
XFS Filesystem Disk Structures i

XFS Filesystem Disk Structures

3rd Edition

XFS Filesystem Disk Structures ii

Copyright © 2006 Silicon Graphics Inc.

© Copyright 2006 Silicon Graphics Inc. All rights reserved. Permission is granted to copy, distribute, and/or modify
this document under the terms of the Creative Commons Attribution-Share Alike, Version 3.0 or any later version
published by the Creative Commons Corp. A copy of the license is available at http://creativecommons.
org/licenses/by-sa/3.0/us/.

http://creativecommons.org/licenses/by-sa/3.0/us/
http://creativecommons.org/licenses/by-sa/3.0/us/

XFS Filesystem Disk Structures iii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

0.1 2006 Initial Release Silicon Graphics, Inc

1.0 Fri Jul 03 2009 Publican Conversion Ryan Lerch

1.1 March 2010 Community Release Eric Sandeen

1.99 February 2014 AsciiDoc Conversion Dave Chinner

3 October 2015 Miscellaneous fixes.
Addmissing field definitions.
Add somemissing xfs_db examples.
Add an overview of XFS.
Document the journal format.
Document the realtime device.

Darrick Wong

3.1 October 2015 Add v5 fields.
Discuss metadata integrity.
Document the free inode B+tree.
Create an index of magic numbers.
Document sparse inodes.

Darrick Wong

3.14 January 2016 Document disk format change testing. Darrick Wong

3.141 June 2016 Document the reverse-mapping btree.
Move the b+tree info to a separate chapter.
Discuss overlapping interval b+trees.
Discuss new log items for atomic updates.
Document the reference-count btree.
Discuss block sharing, reflink, & deduplication.

Darrick Wong

3.1415 July 2016 Document the real-time reverse-mapping btree. Darrick Wong

XFS Filesystem Disk Structures iv

Contents

I High Level Design 1

1 Overview 3

2 Metadata Integrity 4

3 Sharing Data Blocks 5

4 Metadata Reconstruction 6

5 Common XFS Types 8

6 Magic Numbers 10

7 Theoretical Limits 13

8 Testing Filesystem Changes 14

II Global Structures 15

9 B+trees 16

9.1 Short Format B+trees . 17

9.2 Long Format B+trees . 18

10 Allocation Groups 20

10.1 Superblocks . 21

10.1.1 xfs_db Superblock Example . 29

10.2 AG Free Space Management . 30

10.2.1 AG Free Space Block . 30

10.2.2 AG Free Space B+trees . 32

XFS Filesystem Disk Structures v

10.2.3 AG Free List . 34

10.2.3.1 xfs_db AGF Example . 36

10.3 AG Inode Management . 38

10.3.1 Inode Numbers . 38

10.3.2 Inode Information . 38

10.4 Inode B+trees . 40

10.4.1 xfs_db AGI Example . 42

10.5 Sparse Inodes . 43

10.5.1 xfs_db Sparse Inode AGI Example . 44

10.6 Real-time Devices . 46

10.7 Reverse-Mapping B+tree . 46

10.7.1 xfs_db rmapbt Example . 48

10.8 Reference Count B+tree . 51

10.8.1 xfs_db refcntbt Example . 52

11 Journaling Log 54

11.1 Log Records . 54

11.2 Log Operations . 56

11.3 Log Items . 57

11.3.1 Transaction Headers . 58

11.3.2 Intent to Free an Extent . 59

11.3.3 Completion of Intent to Free an Extent . 60

11.3.4 Reverse Mapping Updates Intent . 61

11.3.5 Completion of Reverse Mapping Updates . 63

11.3.6 Reference Count Updates Intent . 63

11.3.7 Completion of Reference Count Updates . 64

11.3.8 File Block Mapping Intent . 65

11.3.9 Completion of File Block Mapping Updates . 66

11.3.10 Inode Updates . 66

11.3.11 Inode Data Log Item . 68

11.3.12 Buffer Log Item . 68

11.3.13 Buffer Data Log Item . 69

11.3.14 Update Quota File . 69

11.3.15 Quota Update Data Log Item . 69

11.3.16 Disable Quota Log Item . 70

11.3.17 Inode Creation Log Item . 70

11.4 xfs_logprint Example . 71

XFS Filesystem Disk Structures vi

12 Internal Inodes 74

12.1 Quota Inodes . 74
12.2 Real-time Inodes . 77

12.2.1 Real-Time Bitmap Inode . 77
12.2.2 Real-Time Summary Inode . 77
12.2.3 Real-Time Reverse-Mapping B+tree . 78

12.2.3.1 xfs_db rtrmapbt Example . 79

III Dynamically Allocated Structures 82

13 On-disk Inode 83

13.1 Inode Core . 84
13.2 Unlinked Pointer . 89
13.3 Data Fork . 90

13.3.1 Regular Files (S_IFREG) . 91
13.3.2 Directories (S_IFDIR) . 91
13.3.3 Symbolic Links (S_IFLNK) . 91
13.3.4 Other File Types . 91

