structure. If metadata_csum is set, then the
block group checksum is the lower 16 bits of the checksum of the FS UUID, the group number,
and the group descriptor structure. Both block and inode bitmap checksums are calculated
against the FS UUID, the group number, and the entire bitmap.

e block group descriptor is laid out in struct ext4_group_desc.

Offset Size Name Description

0x0 __le32 bg_block_bitmap_lo Lower 32-bits of location of block bitmap.

0x4 __le32 bg_inode_bitmap_lo Lower 32-bits of location of inode bitmap.

0x8 __le32 bg_inode_table_lo Lower 32-bits of location of inode table.

0xC __le16 bg_free_blocks_count_lo Lower 16-bits of free block count.

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

18 of 43 10/21/2013 10:43 PM

0xE __le16 bg_free_inodes_count_lo Lower 16-bits of free inode count.

0x10 __le16 bg_used_dirs_count_lo Lower 16-bits of directory count.

0x12 __le16 bg_flags

Block group flags. Any of:

0x1
inode table and bitmap are not initialized
(EXT4_BG_INODE_UNINIT).

0x2
block bitmap is not initialized
(EXT4_BG_BLOCK_UNINIT).

0x4
inode table is zeroed
(EXT4_BG_INODE_ZEROED).

0x14 __le32 bg_exclude_bitmap_lo
Lower 32-bits of location of snapshot exclusion
bitmap.

0x18 __le16 bg_block_bitmap_csum_lo Lower 16-bits of the block bitmap checksum.

0x1A __le16 bg_inode_bitmap_csum_lo Lower 16-bits of the inode bitmap checksum.

0x1C __le16 bg_itable_unused_lo Lower 16-bits of unused inode count.

0x1E __le16 bg_checksum

Group descriptor checksum;
crc16(sb_uuid+group+desc). Probably only
calculated if the rocompat bg_checksum feature flag
is set.

ese fields only exist if the 64bit feature is enabled and s_desc_size > 32.

0x20 __le32 bg_block_bitmap_hi Upper 32-bits of location of block bitmap.

0x24 __le32 bg_inode_bitmap_hi Upper 32-bits of location of inodes bitmap.

0x28 __le32 bg_inode_table_hi Upper 32-bits of location of inodes table.

0x2C __le16 bg_free_blocks_count_hi Upper 16-bits of free block count.

0x2E __le16 bg_free_inodes_count_hi Upper 16-bits of free inode count.

0x30 __le16 bg_used_dirs_count_hi Upper 16-bits of directory count.

0x32 __le16 bg_itable_unused_hi Upper 16-bits of unused inode count.

0x34 __le32 bg_exclude_bitmap_hi
Upper 32-bits of location of snapshot exclusion
bitmap.

0x38 __le16 bg_block_bitmap_csum_hi Upper 16-bits of the block bitmap checksum.

0x3A __le16 bg_inode_bitmap_csum_hi Upper 16-bits of the inode bitmap checksum.

0x3C __u32 bg_reserved Padding to 64 bytes.

Total size is 64 bytes.

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

19 of 43 10/21/2013 10:43 PM

Block and inode Bitmaps
e data block bitmap tracks the usage of data blocks within the block group.

e inode bitmap records which entries in the inode table are in use.

As with most bitmaps, one bit represents the usage status of one data block or inode table entry.
is implies a block group size of 8 * number_of_bytes_in_a_logical_block.

NOTE: If BLOCK_UNINIT is set for a given block group, various parts of the kernel and
e2fsprogs code pretends that the block bitmap contains zeros (i.e. all blocks in the group are
free). However, it is not necessarily the case that no blocks are in use -- if meta_bg is set, the
bitmaps and group descriptor live inside the group. Unfortunately, ext2fs_test_block_bitmap2()
will return '0' for those locations, which produces confusing debugfs output.

Inode Table
In a regular UNIX filesystem, the inode stores all the metadata pertaining to the file (time
stamps, block maps, extended aributes, etc), not the directory entry. To find the information
associated with a file, one must traverse the directory files to find the directory entry associated
with a file, then load the inode to find the metadata for that file. ext4 appears to cheat (for
performance reasons) a lile bit by storing a copy of the file type (normally stored in the inode)
in the directory entry. (Compare all this to FAT, which stores all the file information directly in
the directory entry, but does not support hard links and is in general more seek-happy than ext4
due to its simpler block allocator and extensive use of linked lists.)

e inode table is a linear array of struct ext4_inode. e table is sized to have enough
blocks to store at least sb.s_inode_size * sb.s_inodes_per_group bytes. e number
of the block group containing an inode can be calculated as (inode_number - 1) /
sb.s_inodes_per_group, and the offset into the group's table is (inode_number - 1) %
sb.s_inodes_per_group. ere is no inode 0.

e inode checksum is calculated against the FS UUID, the inode number, and the inode
structure itself.

e inode table entry is laid out in struct ext4_inode.

Offset Size Name Description

0x0 __le16 i_mode
File mode. Any of:

0x1 S_IXOTH (Others may execute)

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

20 of 43 10/21/2013 10:43 PM

0x2 S_IWOTH (Others may write)

0x4 S_IROTH (Others may read)

0x8
S_IXGRP (Group members may
execute)

0x10 S_IWGRP (Group members may write)

0x20 S_IRGRP (Group members may read)

0x40 S_IXUSR (Owner may execute)

0x80 S_IWUSR (Owner may write)

0x100 S_IRUSR (Owner may read)

0x200 S_ISVTX (Sticky bit)

0x400 S_ISGID (Set GID)

0x800 S_ISUID (Set UID)

ese are mutually-exclusive file types:

0x1000 S_IFIFO (FIFO)

0x2000 S_IFCHR (Character device)

0x4000 S_IFDIR (Directory)

0x6000 S_IFBLK (Block device)

0x8000 S_IFREG (Regular file)

0xA000 S_IFLNK (Symbolic link)

0xC000 S_IFSOCK (Socket)

0x2 __le16 i_uid Lower 16-bits of Owner UID.

