
1 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Daniel Phillips

Samsung Research America (Silicon Valley)

d.phillips@partner.samsung.com

Practical Online Filesystem
Checking and Repair

2 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem checking

Why we want online checking:

● Fsck time at tens of minutes and heading higher

● SSD arrive and fsck algorithms got better

● But still an issue for:

– Most laptops and workstations

– Your bulk storage

– Data centers

Everybody has had the fsck experience at just the wrong ti
me.

3 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem checking

“Waiting for the next fsck”

4 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem checking

"You should strongly consider the consequences
 of disabling mount-count-dependent checking
entirely. Bad disk drives, cables, memory, and

kernel bugs could all corrupt a filesystem without
marking the filesystem dirty or in error."

-- tune2fs man page

5 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem checking

What about checksumming?

● Easy to implement

● Relatively efficient

● Increases confidence in your data

● Not a substitute for repair!

● Does not tell you much about what is corrupted

● Eventually a checksum will certainly fail. Then what?

6 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem checking

Reasons for not attempting online checking:

● SSD makes the problem go away

– 20 times smaller, 20 times faster = 400 times less annoying

● Handheld revolution changed the game

– Phone reboots are relatively rare

● Hide the problem in the cloud

– Let somebody else worry about it

● It’s not easy

– We have more pressing issues

● Maybe it won’t happen to me

7 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem checking

It’s like changing a tire without stopping the car.

8 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem checking

9 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem checking

Reasons for doing it:

● Sweetens the availability equation for data centers

– Ultimately saves money

● Longer practical uptime

● Even a small stall is annoying on a phone

● It’s a challenging engineering problem

– The last big unsolved problem in storage?

● It’s a great research problem

– Carve your initials in the history of storage technology!

10 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem checking

11 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem checking

The purpose of this work is to remove
"we don't know how to do it"

as a reason
for not doing it.

12 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem checking

Damage that really hurts:

● Block marked free when it isn't

– Corruption propagates rapidly

● Multiple references to block

– Becomes a double free

● Lose block of pointers high in the tree

– Can lose the entire filesystem

– A constant danger for CoW filesystem designs

● Disconnected directory tree

– Where did my files go??

13 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem checking

How do you check a filesystem while it is changing?

● Frontend/Backend separation is a big help

– Can still write to cache while backend suspended

– Way better than freezing at VFS level

● It has to be incremental

– Does not have to be fast

– Must not kill performance

● Topology could change at any time

– Algorithms must tolerate this

● Global structure much harder to check than local

– From here on, just consider global checks

14 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem checking

Global structure we need to check

● Physical structure:

– block leaks and double references

● Logical structure:

– directory connectivity and loops

– inode leaks and link counts

This is hard.

15 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

How do we do it offline?

Check physical structure

Data structure: Shadow bitmap

– One bit for each volume block

Algorithm:

1) Walk tree and mark off blocks in shadow

– Blocks already marked are double referenced

2) Compare bitmaps to shadow bitmaps

– Blocks free in shadow but not in bitmap are lost

– Blocks free in bitmap but not in shadow are
future corruption

16 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

How do we do it offline?

Check logical structure

Data structure: Link count hash map for all inodes

Algorithm:

1) Walk directories in directory tree order

– Increment entry target in hash

– Already seen directories are loops

2) Walk inode table comparing link counts to hash

– Unreferenced inodes are lost

– Excess references are future double frees

17 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem checking

Online checking is way harder.

Let’s try to make it easier...

18 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem checking

Big idea: a new purpose for an old idea

● Block groups!

– Already need them for allocation algorithms

● Introduce a “far map” of “far pointers” per group

– Far pointers are supposed to be relatively rare

– Allocation policy tries to enforce this

● Low level pointer changes update far map

– Update far map only if destination changes

● High level filesystem algorithms otherwise unchanged

19 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem checking

More about far maps

Far map entry fields:

● Source group

● Destination offset

● Pointer type

– Inode table tree

– File data tree

– Data extent

● Block Count

(Note: no source offset)

20 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem checking

Far maps are not just for online checking

● Many online features require reverse mapping

– Online block migration

– Online filesystem shrink

– Online defragmentation

● Far maps are not reverse maps

– ...but far maps enable reverse maps on demand

– Much faster than persistent reverse maps

It is certain we need this new metadata. Now we can
view online fsck as a “simple” extension.