13.4 Attribute Fork . 92
13.4.1 Extended Attribute Versions . 92

14 Data Extents 94

14.1 Extent List . 95
14.1.1 xfs_db Inode Data Fork Extents Example . 96

14.2 B+tree Extent List . 98
14.2.1 xfs_db bmbt Example . 102

15 Directories 103

15.1 Short Form Directories . 104
15.1.1 xfs_db Short Form Directory Example . 106

15.2 Block Directories . 109
15.2.1 xfs_db Block Directory Example . 114

15.3 Leaf Directories . 117
15.3.1 Directory and Attribute Block Headers . 119
15.3.2 xfs_db Leaf Directory Example . 122

15.4 Node Directories . 126
15.4.1 Directory and Attribute Internal Nodes . 127
15.4.2 xfs_db Node Directory Example . 131

15.5 B+tree Directories . 133
15.5.1 xfs_db B+tree Directory Example . 134

XFS Filesystem Disk Structures vii

16 Extended Attributes 137

16.1 Short Form Attributes . 137

16.1.1 xfs_db Short Form Attribute Example . 139

16.2 Leaf Attributes . 143

16.2.1 xfs_db Leaf Attribute Example . 148

16.3 Node Attributes . 150

16.3.1 xfs_db Node Attribute Example . 151

16.4 B+tree Attributes . 154

16.4.1 xfs_db B+tree Attribute Example . 154

16.5 Remote Attribute Values . 155

17 Symbolic Links 156

17.1 Short Form Symbolic Links . 156

17.1.1 xfs_db Short Form Symbolic Link Example . 157

17.2 Extent Symbolic Links . 157

17.2.1 xfs_db Symbolic Link Extent Example . 159

XFS Filesystem Disk Structures 1 / 160

Part I

High Level Design

XFS Filesystem Disk Structures 2 / 160

XFS is a high performance filesystem which was designed to maximize parallel throughput and to scale up to ex-
tremely large 64-bit storage systems. Originally developed by SGI in October 1993 for IRIX, XFS can handle large
files, large filesystems, many inodes, large directories, large file attributes, and large allocations. Filesystems are
optimized for parallel access by splitting the storage device into semi-autonomous allocation groups. XFS employs
branching trees (B+ trees) to facilitate fast searches of large lists; it also uses delayed extent-based allocation to
improve data contiguity and IO performance.

This document describes the on-disk layout of an XFS filesystem and how to use the debugging tools xfs_db and
xfs_logprint to inspect the metadata structures. It also describes how on-disk metadata relates to the higher
level design goals.

The information contained in this document derives from the XFS source code in the Linux kernel as of v4.3. This
book’s source code is available at git://git.kernel.org/pub/scm/fs/xfs/xfs-documentation.
git. Feedback should be sent to the XFS mailing list, currently at xfs@oss.sgi.com.

Note
All fields in XFSmetadata structures are in big-endian byte order except for log itemswhich are formatted in host
order.

XFS Filesystem Disk Structures 3 / 160

Chapter 1

Overview

XFS presents to users a standard Unix filesystem interface: a rooted tree of directories, files, symbolic links, and
devices. All five of those entities are represented inside the filesystem by an index node, or “inode”; each node is
uniquely referenced by an inode number. Directories consist of (name, inode number) tuples and it is possible for
multiple tuples to contain the same inode number. Data blocks are associated with files by means of a block map
in each index node. It is also possible to attach (key, value) tuples to any index node; these are known as “extended
attributes”, which extend beyond the standard Unix file attributes.

Internally, XFS filesystems are divided into a number of equally sized chunks called Allocation Groups. Each AG can
almost be thought of as an individual filesystem thatmaintains its own space usage, index nodes, and other secondary
metadata. Having multiple AGs allows XFS to handle most operations in parallel without degrading performance as
the number of concurrent accesses increases. Each allocation group uses multiple B+trees to maintain bookkeeping
records such as the locations of free blocks, the locations of allocated inodes, and the locations of free inodes.