0x4 __le32 i_size_lo Lower 32-bits of size in bytes.

0x8 __le32 i_atime Last access time, in seconds since the epoch.

0xC __le32 i_ctime
Last inode change time, in seconds since the
epoch.

0x10 __le32 i_mtime
Last data modification time, in seconds since
the epoch.

0x14 __le32 i_dtime Deletion Time, in seconds since the epoch.

0x18 __le16 i_gid Lower 16-bits of GID.

0x1A __le16 i_links_count Hard link count.

0x1C __le32 i_blocks_lo

Lower 32-bits of "block" count. If the huge_file
feature flag is not set on the filesystem, the file
consumes i_blocks_lo 512-byte blocks on
disk. If huge_file is set and

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

21 of 43 10/21/2013 10:43 PM

EXT4_INODE_HUGE_FILE is NOT set in
inode.i_flags, then the file consumes
(i_blocks_lo + i_blocks_hi << 32)
512-byte blocks on disk. If huge_file is set and
EXT4_INODE_HUGE_FILE IS set in
inode.i_flags, then this file consumes
(i_blocks_lo + i_blocks_hi << 32)
filesystem blocks on disk.

0x20 __le32 i_flags

Inode flags. Any of:

0x1
is file requires secure deletion
(EXT4_INODE_SECRM). (not
implemented)

0x2

is file should be preserved,
should undeletion be desired
(EXT4_INODE_UNRM). (not
implemented)

0x4
File is compressed
(EXT4_INODE_COMPR). (not
really implemented)

0x8
All writes to the file must be
synchronous
(EXT4_INODE_SYNC).

0x10
File is immutable
(EXT4_INODE_IMMUTABLE).

0x20
File can only be appended
(EXT4_INODE_APPEND).

0x40
e dump(1) utility should not
dump this file
(EXT4_INODE_NODUMP).

0x80
Do not update access time
(EXT4_INODE_NOATIME).

0x100
Dirty compressed file
(EXT4_INODE_DIRTY). (not used)

0x200

File has one or more compressed
clusters
(EXT4_INODE_COMPRBLK). (not
used)

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

22 of 43 10/21/2013 10:43 PM

0x400
Do not compress file
(EXT4_INODE_NOCOMPR). (not
used)

0x800
Compression error
(EXT4_INODE_ECOMPR). (not
used)

0x1000
Directory has hashed indexes
(EXT4_INODE_INDEX).

0x2000
AFS magic directory
(EXT4_INODE_IMAGIC).

0x4000
File data must always be wrien
through the journal
(EXT4_INODE_JOURNAL_DATA).

0x8000
File tail should not be merged
(EXT4_INODE_NOTAIL).

0x10000

All directory entry data should be
wrien synchronously (see
dirsync)
(EXT4_INODE_DIRSYNC).

0x20000
Top of directory hierarchy
(EXT4_INODE_TOPDIR).

0x40000
is is a huge file
(EXT4_INODE_HUGE_FILE).

0x80000
Inode uses extents
(EXT4_INODE_EXTENTS).

0x200000
Inode used for a large extended
aribute
(EXT4_INODE_EA_INODE).

0x400000
is file has blocks allocated past
EOF (EXT4_INODE_EOFBLOCKS).

0x10000000
Inode has inline data
(EXT4_INLINE_DATA_FL).

0x80000000
Reserved for ext4 library
(EXT4_INODE_RESERVED).

Aggregate flags:

0x4BDFFF User-visible flags.

0x4B80FF User-modifiable flags.

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

23 of 43 10/21/2013 10:43 PM

0x24
4
bytes

Union osd1:

Tag Contents

linux1
Offset Size Name Description

0x0 __le32 l_i_version
Version (High 32-bits of the i_generation
field?)

hurd1
Offset Size Name Description

0x0 __le32 h_i_translator ⁇

masix1
Offset Size Name Description

0x0 __le32 m_i_reserved ⁇

0x28
60
bytes

i_block[EXT4_N_BLOCKS=15]
Block map or extent tree. See the section "e
Contents of inode.i_block".

0x64 __le32 i_generation File version (for NFS).

0x68 __le32 i_file_acl_lo

Lower 32-bits of extended aribute block. ACLs
are of course one of many possible extended
aributes; I think the name of this field is a
result of the first use of extended aributes
being for ACLs.

0x6C __le32 i_size_high / i_dir_acl
Upper 32-bits of file size. In ext2/3 this field was
named i_dir_acl, though it was usually set to
zero and never used.

0x70 __le32 i_obso_faddr (Obsolete) fragment address.

0x74
12
bytes

Union osd2:

Tag Contents

linux2

Offset Size Name Description

0x0 __le16 l_i_blocks_high
Upper 16-bits of the block count.
Please see the note aached to
i_blocks_lo.

0x2 __le16 l_i_file_acl_high

Upper 16-bits of the extended
aribute block (historically, the file
ACL location). See the Extended
Aributes section below.

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

24 of 43 10/21/2013 10:43 PM

0x4 __le16 l_i_uid_high Upper 16-bits of the Owner UID.

0x6 __le16 l_i_gid_high Upper 16-bits of the GID.

0x8 __le16 l_i_checksum_lo Lower 16-bits of the inode checksum.

