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Online filesystem checking

Why we want online checking:

● Fsck time at tens of minutes and heading higher

● SSD arrive and fsck algorithms got better

● But still an issue for:

– Most laptops and workstations

– Your bulk storage

– Data centers

Everybody has had the fsck experience at just the wrong ti
me.
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Online filesystem checking

“Waiting for the next fsck”
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Online filesystem checking

"You should strongly consider the consequences
 of disabling mount-count-dependent checking
entirely. Bad disk drives, cables, memory, and

kernel bugs could all corrupt a filesystem without
marking the filesystem dirty or in  error."

-- tune2fs man page
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Online filesystem checking

What about checksumming?

● Easy to implement

● Relatively efficient

● Increases confidence in your data

● Not a substitute for repair!

● Does not tell you much about what is corrupted

● Eventually a checksum will certainly fail. Then what?
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Online filesystem checking

Reasons for not attempting online checking:

● SSD makes the problem go away

– 20 times smaller, 20 times faster = 400 times less annoying

● Handheld revolution changed the game

– Phone reboots are relatively rare 

● Hide the problem in the cloud

– Let somebody else worry about it

● It’s not easy

– We have more pressing issues

● Maybe it won’t happen to me
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Online filesystem checking

It’s like changing a tire without stopping the car.
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Online filesystem checking
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Online filesystem checking

Reasons for doing it:

● Sweetens the availability equation for data centers

– Ultimately saves money

● Longer practical uptime

● Even a small stall is annoying on a phone

● It’s a challenging engineering problem

– The last big unsolved problem in storage?

● It’s a great research problem

– Carve your initials in the history of storage technology!
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Online filesystem checking
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Online filesystem checking

The purpose of this work is to remove
"we don't know how to do it"

as a reason
for not doing it.
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Online filesystem checking

Damage that really hurts:

● Block marked free when it isn't

– Corruption propagates rapidly

● Multiple references to block

– Becomes a double free

● Lose block of pointers high in the tree

– Can lose the entire filesystem

– A constant danger for CoW filesystem designs

● Disconnected directory tree

– Where did my files go??
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Online filesystem checking

How do you check a filesystem while it is changing?

● Frontend/Backend separation is a big help

– Can still write to cache while backend suspended

– Way better than freezing at VFS level

● It has to be incremental

– Does not have to be fast

– Must not kill performance

● Topology could change at any time

– Algorithms must tolerate this

● Global structure much harder to check than local

– From here on, just consider global checks
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Online filesystem checking

Global structure we need to check

● Physical structure:

– block leaks and double references

● Logical structure:

– directory connectivity and loops

– inode leaks and link counts

This is hard.
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How do we do it offline?

Check physical structure

Data structure: Shadow bitmap

– One bit for each volume block

Algorithm:

1) Walk tree and mark off blocks in shadow

– Blocks already marked are double referenced

2) Compare bitmaps to shadow bitmaps

– Blocks free in shadow but not in bitmap are lost

– Blocks free in bitmap but not in shadow are
future corruption
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How do we do it offline?

Check logical structure

Data structure: Link count hash map for all inodes

Algorithm:

1) Walk directories in directory tree order

– Increment entry target in hash

– Already seen directories are loops

2) Walk inode table comparing link counts to hash

– Unreferenced inodes are lost

– Excess references are future double frees
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Online filesystem checking

Online checking is way harder.

Let’s try to make it easier...
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Online filesystem checking

Big idea: a new purpose for an old idea

● Block groups!

– Already need them for allocation algorithms

● Introduce a “far map” of “far pointers” per group

– Far pointers are supposed to be relatively rare

– Allocation policy tries to enforce this

● Low level pointer changes update far map

– Update far map only if destination changes

● High level filesystem algorithms otherwise unchanged
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Online filesystem checking

More about far maps

Far map entry fields:

● Source group

● Destination offset

● Pointer type

– Inode table tree

– File data tree

– Data extent

● Block Count

(Note: no source offset)
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Online filesystem checking