Files, symbolic links, and directories can have up to two block maps, or “forks”, which associate filesystems blocks
with a particular file or directory. The “attribute fork” tracks blocks used to store and index extended attributes,
whereas the “data fork” tracks file data blocks, symbolic link targets, or directory blocks, depending on the type of
the inode record. Both forks associate a logical offset with an extent of physical blocks, which makes sparse files
and directories possible. Directory entries and extended attributes are contained inside a second-level data structure
within the blocks that are mapped by the forks. This structure consists of variable-length directory or attribute
records and possible a second B+tree to index these records.

XFS employs a journalling log in which metadata changes are collected so that filesystem operations can be carried
out atomically in the case of a crash. Furthermore, there is the concept of a real-time device wherein allocations are
tracked more simply and in larger chunks to reduce jitter in allocation latency.

XFS Filesystem Disk Structures 4 / 160

Chapter 2

Metadata Integrity

Prior to version 5, most XFS metadata blocks contained a magic number that could provide a minimal sanity check
that a block read off the disk contained the same type of data that the code thought it was reading off the disk.
However, this was insufficient — given a correct type code, it was still impossible to tell if the block was from a
previous filesystem, or happened to be owned by something else, or had been written to the wrong location on disk.
Furthermore, not all metadata blocks had magic numbers — remote extended attributes and extent symbolic links
had no protection at all.
Therefore, the version 5 disk format introduced larger headers for all metadata types, which enable the filesystem to
check information being read from the disk more rigorously. Metadata integrity fields now include:

• Magic numbers, to classify all types of metadata. This is unchanged from v4.

• A copy of the filesystem UUID, to confirm that a given disk block is connected to the superblock.

• The owner, to avoid accessing a piece of metadata which belongs to some other part of the filesystem.

• The filesystem block number, to detect misplaced writes.

• The log serial number of the last write to this block, to avoid replaying obsolete log entries.

• A CRC32c checksum of the entire block, to detect minor corruption.

Metadata integrity coverage has been extended to all metadata blocks in the filesystem, with the following notes:

• Inodes can have multiple “owners” in the directory tree; therefore the record contains the inode number instead
of an owner or a block number.

• Superblocks have no owners.

• The disk quota file has no owner or block numbers.

• Metadata owned by files list the inode number as the owner.

• Per-AG data and B+tree blocks list the AG number as the owner.

• Per-AG header sectors don’t list owners or block numbers, since they have fixed locations.

• Remote attribute blocks are not logged and therefore the LSN must be -1.

This functionality enables XFS to decide that a block contents are so unexpected that it should stop immediately.
Unfortunately checksums do not allow for automatic correction. Please keep regular backups, as always.

XFS Filesystem Disk Structures 5 / 160

Chapter 3

Sharing Data Blocks

On a traditional filesystem, there is a 1:1 mapping between a logical block offset in a file and a physical block on
disk, which is to say that physical blocks are not shared. However, there exist various use cases for being able to
share blocks between files — deduplicating files saves space on archival systems; creating space-efficient clones of
disk images for virtual machines and containers facilitates efficient datacenters; and deferring the payment of the
allocation cost of a file system tree copy as long as possible makes regular work faster. In all of these cases, a write
to one of the shared copies must not affect the other shared copies, which means that writes to shared blocks must
employ a copy-on-write strategy. Sharing blocks in this manner is commonly referred to as “reflinking”.

XFS implements block sharing in a fairly straightforward manner. All existing data fork structures remain un-
changed, save for the addition of a per-allocation group reference count B+tree Section 10.8. This data structure
tracks reference counts for all shared physical blocks, with a few rules to maintain compatibility with existing code:
If a block is free, it will be tracked in the free space B+trees. If a block is owned by a single file, it appears in neither
the free space nor the reference count B+trees. If a block is shared, it will appear in the reference count B+tree with
a reference count >= 2. The first two cases are established precedent in XFS, so the third case is the only behavioral
change.

When a filesystem block is shared, the block mapping in the destination file is updated to point to that filesystem
block and the reference count B+tree records are updated to reflect the increased refcount. If a shared block is written,
a new block will be allocated, the dirty data written to this new block, and the file’s block mapping updated to point
to the new block. If a shared block is unmapped, the reference count records are updated to reflect the decreased
refcount and the block is also freed if its reference count becomes zero. This enables users to create space efficient
clones of disk images and to copy filesystem subtrees quickly, using the standard Linux coreutils packages.

Deduplication employs the same mechanism to share blocks and copy them at write time. However, the kernel
confirms that the contents of both files are identical before updating the destination file’s mapping. This enables XFS
to be used by userspace deduplication programs such as duperemove.