0xA __le16 l_i_reserved Unused.

hurd2

Offset Size Name Description

0x0 __le16 h_i_reserved1 ⁇

0x2 __u16 h_i_mode_high Upper 16-bits of the file mode.

0x4 __le16 h_i_uid_high Upper 16-bits of the Owner UID.

0x6 __le16 h_i_gid_high Upper 16-bits of the GID.

0x8 __u32 h_i_author Author code?

masix2

Offset Size Name Description

0x0 __le16 h_i_reserved1 ⁇

0x2 __u16 m_i_file_acl_high
Upper 16-bits of the extended
aribute block (historically, the file
ACL location).

0x4 __u32 m_i_reserved2[2] ⁇

0x80 __le16 i_extra_isize Size of this inode - 128.

0x82 __le16 i_checksum_hi Upper 16-bits of the inode checksum.

0x84 __le32 i_ctime_extra
Extra change time bits. is provides
sub-second precision.

0x88 __le32 i_mtime_extra
Extra modification time bits. is provides
sub-second precision.

0x8C __le32 i_atime_extra
Extra access time bits. is provides sub-second
precision.

0x90 __le32 i_crtime File creation time, in seconds since the epoch.

0x94 __le32 i_crtime_extra
Extra file creation time bits. is provides
sub-second precision.

0x98 __le32 i_version_hi Upper 32-bits for version number.

Note that the size of the structure is 156 bytes, though the standard inode size in ext4 is 256
bytes. It was 128 previously. I think(?) the extra space can be used for extended aributes.

Finding an Inode

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

25 of 43 10/21/2013 10:43 PM

Each block group contains sb->s_inodes_per_group inodes. Because inode 0 is defined not
to exist, this formula can be used to find the block group that an inode lives in: bg =
(inode_num - 1) / sb->s_inodes_per_group. e particular inode can be found
within the block group's inode table at index = (inode_num - 1) %
sb->s_inodes_per_group. To get the byte address within the inode table, use offset =
index * sb->s_inode_size.

Inode Size

In ext2 and ext3, the inode structure size was fixed at 128 bytes and each inode had a disk record
size of 128 bytes. Starting with ext4, it is possible to allocate a power-of-two number of bytes for
each inode record; the actual size of the inode structure (minus 128) is recorded in the
i_extra_isize field. By default, inode records are 256 bytes, and (as of October 2013) the
inode structure is 156 bytes. e extra space between the end of the inode structure and the end
of the inode record can be used to store extended aributes. Each inode record can be as large as
the filesystem block size, though this is not terribly efficient. e inode record size is recorded in
the superblock as s_inode_size.

Inode Timestamps

Four timestamps are recorded in the lower 128 bytes of the inode structure -- inode change time
(ctime), access time (atime), data modification time (mtime), and deletion time (dtime). e units
of these four fields is seconds since the Unix epoch (1970-01-01 00:00:00 GMT), which means
that the fields will overflow in January 2038. For inodes that are not linked from any directory
but are still open (orphan inodes), the dtime field is overloaded for use with the orphan list. e
superblock field s_last_orphan points to the first inode in the orphan list; dtime is then the
number of the next orphaned inode, or zero if there are no more orphans.

If the inode structure size is larger than 128 bytes, however, the ctime, atime, and mtime fields
are widened to 64 bits. e upper two bits are used to extend the seconds field; the lower 30 bits
are used to provide nanosecond timestamp accuracy. With this enhancement, timestamps
should not overflow until May 2514. Note that the dtime was not widened. ere is also a fih
timestamp to record inode creation time (crtime). Neither crtime nor dtime are accessible
through the regular stat() interface, though debugfs will report them.

e Contents of inode.i_block
Depending on the type of file an inode describes, the 60 bytes of storage in inode.i_block
can be used in different ways. In general, regular files and directories will use it for file block
indexing information, and special files will use it for special purposes.

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

26 of 43 10/21/2013 10:43 PM

Symbolic Links

e target of a symbolic link will be stored in this field if the target string is less than 60 bytes
long. Otherwise, either extents or block maps will be used to allocate data blocks to store the
link target.

Direct/Indirect Block Addressing

In ext2/3, file block numbers were mapped to logical block numbers by means of an (up to) three
level 1-1 block map. To find the logical block that stores a particular file block, the code would
navigate through this increasingly complicated structure. Notice that there is neither a magic
number nor a checksum to provide any level of confidence that the block isn't full of garbage.

i.i_block
Offset

Where It Points

0 to 11 Direct map to file blocks 0 to 11.

12

Indirect block: (file blocks 12 to ($block_size / 4) + 11, or 12 to 1035 if 4KiB
blocks)

Indirect Block Offset Where It Points

0 to ($block_size /
4)

Direct map to ($block_size / 4) blocks (1024 if 4KiB
blocks)

13

Double-indirect block: (file blocks $block_size/4 + 12 to ($block_size / 4) ^ 2
+ ($block_size / 4) + 11, or 1036 to 1049611 if 4KiB blocks)

Double Indirect
Block Offset

Where It Points

0 to ($block_size /
4)

Map to ($block_size / 4) indirect blocks (1024 if 4KiB
blocks)

Indirect Block
Offset

Where It Points

0 to
($block_size /
4)

Direct map to ($block_size / 4)
blocks (1024 if 4KiB blocks)

14

Triple-indirect block: (file blocks ($block_size / 4) ^ 2 + ($block_size / 4) +
12 to ($block_size / 4) ^ 3 + ($block_size / 4) ^ 2 + ($block_size / 4) + 12,
or 1049612 to 1074791436 if 4KiB blocks)

Triple Indirect Where It Points

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

27 of 43 10/21/2013 10:43 PM

Block Offset

0 to
($block_size /
4)

Map to ($block_size / 4) double indirect blocks (1024 if
4KiB blocks)

Double Indirect
Block Offset

Where It Points

0 to
($block_size /
4)

Map to ($block_size / 4) indirect
blocks (1024 if 4KiB blocks)

Indirect Block
Offset

Where It Points

0 to
($block_size
/ 4)

Direct map to
($block_size / 4)
blocks (1024 if 4KiB
blocks)

Note that with this block mapping scheme, it is necessary to fill out a lot of mapping data even
for a large contiguous file! is inefficiency led to the creation of the extent mapping scheme,
discussed below.