Far maps are not just for online checking

● Many online features require reverse mapping

– Online block migration

– Online filesystem shrink

– Online defragmentation

● Far maps are not reverse maps

– ...but far maps enable reverse maps on demand

– Much faster than persistent reverse maps

It is certain we need this new metadata. Now we can
view online fsck as a “simple” extension.
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Online filesystem checking

“Monotonic progress”... a recurring theme

Need stable enumerations:

● By block group

● By inode number

Examples of unstable enumerations:

● Filesystem tree order unstable for physical checks

● Directory order unstable for namespace checks



22 © 2013 SAMSUNG Electronics Co.Open Source Group –  Silicon Valley 

Online filesystem checking

The master plan:

1) Sweep bottom to top by block groups

– Check block group and mark good

2) Sweep bottom to top in inode order

– Check directory path to root and mark good

3) Clear checked bits and do it again.
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Online filesystem checking

“Hermetic accounting” per group

● Inodes + far map entries  Þ local subtree roots

● Walk local subtrees  Þ shadow map

● If shadow map matches bitmap the group is good

What does that give us?

● Less than a second to read group into cache

– Old school hard disk

● Usually no visible stall

– Frontend updates continue in cache

● Already a nontrivial level of integrity checking



24 © 2013 SAMSUNG Electronics Co.Open Source Group –  Silicon Valley 

Online filesystem checking

the Atlas experiment
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Online filesystem checking

A short break for some philosophy.

● We rely on far maps to do incremental group consistency

How do we know the far maps are consistent?

We don’t. But what is consistency, really?

● An inconsistent system has ambiguous interpretations

● Choose the one that does the least harm

How do we know an updated group is still consistent?

We don’t. Consistency has a shelf life.

● A group marked good just means we trust it more

● We trust far maps if we can read them

● Great place for a checksum!
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Online filesystem repair

Rebuilding far maps online

● Start with all empty far maps

● Live far pointer updates can continue

– Do not complain about missing ones

● Walk itable per group

– Inode number to group correspondence

● Rely on inode structures, bitmaps and partial far maps

– Expect non hermetic accounting

– Any used blocks not accounted for are "in the fog"

● Keep a map of fogged regions by group

● Eventually find a far pointer to earlier fog region

– Recursively resolve other fogged regions
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Online filesystem checking

Incremental directory connectivity and loops

● Can’t walk in directory order because tree can mutate 
during walk

● Walk in inode order instead

– For each directory inode, walk parent pointers to root

● To find loops, keep hash of directories already seen 
● Stop at first directory marked good

– At each step, verify parent references child

● Store “name attribute” per directory

● Not as efficient as directory order walk, but we
have more time because it’s online
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Online filesystem checking

Inode reference counts and leaks

● Walk in inode table order

● Update hash of inode reference counts

● Mirror link count updates to hash when source
inode lies below walk cursor

● Otherwise, just like the offline check
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Online filesystem repair

Repair is the easy part.

● The hard part is deciding what is broken

● Helpful cache model: Tree rooted in dirty cache

– Repair the cache view of the filesystem

– Commit delta when things look good

● Prefer to trust structure over bitmaps

– Be quick to mark referenced blocks used

– Be slow to mark unreferenced blocks free

● Recreate missing inodes from open files

● If things get ugly we can always go offline
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Online filesystem repair

Low level freespace scan

● Directory was lost and user wants data back!

● We should probably go offline, but...

– Why not try hunting through free space and see
what we can find?

– Caveat: our running system might overwrite what we
are looking for

● OK, it looks bad, let’s just go offline

– Then we need to deal with...
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Online filesystem repair

litter
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Online filesystem repair

Which one is the real one?
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Online filesystem repair

Litter

● Copy on write filesystem designs all create litter

● Fixed metadata position like Ext4 is a big advantage

● Introduce “uptags” that we can scan for:

– Magic number type tag

– Delta counter

– Owner

– Logical position

● To save space, just store low order bits

– This is all about improving probabilities
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Online filesystem repair

Conclusion

● Add a little metadata, get a lot of results

● New far map metadata resembles reverse map

● Runtime overhead looks small

● Even basic physical checks are already useful

● Repair is easy if we know what is wrong

● Desktop, servers and data centers benefit

The only thing standing in the way: a lot of hard work
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