XFS Filesystem Disk Structures 6 / 160

Chapter 4

Metadata Reconstruction

Note
This is a theoretical discussion of how reconstruction could work; none of this is implemented as of 2015.

A simple UNIX filesystem can be thought of in terms of a directed acyclic graph. To a first approximation, there
exists a root directory node, which points to other nodes. Those other nodes can themselves be directories or they
can be files. Each file, in turn, points to data blocks.

XFS adds a few more details to this picture:

• The real root(s) of an XFS filesystem are the allocation group headers (superblock, AGF, AGI, AGFL).

• Each allocation group’s headers point to various per-AG B+trees (free space, inode, free inodes, free list, etc.)

• The free space B+trees point to unused extents;

• The inode B+trees point to blocks containing inode chunks;

• All superblocks point to the root directory and the log;

• Hardlinks mean that multiple directories can point to a single file node;

• File data block pointers are indexed by file offset;

• Files and directories can have a second collection of pointers to data blocks which contain extended attributes;

• Large directories require multiple data blocks to store all the subpointers;

• Still larger directories use high-offset data blocks to store a B+tree of hashes to directory entries;

• Large extended attribute forks similarly use high-offset data blocks to store a B+tree of hashes to attribute keys;
and

• Symbolic links can point to data blocks.

The beauty of this massive graph structure is that under normal circumstances, everything known to the filesystem
is discoverable (access controls notwithstanding) from the root. The major weakness of this structure of course
is that breaking a edge in the graph can render entire subtrees inaccessible. xfs_repair “recovers” from broken
directories by scanning for unlinked inodes and connecting them to/lost+found, but this isn’t sufficiently general

XFS Filesystem Disk Structures 7 / 160

to recover from breaks in other parts of the graph structure. Wouldn’t it be useful to have back pointers as a secondary
data structure? The current repair strategy is to reconstruct whatever can be rebuilt, but to scrap anything that
doesn’t check out.

The reverse-mapping B+tree Section 10.7 fills in part of the puzzle. Since it contains copies of every entry in each
inode’s data and attribute forks, we can fix a corrupted block map with these records. Furthermore, if the inode
B+trees become corrupt, it is possible to visit all inode chunks using the reverse-mapping data. Should XFS ever
gain the ability to store parent directory information in each inode, it also becomes possible to resurrect damaged
directory trees, which should reduce the complaints about inodes ending up in /lost+found. Everything else in
the per-AG primary metadata can already be reconstructed via xfs_repair. Hopefully, reconstruction will not
turn out to be a fool’s errand.

XFS Filesystem Disk Structures 8 / 160

Chapter 5

Common XFS Types

All the following XFS types can be found in xfs_types.h. NULL values are always -1 on disk (ie. all bits for the value
set to one).

xfs_ino_t
Unsigned 64 bit absolute inode number Section 10.3.1.

xfs_off_t
Signed 64 bit file offset.

xfs_daddr_t
Signed 64 bit disk address (sectors).

xfs_agnumber_t
Unsigned 32 bit AG number Chapter 10.

xfs_agblock_t
Unsigned 32 bit AG relative block number.

xfs_extlen_t
Unsigned 32 bit extent Chapter 14 length in blocks.

xfs_extnum_t
Signed 32 bit number of extents in a data fork.

xfs_aextnum_t
Signed 16 bit number of extents in an attribute fork.

xfs_dablk_t
Unsigned 32 bit block number for directories Chapter 15 and extended attributes Chapter 16.

xfs_dahash_t
Unsigned 32 bit hash of a directory file name or extended attribute name.

xfs_fsblock_t
Unsigned 64 bit filesystem block number combining AG number Chapter 10 and block offset into the AG.

xfs_rfsblock_t
Unsigned 64 bit raw filesystem block number.

XFS Filesystem Disk Structures 9 / 160

xfs_rtblock_t
Unsigned 64 bit extent number in the real-time Section 10.6 sub-volume.

xfs_fileoff_t
Unsigned 64 bit block offset into a file.

xfs_filblks_t
Unsigned 64 bit block count for a file.

uuid_t
16-byte universally unique identifier (UUID).

xfs_fsize_t
Signed 64 bit byte size of a file.

XFS Filesystem Disk Structures 10 / 160

Chapter 6

Magic Numbers

These are the magic numbers that are known to XFS, along with links to the relevant chapters. Magic numbers tend
to have consistent locations:

• 32-bit magic numbers are always at offset zero in the block.

• 16-bit magic numbers for the directory and attribute B+tree are at offset eight.

• The quota magic number is at offset zero.

• The inode magic is at the beginning of each inode.