Notice also that a file using this mapping scheme cannot be placed higher than 2^32 blocks.

Extent Tree

In ext4, the file to logical block map has been replaced with an extent tree. Under the old
scheme, allocating a contiguous run of 1,000 blocks requires an indirect block to map all 1,000
entries; with extents, the mapping is reduced to a single struct ext4_extent with ee_len
= 1000. If flex_bg is enabled, it is possible to allocate very large files with a single extent, at a
considerable reduction in metadata block use, and some improvement in disk efficiency. e
inode must have the extents flag (0x80000) flag set for this feature to be in use.

Extents are arranged as a tree. Each node of the tree begins with a struct
ext4_extent_header. If the node is an interior node (eh.eh_depth > 0), the header is
followed by eh.eh_entries instances of struct ext4_extent_idx; each of these index
entries points to a block containing more nodes in the extent tree. If the node is a leaf node
(eh.eh_depth == 0), then the header is followed by eh.eh_entries instances of struct
ext4_extent; these instances point to the file's data blocks. e root node of the extent tree is
stored in inode.i_block, which allows for the first four extents to be recorded without the
use of extra metadata blocks.

e extent tree header is recorded in struct ext4_extent_header, which is 12 bytes long:

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

28 of 43 10/21/2013 10:43 PM

Offset Size Name Description

0x0 __le16 eh_magic Magic number, 0xF30A.

0x2 __le16 eh_entries Number of valid entries following the header.

0x4 __le16 eh_max Maximum number of entries that could follow the header.

0x6 __le16 eh_depth
Depth of this extent node in the extent tree. 0 = this extent node
points to data blocks; otherwise, this extent node points to other
extent nodes.

0x8 __le32 eh_generation Generation of the tree. (Used by Lustre, but not standard ext4).

Internal nodes of the extent tree, also known as index nodes, are recorded as struct
ext4_extent_idx, and are 12 bytes long:

Offset Size Name Description

0x0 __le32 ei_block is index node covers file blocks from 'block' onward.

0x4 __le32 ei_leaf_lo
Lower 32-bits of the block number of the extent node that is the next
level lower in the tree. e tree node pointed to can be either
another internal node or a leaf node, described below.

0x8 __le16 ei_leaf_hi Upper 16-bits of the previous field.

0xA __u16 ei_unused

Leaf nodes of the extent tree are recorded as struct ext4_extent, and are also 12 bytes
long:

Offset Size Name Description

0x0 __le32 ee_block First file block number that this extent covers.

0x4 __le16 ee_len Number of blocks covered by extent.

0x6 __le16 ee_start_hi Upper 16-bits of the block number to which this extent points.

0x8 __le32 ee_start_lo Lower 32-bits of the block number to which this extent points.

Prior to the introduction of metadata checksums, the extent header + extent entries always le
at least 4 bytes of unallocated space at the end of each extent tree data block (because (2^x % 12)
>= 4). erefore, the 32-bit checksum is inserted into this space. e 4 extents in the inode do
not need checksumming, since the inode is already checksummed. e checksum is calculated
against the FS UUID and the entire extent block leading up to (but not including) the checksum
itself.

struct ext4_extent_tail is 4 bytes long:

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

29 of 43 10/21/2013 10:43 PM

Offset Size Name Description

0x0 __le32 eb_checksum Checksum of the extent block.

Inline Data

If the inline data feature is enabled for the filesystem and the flag is set for the inode, it is
possible that the first 60 bytes of the file data are stored here.

Directory Entries
In an ext4 filesystem, a directory is more or less a flat file that maps an arbitrary byte string
(usually ASCII) to an inode number on the filesystem. ere can be many directory entries
across the filesystem that reference the same inode number--these are known as hard links, and
that is why hard links cannot reference files on other filesystems. As such, directory entries are
found by reading the data block(s) associated with a directory file for the particular directory
entry that is desired.

Linear (Classic) Directories

By default, each directory lists its entries in an "almost-linear" array. I write "almost" because it's
not a linear array in the memory sense because directory entries are not split across filesystem
blocks. erefore, it is more accurate to say that a directory is a series of data blocks and that
each block contains a linear array of directory entries. e end of each per-block array is
signified by reaching the end of the block; the last entry in the block has a record length that
takes it all the way to the end of the block. e end of the entire directory is of course signified
by reaching the end of the file. Unused directory entries are signified by inode = 0. By default
the filesystem uses struct ext4_dir_entry_2 for directory entries unless the "filetype"
feature flag is not set, in which case it uses struct ext4_dir_entry.

e original directory entry format is struct ext4_dir_entry, which is at most 263 bytes
long, though on disk you'll need to reference dirent.rec_len to know for sure.

Offset Size Name Description

0x0 __le32 inode
Number of the inode that this directory entry points
to.

0x4 __le16 rec_len Length of this directory entry.

0x6 __le16 name_len Length of the file name.