21 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem checking

“Monotonic progress”... a recurring theme

Need stable enumerations:

● By block group

● By inode number

Examples of unstable enumerations:

● Filesystem tree order unstable for physical checks

● Directory order unstable for namespace checks

22 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem checking

The master plan:

1) Sweep bottom to top by block groups

– Check block group and mark good

2) Sweep bottom to top in inode order

– Check directory path to root and mark good

3) Clear checked bits and do it again.

23 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem checking

“Hermetic accounting” per group

● Inodes + far map entries Þ local subtree roots

● Walk local subtrees Þ shadow map

● If shadow map matches bitmap the group is good

What does that give us?

● Less than a second to read group into cache

– Old school hard disk

● Usually no visible stall

– Frontend updates continue in cache

● Already a nontrivial level of integrity checking

24 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem checking

the Atlas experiment

25 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem checking

A short break for some philosophy.

● We rely on far maps to do incremental group consistency

How do we know the far maps are consistent?

We don’t. But what is consistency, really?

● An inconsistent system has ambiguous interpretations

● Choose the one that does the least harm

How do we know an updated group is still consistent?

We don’t. Consistency has a shelf life.

● A group marked good just means we trust it more

● We trust far maps if we can read them

● Great place for a checksum!

26 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem repair

Rebuilding far maps online

● Start with all empty far maps

● Live far pointer updates can continue

– Do not complain about missing ones

● Walk itable per group

– Inode number to group correspondence

● Rely on inode structures, bitmaps and partial far maps

– Expect non hermetic accounting

– Any used blocks not accounted for are "in the fog"

● Keep a map of fogged regions by group

● Eventually find a far pointer to earlier fog region

– Recursively resolve other fogged regions

27 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem checking

Incremental directory connectivity and loops

● Can’t walk in directory order because tree can mutate
during walk

● Walk in inode order instead

– For each directory inode, walk parent pointers to root

● To find loops, keep hash of directories already seen
● Stop at first directory marked good

– At each step, verify parent references child

● Store “name attribute” per directory

● Not as efficient as directory order walk, but we
have more time because it’s online

28 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem checking

Inode reference counts and leaks

● Walk in inode table order

● Update hash of inode reference counts

● Mirror link count updates to hash when source
inode lies below walk cursor

● Otherwise, just like the offline check

29 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem repair

Repair is the easy part.

● The hard part is deciding what is broken

● Helpful cache model: Tree rooted in dirty cache

– Repair the cache view of the filesystem

– Commit delta when things look good

● Prefer to trust structure over bitmaps

– Be quick to mark referenced blocks used

– Be slow to mark unreferenced blocks free

● Recreate missing inodes from open files

● If things get ugly we can always go offline

30 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem repair

Low level freespace scan

● Directory was lost and user wants data back!

● We should probably go offline, but...

– Why not try hunting through free space and see
what we can find?

– Caveat: our running system might overwrite what we
are looking for

● OK, it looks bad, let’s just go offline

– Then we need to deal with...

31 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem repair

litter

32 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem repair

Which one is the real one?

33 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem repair

Litter

● Copy on write filesystem designs all create litter

● Fixed metadata position like Ext4 is a big advantage

● Introduce “uptags” that we can scan for:

– Magic number type tag

– Delta counter

– Owner

– Logical position

● To save space, just store low order bits

– This is all about improving probabilities

34 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Online filesystem repair

Conclusion

● Add a little metadata, get a lot of results

● New far map metadata resembles reverse map

● Runtime overhead looks small

● Even basic physical checks are already useful

● Repair is easy if we know what is wrong

● Desktop, servers and data centers benefit

The only thing standing in the way: a lot of hard work

35 © 2013 SAMSUNG Electronics Co.Open Source Group – Silicon Valley

Daniel Phillips

Samsung Research America (Silicon Valley)

d.phillips@partner.samsung.com

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