Flag Hexadecimal ASCII Data structure
XFS_SB_MAGIC 0x58465342 XFSB Superblock Section 10.1
XFS_AGF_MAGIC 0x58414746 XAGF Free Space Section 10.2.1
XFS_AGI_MAGIC 0x58414749 XAGI Inode Information

Section 10.3.2
XFS_AGFL_MAGIC 0x5841464c XAFL Free Space List

Section 10.2.3, v5 only
XFS_DINODE_MAGIC 0x494e IN Inodes Section 13.1
XFS_DQUOT_MAGIC 0x4451 DQ Quota Inodes

Section 12.1
XFS_SYMLINK_MAGIC 0x58534c4d XSLM Symbolic Links

Section 17.2
XFS_ABTB_MAGIC 0x41425442 ABTB Free Space by Block

B+tree Section 10.2.2
XFS_ABTB_CRC_MA
GIC

0x41423342 AB3B Free Space by Block
B+tree Section 10.2.2, v5
only

XFS_ABTC_MAGIC 0x41425443 ABTC Free Space by Size
B+tree Section 10.2.2

XFS_ABTC_CRC_MA
GIC

0x41423343 AB3C Free Space by Size
B+tree Section 10.2.2, v5
only

XFS_IBT_MAGIC 0x49414254 IABT Inode B+tree
Section 10.4

XFS Filesystem Disk Structures 11 / 160

Flag Hexadecimal ASCII Data structure
XFS_IBT_CRC_MAGIC 0x49414233 IAB3 Inode B+tree

Section 10.4, v5 only
XFS_FIBT_MAGIC 0x46494254 FIBT Free Inode B+tree

Section 10.4
XFS_FIBT_CRC_MA
GIC

0x46494233 FIB3 Free Inode B+tree
Section 10.4, v5 only

XFS_BMAP_MAGIC 0x424d4150 BMAP B+Tree Extent List
Section 14.2

XFS_BMAP_CRC_MA
GIC

0x424d4133 BMA3 B+Tree Extent List
Section 14.2, v5 only

XLOG_HEADER_MAGIC
_NUM

0xfeedbabe Log Records Section 11.1

XFS_DA_NODE_MAGIC 0xfebe Directory/Attribute
Node Section 15.4.1

XFS_DA3_NODE_MA
GIC

0x3ebe Directory/Attribute
Node Section 15.4.1, v5
only

XFS_DIR2_BLOCK_MA
GIC

0x58443242 XD2B Block Directory Data
Section 15.2

XFS_DIR3_BLOCK_MA
GIC

0x58444233 XDB3 Block Directory Data
Section 15.2, v5 only

XFS_DIR2_DATA_MA
GIC

0x58443244 XD2D Leaf Directory Data
Section 15.3

XFS_DIR3_DATA_MA
GIC

0x58444433 XDD3 Leaf Directory Data
Section 15.3, v5 only

XFS_DIR2_LEAF1_MA
GIC

0xd2f1 Leaf Directory
Section 15.3

XFS_DIR3_LEAF1_MA
GIC

0x3df1 Leaf Directory
Section 15.3, v5 only

XFS_DIR2_LEAFN_MA
GIC

0xd2ff Node Directory
Section 15.4

XFS_DIR3_LEAFN_MA
GIC

0x3dff Node Directory
Section 15.4, v5 only

XFS_DIR2_FREE_MA
GIC

0x58443246 XD2F Node Directory Free
Space Section 15.4

XFS_DIR3_FREE_MA
GIC

0x58444633 XDF3 Node Directory Free
Space Section 15.4, v5
only

XFS_ATTR_LEAF_MA
GIC

0xfbee Leaf Attribute
Section 16.2

XFS_ATTR3_LEAF_MA
GIC

0x3bee Leaf Attribute
Section 16.2, v5 only

XFS_ATTR3_RMT_MA
GIC

0x5841524d XARM Remote Attribute Value
Section 16.5, v5 only

XFS_RMAP_CRC_MA
GIC

0x524d4233 RMB3 Reverse Mapping B+tree
Section 10.7, v5 only

XFS_RTRMAP_CRC_MA
GIC

0x4d415052 MAPR Real-Time Reverse
Mapping B+tree
Section 12.2.3, v5 only

XFS_REFC_CRC_MA
GIC

0x52334643 R3FC Reference Count B+tree
Section 10.8, v5 only

XFS Filesystem Disk Structures 12 / 160

The magic numbers for log items are at offset zero in each log item, but items are not aligned to blocks.