0x8 char name[EXT4_NAME_LEN] File name.

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

30 of 43 10/21/2013 10:43 PM

Since file names cannot be longer than 255 bytes, the new directory entry format shortens the
rec_len field and uses the space for a file type flag, probably to avoid having to load every inode
during directory tree traversal. is format is ext4_dir_entry_2, which is at most 263 bytes
long, though on disk you'll need to reference dirent.rec_len to know for sure.

Offset Size Name Description

0x0 __le32 inode
Number of the inode that this directory entry points
to.

0x4 __le16 rec_len Length of this directory entry.

0x6 __u8 name_len Length of the file name.

0x7 __u8 file_type

File type code, one of:

0x0 Unknown.

0x1 Regular file.

0x2 Directory.

0x3 Character device file.

0x4 Block device file.

0x5 FIFO.

0x6 Socket.

0x7 Symbolic link.

0x8 char name[EXT4_NAME_LEN] File name.

In order to add checksums to these classic directory blocks, a phony struct
ext4_dir_entry is placed at the end of each leaf block to hold the checksum. e directory
entry is 12 bytes long. e inode number and name_len fields are set to zero to fool old soware
into ignoring an apparently empty directory entry, and the checksum is stored in the place
where the name normally goes. e structure is struct ext4_dir_entry_tail:

Offset Size Name Description

0x0 __le32 det_reserved_zero1 Inode number, which must be zero.

0x4 __le16 det_rec_len Length of this directory entry, which must be 12.

0x6 __u8 det_reserved_zero2 Length of the file name, which must be zero.

0x7 __u8 det_reserved_ File type, which must be 0xDE.

0x8 __le32 det_checksum Directory leaf block checksum.

e leaf directory block checksum is calculated against the FS UUID, the directory's inode
number, the directory's inode generation number, and the entire directory entry block up to (but
not including) the fake directory entry.

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

31 of 43 10/21/2013 10:43 PM

Hash Tree Directories

A linear array of directory entries isn't great for performance, so a new feature was added to
ext3 to provide a faster (but peculiar) balanced tree keyed off a hash of the directory entry name.
If the EXT4_INDEX_FL (0x1000) flag is set in the inode, this directory uses a hashed btree
(htree) to organize and find directory entries. For backwards read-only compatibility with ext2,
this tree is actually hidden inside the directory file, masquerading as "empty" directory data
blocks! It was stated previously that the end of the linear directory entry table was signified
with an entry pointing to inode 0; this is (ab)used to fool the old linear-scan algorithm into
thinking that the rest of the directory block is empty so that it moves on.

e root of the tree always lives in the first data block of the directory. By ext2 custom, the '.'
and '..' entries must appear at the beginning of this first block, so they are put here as two
struct ext4_dir_entry_2s and not stored in the tree. e rest of the root node contains
metadata about the tree and finally a hash->block map to find nodes that are lower in the htree.
If dx_root.info.indirect_levels is non-zero then the htree has two levels; the data
block pointed to by the root node's map is an interior node, which is indexed by a minor hash.
Interior nodes in this tree contains a zeroed out struct ext4_dir_entry_2 followed by a
minor_hash->block map to find leafe nodes. Leaf nodes contain a linear array of all struct
ext4_dir_entry_2; all of these entries (presumably) hash to the same value. If there is an
overflow, the entries simply overflow into the next leaf node, and the least-significant bit of the
hash (in the interior node map) that gets us to this next leaf node is set.

To traverse the directory as a htree, the code calculates the hash of the desired file name and
uses it to find the corresponding block number. If the tree is flat, the block is a linear array of
directory entries that can be searched; otherwise, the minor hash of the file name is computed
and used against this second block to find the corresponding third block number. at third
block number will be a linear array of directory entries.

To traverse the directory as a linear array (such as the old code does), the code simply reads
every data block in the directory. e blocks used for the htree will appear to have no entries
(aside from '.' and '..') and so only the leaf nodes will appear to have any interesting content.

e root of the htree is in struct dx_root, which is the full length of a data block:

Offset Type Name Description

0x0 __le32 dot.inode inode number of this directory.

0x4 __le16 dot.rec_len Length of this record, 12.

0x6 u8 dot.name_len Length of the name, 1.

0x7 u8 dot.file_type
File type of this entry, 0x2 (directory) (if
the feature flag is set).

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

32 of 43 10/21/2013 10:43 PM

0x8 char dot.name[4] ".\0\0\0"

0xC __le32 dotdot.inode inode number of parent directory.

0x10 __le16 dotdot.rec_len
block_size - 12. e record length is long
enough to cover all htree data.

0x12 u8 dotdot.name_len Length of the name, 2.

0x13 u8 dotdot.file_type
File type of this entry, 0x2 (directory) (if
the feature flag is set).

0x14 char dotdot_name[4] "..\0\0"

0x18 __le32
struct
dx_root_info.reserved_zero

Zero.

0x1C u8
struct
dx_root_info.hash_version

Hash version, one of:

0x0 Legacy.

0x1 Half MD4.

0x2 Tea.

0x3 Legacy, unsigned.

0x4 Half MD4, unsigned.

0x5 Tea, unsigned.

0x1D u8
struct
dx_root_info.info_length

Length of the tree information, 0x8.

0x1E u8
struct
dx_root_info.indirect_levels

Depth of the htree.

0x1F u8
struct
dx_root_info.unused_flags

0x20 __le16 limit
Maximum number of dx_entries that can
follow this header.

0x22 __le16 count
Actual number of dx_entries that follow
this header.

0x24 __le32 block
e block number (within the directory
file) that goes with hash=0.

0x28
struct
dx_entry

entries[0]
As many 8-byte struct dx_entry as
fits in the rest of the data block.

Interior nodes of an htree are recorded as struct dx_node, which is also the full length of a
data block:

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

33 of 43 10/21/2013 10:43 PM

Offset Type Name Description

0x0 __le32 fake.inode Zero, to make it look like this entry is not in use.

0x4 __le16 fake.rec_len e size of the block, in order to hide all of the dx_node data.

0x6 u8 name_len Zero. ere is no name for this "unused" directory entry.

0x7 u8 file_type Zero. ere is no file type for this "unused" directory entry.

0x8 __le16 limit Maximum number of dx_entries that can follow this header.

0xA __le16 count Actual number of dx_entries that follow this header.

0xE __le32 block
e block number (within the directory file) that goes with
the lowest hash value of this block. is value is stored in the
parent block.

0x12
struct
dx_entry

entries[0]
As many 8-byte struct dx_entry as fits in the rest of the
data block.

e hash maps that exist in both struct dx_root and struct dx_node are recorded as
struct dx_entry, which is 8 bytes long:

Offset Type Name Description

0x0 __le32 hash Hash code.

0x4 __le32 block
Block number (within the directory file, not filesystem blocks) of the
next node in the htree.

(If you think this is all quite clever and peculiar, so does the author.)

If metadata checksums are enabled, the last 8 bytes of the directory block (precisely the length
of one dx_entry) are used to store a struct dx_tail, which contains the checksum. e
limit and count entries in the dx_root/dx_node structures are adjusted as necessary to fit the
dx_tail into the block. If there is no space for the dx_tail, the user is notified to run e2fsck -D to
rebuild the directory index (which will ensure that there's space for the checksum. e dx_tail
structure is 8 bytes long and looks like this:

Offset Type Name Description

0x0 u32 dt_reserved

0x4 __le32 dt_checksum Checksum of the htree directory block.

e checksum is calculated against the FS UUID, the htree index header (dx_root or dx_node),
all of the htree indices (dx_entry) that are in use, and the tail block (dx_tail).

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

34 of 43 10/21/2013 10:43 PM

Extended Attributes
Extended aributes (xars) are typically stored in a separate data block on the disk and
referenced from inodes via inode.i_file_acl*. e first use of extended aributes seems to
have been for storing file ACLs and other security data (selinux). With the user_xattr mount
option it is possible for users to store extended aributes so long as all aribute names begin
with "user"; this restriction seems to have disappeared as of Linux 3.0.

ere are two places where extended aributes can be found. e first place is between the end
of each inode entry and the beginning of the next inode entry. For example, if
inode.i_extra_isize = 28 and sb.inode_size = 256, then there are 256 - (128 + 28) = 100 bytes
available for in-inode extended aribute storage. e second place where extended aributes
can be found is in the block pointed to by inode.i_file_acl. As of Linux 3.11, it is not
possible for this block to contain a pointer to a second extended aribute block (or even the
remaining blocks of a cluster). In theory it is possible for each aribute's value to be stored in a
separate data block, though as of Linux 3.11 the code does not permit this.

Keys are generally assumed to be ASCIIZ strings, whereas values can be strings or binary data.

Extended aributes, when stored aer the inode, have a header ext4_xattr_ibody_header
that is 4 bytes long:

Offset Type Name Description

0x0 __le32 h_magic
Magic number for identification, 0xEA020000. is value is set by the
Linux driver, though e2fsprogs doesn't seem to check it(?)

e beginning of an extended aribute block is in struct ext4_xattr_header, which is 32
bytes long:

Offset Type Name Description

0x0 __le32 h_magic Magic number for identification, 0xEA020000.

0x4 __le32 h_refcount Reference count.

0x8 __le32 h_blocks Number of disk blocks used.

0xC __le32 h_hash Hash value of all aributes.

0x10 __le32 h_checksum Checksum of the extended aribute block.

0x10 __u32 h_reserved[3]

e checksum is calculated against the FS UUID, the 64-bit block number of the extended
aribute block, and the entire block (header + entries).

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

35 of 43 10/21/2013 10:43 PM

Following the struct ext4_xattr_header or struct ext4_xattr_ibody_header is
an array of struct ext4_xattr_entry; each of these entries is at least 16 bytes long.

Offset Type Name Description

0x0 __u8 e_name_len Length of name.

0x1 __u8 e_name_index Aribute name index.

0x2 __le16 e_value_offs
Location of this aribute's value on the disk block where
it is stored. Multiple aributes can share the same value.

0x4 __le32 e_value_block
e disk block where the value is stored. Zero indicates
the value is in the same block as this entry. As of August
2013, this feature does not seem to be implemented.

0x8 __le32 e_value_size Length of aribute value.

0xC __le32 e_hash Hash value of name and value.

0x10 char e_name[e_name_len] Aribute name. Does not include trailing NULL.

Aribute values can follow the end of the entry table. ere appears to be a requirement that
they be aligned to 4-byte boundaries. e values are stored starting at the end of the block and
grow towards the xar_header/xar_entry table. When the two collide, the overflow is put into
a separate disk block. If the disk block fills up, the filesystem returns -ENOSPC.

e first four fields of the ext4_xattr_entry are set to zero to mark the end of the key list.

POSIX ACLs

POSIX ACLs are stored in a reduced version of the Linux kernel (and libacl's) internal ACL
format. e key difference is that the version number is different (1) and the e_id field is only
stored for named user and group ACLs.