Flag Hexadecimal ASCII Data structure
XFS_TRANS_HEADER_
MAGIC

0x5452414e TRAN Log Transactions
Section 11.3.1

XFS_LI_EFI 0x1236 Extent Freeing Intent
Log Item Section 11.3.2

XFS_LI_EFD 0x1237 Extent Freeing Done Log
Item Section 11.3.3

XFS_LI_IUNLINK 0x1238 Unknown?
XFS_LI_INODE 0x123b Inode Updates Log Item

Section 11.3.10
XFS_LI_BUF 0x123c Buffer Writes Log Item

Section 11.3.12
XFS_LI_DQUOT 0x123d Update Quota Log Item

Section 11.3.14
XFS_LI_QUOTAOFF 0x123e Quota Off Log Item

Section 11.3.16
XFS_LI_ICREATE 0x123f Inode Creation Log Item

Section 11.3.17
XFS_LI_RUI 0x1240 Reverse Mapping Update

Intent Section 11.3.4
XFS_LI_RUD 0x1241 Reverse Mapping Update

Done Section 11.3.5
XFS_LI_CUI 0x1242 Reference Count Update

Intent Section 11.3.6
XFS_LI_CUD 0x1243 Reference Count Update

Done Section 11.3.7
XFS_LI_BUI 0x1244 File Block Mapping

Update Intent
Section 11.3.8

XFS_LI_BUD 0x1245 File Block Mapping
Update Done
Section 11.3.9

XFS Filesystem Disk Structures 13 / 160

Chapter 7

Theoretical Limits

XFS can create really big filesystems!

Item 1KiB blocks 4KiB blocks 64KiB blocks
Blocks 252 252 252
Inodes 263 263 264
Allocation Groups 232 232 232
File System Size 8EiB 8EiB 8EiB
Blocks per AG 231 231 231
Inodes per AG 232 232 232
Max AG Size 2TiB 8TiB 128TiB
Blocks Per File 254 254 254
File Size 8EiB 8EiB 8EiB
Max Dir Size 32GiB 32GiB 32GiB

Linux doesn’t suppport files or devices larger than 8EiB, so the block limitations are largely ignorable.

XFS Filesystem Disk Structures 14 / 160

Chapter 8

Testing Filesystem Changes

People put a lot of trust in filesystems to preserve their data in a reliable fashion. To that end, it is very important
that users and developers have access to a suite of regression tests that can be used to prove correct operation of
any given filesystem code, or to analyze failures to fix problems found in the code. The XFS regression test suite,
xfstests, is hosted at git://git.kernel.org/pub/scm/fs/xfs/xfstests-dev.git. Most tests
apply to filesystems in general, but the suite also contains tests for features specific to each filesystem.

When fixing bugs, it is important to provide a testcase exposing the bug so that the developers can avoid a future
re-occurrence of the regression. Furthermore, if you’re developing a new user-visible feature for XFS, please help the
rest of the development community to sustain and maintain the whole codebase by providing generous test coverage
to check its behavior.

When altering, adding, or removing an on-disk data structure, please remember to update both the in-kernel structure
size checks in xfs_ondisk.h and to ensure that your changes are reflected in xfstest xfs/122. These regression
tests enable us to detect compiler bugs, alignment problems, and anything else that might result in the creation of
incompatible filesystem images.

XFS Filesystem Disk Structures 15 / 160

Part II

Global Structures

XFS Filesystem Disk Structures 16 / 160

Chapter 9

B+trees

XFS uses b+trees to index all metadata records. This well known data structure is used to provide efficient random
and sequential access to metadata records while minimizing seek times. There are two btree formats: a short format
for records pertaining to a single allocation group, since all block pointers in an AG are 32-bits in size; and a long
format for records pertaining to a file, since file data can have 64-bit block offsets. Each b+tree block is either a leaf
node containing records, or an internal node containing keys and pointers to other b+tree blocks. The tree consists
of a root block which may point to some number of other blocks; blocks in the bottom level of the b+tree contains
only records.

Leaf blocks of both types of b+trees have the same general format: a header describing the data in the block, and an
array of records. The specific header formats are given in the next two sections, and the record format is provided
by the b+tree client itself. The generic b+tree code does not have any specific knowledge of the record format.

+--------+------------+------------+
| header | record | records... |
+--------+------------+------------+

Internal node blocks of both types of b+trees also have the same general format: a header describing the data in the
block, an array of keys, and an array of pointers. Each pointer may be associated with one or two keys. The first key
uniquely identifies the first record accessible via the leftmost path down the branch of the tree.

If the records in a b+tree are indexed by an interval, then a range of keys can uniquely identify a single record. For
example, if a record covers blocks 12-16, then any one of the keys 12, 13, 14, 15, or 16 return the same record. In this
case, the key for the record describing ”12-16” is 12. If none of the records overlap, we only need to store one key.

This is the format of a standard b+tree node:

+--------+---------+---------+---------+---------+
| header | key | keys... | ptr | ptrs... |
+--------+---------+---------+---------+---------+

If the b+tree records do not overlap, performing a b+tree lookup is simple. Start with the root. If it is a leaf block,
perform a binary search of the records until we find the record with a lower key than our search key. If the block
is a node block, perform a binary search of the keys until we find a key lower than our search key, then follow the
pointer to the next block. Repeat until we find a record.

However, if b+tree records contain intervals and are allowed to overlap, the internal nodes of the b+tree become
larger:

XFS Filesystem Disk Structures 17 / 160

+--------+---------+----------+---------+-------------+---------+---------+
| header | low key | high key | low key | high key... | ptr | ptrs... |
+--------+---------+----------+---------+-------------+---------+---------+

The low keys are exactly the same as the keys in the non-overlapping b+tree. High keys, however, are a little different.
Recall that a record with a key consisting of an interval can be referenced by a number of keys. Since the low key
of a record indexes the low end of that key range, the high key indexes the high end of the key range. Returning
to the example above, the high key for the record describing ”12-16” is 16. The high key recorded in a b+tree node
is the largest of the high keys of all records accessible under the subtree rooted by the pointer. For a level 1 node,
this is the largest high key in the pointed-to leaf node; for any other node, this is the largest of the high keys in the
pointed-to node.

Nodes and leaves use the same magic numbers.

Short Format B+trees

Each allocation group uses a “short format” B+tree to index various information about the allocation group. The
structure is called short format because all block pointers are AG block numbers. The trees use the following header:

struct xfs_btree_sblock {
__be32 bb_magic;
__be16 bb_level;
__be16 bb_numrecs;
__be32 bb_leftsib;
__be32 bb_rightsib;

/* version 5 filesystem fields start here */
__be64 bb_blkno;
__be64 bb_lsn;
uuid_t bb_uuid;
__be32 bb_owner;
__le32 bb_crc;

};

bb_magic
Specifies the magic number for the per-AG B+tree block.

bb_level
The level of the tree in which this block is found. If this value is 0, this is a leaf block and contains records;
otherwise, it is a node block and contains keys and pointers.

bb_numrecs
Number of records in this block.

bb_leftsib
AG block number of the left sibling of this B+tree node.

bb_rightsib
AG block number of the right sibling of this B+tree node.

bb_blkno
FS block number of this B+tree block.

XFS Filesystem Disk Structures 18 / 160

bb_lsn
Log sequence number of the last write to this block.

bb_uuid
TheUUID of this block, which must match either sb_uuid or sb_meta_uuid depending on which features
are set.

bb_owner
The AG number that this B+tree block ought to be in.

bb_crc
Checksum of the B+tree block.

Long Format B+trees

Long format B+trees are similar to short format B+trees, except that their block pointers are 64-bit filesystem block
numbers instead of 32-bit AG block numbers. Because of this, long format b+trees can be (and usually are) rooted
in an inode’s data or attribute fork. The nodes and leaves of this B+tree use the xfs_btree_lblock declaration:

struct xfs_btree_lblock {
__be32 bb_magic;
__be16 bb_level;
__be16 bb_numrecs;
__be64 bb_leftsib;
__be64 bb_rightsib;

/* version 5 filesystem fields start here */
__be64 bb_blkno;
__be64 bb_lsn;
uuid_t bb_uuid;
__be64 bb_owner;
__le32 bb_crc;
__be32 bb_pad;

};

bb_magic
Specifies the magic number for the btree block.

bb_level
The level of the tree in which this block is found. If this value is 0, this is a leaf block and contains records;
otherwise, it is a node block and contains keys and pointers.

bb_numrecs
Number of records in this block.

bb_leftsib
FS block number of the left sibling of this B+tree node.

bb_rightsib
FS block number of the right sibling of this B+tree node.

bb_blkno
FS block number of this B+tree block.

XFS Filesystem Disk Structures 19 / 160

bb_lsn
Log sequence number of the last write to this block.

bb_uuid
TheUUID of this block, which must match either sb_uuid or sb_meta_uuid depending on which features
are set.

bb_owner
The AG number that this B+tree block ought to be in.

bb_crc
Checksum of the B+tree block.

bb_pad
Pads the structure to 64 bytes.