Multiple Mount Protection
Multiple mount protection (MMP) is a feature that protects the filesystem against multiple hosts
trying to use the filesystem simultaneously. When a filesystem is opened (for mounting, or fsck,
etc.), the MMP code running on the node (call it node A) checks a sequence number. If the
sequence number is EXT4_MMP_SEQ_CLEAN, the open continues. If the sequence number is
EXT4_MMP_SEQ_FSCK, then fsck is (hopefully) running, and open fails immediately.
Otherwise, the open code will wait for twice the specified MMP check interval and check the
sequence number again. If the sequence number has changed, then the filesystem is active on
another machine and the open fails. If the MMP code passes all of those checks, a new MMP
sequence number is generated and wrien to the MMP block, and the mount proceeds.

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

36 of 43 10/21/2013 10:43 PM

While the filesystem is live, the kernel sets up a timer to re-check the MMP block at the
specified MMP check interval. To perform the re-check, the MMP sequence number is re-read; if
it does not match the in-memory MMP sequence number, then another node (node B) has
mounted the filesystem, and node A remounts the filesystem read-only. If the sequence numbers
match, the sequence number is incremented both in memory and on disk, and the re-check is
complete.

e hostname and device filename are wrien into the MMP block whenever an open operation
succeeds. e MMP code does not use these values; they are provided purely for informational
purposes.

e checksum is calculated against the FS UUID and the MMP structure. e MMP structure
(struct mmp_struct) is as follows:

Offset Type Name Description

0x0 __le32 mmp_magic Magic number for MMP, 0x004D4D50 ("MMP").

0x4 __le32 mmp_seq Sequence number, updated periodically.

0x8 __le64 mmp_time Time that the MMP block was last updated.

0x10 char[64] mmp_nodename Hostname of the node that opened the filesystem.

0x50 char[32] mmp_bdevname Block device name of the filesystem.

0x70 __le16 mmp_check_interval e MMP re-check interval, in seconds.

0x72 __le16 mmp_pad1

0x74 __le32[226] mmp_pad2

0x3FC __le32 mmp_checksum Checksum of the MMP block.

Journal (jbd2)
Introduced in ext3, the ext4 filesystem employs a journal to protect the filesystem against
corruption in the case of a system crash. A small continuous region of disk (default 128MiB) is
reserved inside the filesystem as a place to land "important" data writes on-disk as quickly as
possible. Once the important data transaction is fully wrien to the disk and flushed from the
disk write cache, a record of the data being commied is also wrien to the journal. At some
later point in time, the journal code writes the transactions to their final locations on disk (this
could involve a lot of seeking or a lot of small read-write-erases) before erasing the commit
record. Should the system crash during the second slow write, the journal can be replayed all
the way to the latest commit record, guaranteeing the atomicity of whatever gets wrien
through the journal to the disk. e effect of this is to guarantee that the filesystem does not
become stuck midway through a metadata update.

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

37 of 43 10/21/2013 10:43 PM

For performance reasons, ext4 by default only writes filesystem metadata through the journal.
is means that file data blocks are /not/ guaranteed to be in any consistent state aer a crash. If
this default guarantee level (data=ordered) is not satisfactory, there is a mount option to
control journal behavior. If data=journal, all data and metadata are wrien to disk through
the journal. is is slower but safest. If data=writeback, dirty data blocks are not flushed to
the disk before the metadata are wrien to disk through the journal.

e journal inode is typically inode 8. e first 68 bytes of the journal inode are replicated in the
ext4 superblock. e journal itself is normal (but hidden) file within the filesystem. e file
usually consumes an entire block group, though mke2fs tries to put it in the middle of the disk.

All fields in jbd2 are wrien to disk in big-endian order. is is the opposite of ext4.

NOTE: Both ext4 and ocfs2 use jbd2.

e maximum size of a journal embedded in an ext4 filesystem is 2^32 blocks. jbd2 itself does
not seem to care.

Layout

Generally speaking, the journal has this format:

Superblock
descriptor_block (data_blocks or revocation_block) [more data
or revocations] commmit_block

[more
transactions…]

One transaction

Notice that a transaction begins with either a descriptor and some data, or a block revocation
list. A finished transaction always ends with a commit. If there is no commit record (or the
checksums don't match), the transaction will be discarded during replay.

Block Header

Every block in the journal starts with a common 12-byte header struct
journal_header_s:

Offset Type Name Description

0x0 __be32 h_magic jbd2 magic number, 0xC03B3998.

0x4 __be32 h_blocktype

Description of what this block contains. One of:

1
Descriptor. is block precedes a series of data blocks that were
wrien through the journal during a transaction.

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

38 of 43 10/21/2013 10:43 PM

2
Block commit record. is block signifies the completion of a
transaction.

3 Journal superblock, v1.

4 Journal superblock, v2.

5
Block revocation records. is speeds up recovery by enabling
the journal to skip writing blocks that were subsequently
rewrien.

0x8 __be32 h_sequence e transaction ID that goes with this block.

Super Block

e super block for the journal is much simpler as compared to ext4's. e key data kept within
are size of the journal, and where to find the start of the log of transactions.

e journal superblock is recorded as struct journal_superblock_s, which is 1024 bytes
long:

Offset Type Name Description

0x0
journal_header_t
(12 bytes)

s_header
Common header identifying this as a
superblock.

Static information describing the journal.

0xC __be32 s_blocksize Journal device block size.

0x10 __be32 s_maxlen Total number of blocks in this journal.

0x14 __be32 s_first First block of log information.

Dynamic information describing the current state of the log.

0x18 __be32 s_sequence First commit ID expected in log.

0x1C __be32 s_start
Block number of the start of log. Contrary to
the comments, this field being zero does not
imply that the journal is clean!

0x20 __be32 s_errno Error value, as set by jbd2_journal_abort().

e remaining fields are only valid in a version 2 superblock.

0x24 __be32 s_feature_compat;

Compatible feature set. Any of:

0x1
Journal maintains checksums on the
data blocks.

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

39 of 43 10/21/2013 10:43 PM

0x28 __be32 s_feature_incompat

Incompatible feature set. Any of:

0x1 Journal has block revocation records.

0x2
Journal can deal with 64-bit block
numbers.

0x4 Journal commits asynchronously.

0x2C __be32 s_feature_ro_compat
Read-only compatible feature set. ere
aren't any of these currently.

0x30 __u8 s_uuid[16]
128-bit uuid for journal. is is compared
against the copy in the ext4 super block at
mount time.

0x40 __be32 s_nr_users Number of file systems sharing this journal.

0x44 __be32 s_dynsuper
Location of dynamic super block copy. (Not
used?)

0x48 __be32 s_max_transaction
Limit of journal blocks per transaction. (Not
used?)

0x4C __be32 s_max_trans_data
Limit of data blocks per transaction. (Not
used?)

0x50 __u32 s_padding[44]

0x100 __u8 s_users[16*48]
ids of all file systems sharing the log. (Not
used?)

Descriptor Block

e descriptor block contains an array of journal block tags that describe the final locations of
the data blocks that follow in the journal. Descriptor blocks are open-coded instead of being
completely described by a data structure, but here is the block structure anyway. Descriptor
blocks consume at least 36 bytes, but use a full block:

Offset Type Name Descriptor

0x0 journal_header_t
(open
coded)

Common block header.

0xC
struct
journal_block_tag_s

open coded
array[]

Enough tags either to fill up the block or to
describe all the data blocks that follow this
descriptor block.

Journal block tags have the following format, as recorded by struct

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

40 of 43 10/21/2013 10:43 PM

journal_block_tag_s. ey can be 8, 12, 24, or 38 bytes:

Offset Type Name Descriptor

0x0 __be32 t_blocknr
Lower 32-bits of the location of where the corresponding data
block should end up on disk.

0x4 __be32 t_flags

Flags that go with the descriptor. Any of:

0x1
On-disk block is escaped. e first four bytes of the data
block just happened to match the jbd2 magic number.

0x2
is block has the same UUID as previous, therefore the
UUID field is omied.

0x4
e data block was deleted by the transaction. (Not
used?)

0x8 is is the last tag in this descriptor block.

is next field is only present if the super block indicates support for 64-bit block numbers.

0x8 __be32 t_blocknr_high
Upper 32-bits of the location of where the corresponding data
block should end up on disk.

is field appears to be open coded. It always comes at the end of the tag, aer t_flags or
t_blocknr_high. is field is not present if the "same UUID" flag is set.

0x8 or
0xC

char uuid[16]

A UUID to go with this tag. is field appears to be copied
from a field in struct journal_s that is never set, which
means that the UUID is probably all zeroes. Or perhaps it will
contain garbage.

Data Block

In general, the data blocks being wrien to disk through the journal are wrien verbatim into
the journal file aer the descriptor block. However, if the first four bytes of the block match the
jbd2 magic number then those four bytes are replaced with zeroes and the "escaped" flag is set
in the descriptor block.

Revocation Block

A revocation block is used to record a list of data blocks in this transaction that supersede any
older copies of those data blocks that might still be lurking in the journal. is can speed up
recovery because those older copies don't have to be wrien out to disk.

Revocation blocks are described in struct jbd2_journal_revoke_header_s, are at least
16 bytes in length, but use a full block:

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

41 of 43 10/21/2013 10:43 PM

Offset Type Name Description

0x0 journal_header_t r_header Common block header.

0xC __be32 r_count Number of bytes used in this block.

0x10 __be32 or __be64 blocks[0] Blocks to revoke.

Aer r_count is a linear array of block numbers that are effectively revoked by this transaction.
e size of each block number is 8 bytes if the superblock advertises 64-bit block number
support, or 4 bytes otherwise.

Commit Block

e commit block is a sentry that indicates that a transaction has been completely wrien to the
journal. Once this commit block reaches the journal, the data stored with this transaction can be
wrien to their final locations on disk.

e commit block is described by struct commit_header, which is 32 bytes long (but uses a
full block):

Offset Type Name Descriptor

0x0 journal_header_s (open coded) Common block header.

0xC unsigned char h_chksum_type

e type of checksum to use
to verify the integrity of the
data blocks in the
transaction. One of:

1 CRC32

2 MD5

3 SHA1

0xD unsigned char h_chksum_size
e number of bytes used by
the checksum. Most likely 4.

0xE unsigned char h_padding[2]

0x10 __be32 h_chksum[JBD2_CHECKSUM_BYTES]
32 bytes of space to store
checksums.

0x30 __be64 h_commit_sec
e time that the transaction
was commied, in seconds
since the epoch.

0x38 __be32 h_commit_nsec
Nanoseconds component of
the above timestamp.

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

42 of 43 10/21/2013 10:43 PM

Areas in Need of Work
New patchsets to track with regards to changes in on-disk formats (in no particular order):

Amir's ext4 snapshot work (dead as of Oct. 2013?)

Other References
Also see hp://www.nongnu.org/ext2-doc/ for quite a collection of information about ext2/3.

Retrieved from "hps://ext4.wiki.kernel.org/index.php?title=Ext4_Disk_Layout&oldid=7731"

is page was last modified on 21 October 2013, at 22:32.

Ext4 Disk Layout - Ext4 hps://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout

43 of 43 10/21/2013 10:43 PM