XFS Filesystem Disk Structures 20 / 160

Chapter 10

Allocation Groups

As mentioned earlier, XFS filesystems are divided into a number of equally sized chunks called Allocation Groups.
Each AG can almost be thought of as an individual filesystem that maintains its own space usage. Each AG can be
up to one terabyte in size (512 bytes × 231), regardless of the underlying device’s sector size.

Each AG has the following characteristics:

• A super block describing overall filesystem info

• Free space management

• Inode allocation and tracking

• Reverse block-mapping index (optional)

• Data block reference count index (optional)

Havingmultiple AGs allows XFS to handle most operations in parallel without degrading performance as the number
of concurrent accesses increases.

The only global information maintained by the first AG (primary) is free space across the filesystem and total inode
counts. If the XFS_SB_VERSION2_LAZYSBCOUNTBIT flag is set in the superblock, these are only updated on-
disk when the filesystem is cleanly unmounted (umount or shutdown).

Immediately after a mkfs.xfs, the primary AG has the following disk layout; the subsequent AGs do not have any
inodes allocated:

XFS Filesystem Disk Structures 21 / 160

Figure 10.1: Allocation group layout

Each of these structures are expanded upon in the following sections.

Superblocks

Each AG starts with a superblock. The first one, in AG 0, is the primary superblock which stores aggregate AG
information. Secondary superblocks are only used by xfs_repair when the primary superblock has been corrupted.
A superblock is one sector in length.

XFS Filesystem Disk Structures 22 / 160

The superblock is defined by the following structure. The description of each field follows.

struct xfs_sb
{

__uint32_t sb_magicnum;
__uint32_t sb_blocksize;
xfs_rfsblock_t sb_dblocks;
xfs_rfsblock_t sb_rblocks;
xfs_rtblock_t sb_rextents;
uuid_t sb_uuid;
xfs_fsblock_t sb_logstart;
xfs_ino_t sb_rootino;
xfs_ino_t sb_rbmino;
xfs_ino_t sb_rsumino;
xfs_agblock_t sb_rextsize;
xfs_agblock_t sb_agblocks;
xfs_agnumber_t sb_agcount;
xfs_extlen_t sb_rbmblocks;
xfs_extlen_t sb_logblocks;
__uint16_t sb_versionnum;
__uint16_t sb_sectsize;
__uint16_t sb_inodesize;
__uint16_t sb_inopblock;
char sb_fname[12];
__uint8_t sb_blocklog;
__uint8_t sb_sectlog;
__uint8_t sb_inodelog;
__uint8_t sb_inopblog;
__uint8_t sb_agblklog;
__uint8_t sb_rextslog;
__uint8_t sb_inprogress;
__uint8_t sb_imax_pct;
__uint64_t sb_icount;
__uint64_t sb_ifree;
__uint64_t sb_fdblocks;
__uint64_t sb_frextents;
xfs_ino_t sb_uquotino;
xfs_ino_t sb_gquotino;
__uint16_t sb_qflags;
__uint8_t sb_flags;
__uint8_t sb_shared_vn;
xfs_extlen_t sb_inoalignmt;
__uint32_t sb_unit;
__uint32_t sb_width;
__uint8_t sb_dirblklog;
__uint8_t sb_logsectlog;
__uint16_t sb_logsectsize;
__uint32_t sb_logsunit;
__uint32_t sb_features2;
__uint32_t sb_bad_features2;

/* version 5 superblock fields start here */
__uint32_t sb_features_compat;
__uint32_t sb_features_ro_compat;
__uint32_t sb_features_incompat;
__uint32_t sb_features_log_incompat;

XFS Filesystem Disk Structures 23 / 160

__uint32_t sb_crc;
xfs_extlen_t sb_spino_align;

xfs_ino_t sb_pquotino;
xfs_lsn_t sb_lsn;
uuid_t sb_meta_uuid;
xfs_ino_t sb_rrmapino;

};

sb_magicnum
Identifies the filesystem. Its value is XFS_SB_MAGIC “XFSB” (0x58465342).

sb_blocksize
The size of a basic unit of space allocation in bytes. Typically, this is 4096 (4KB) but can range from 512 to
65536 bytes.

sb_dblocks
Total number of blocks available for data and metadata on the filesystem.

sb_rblocks
Number blocks in the real-time disk device. Refer to real-time sub-volumes Section 10.6 for more information.

sb_rextents
Number of extents on the real-time device.

sb_uuid
UUID (Universally Unique ID) for the filesystem. Filesystems can be mounted by the UUID instead of device
name.

sb_logstart
First block number for the journaling log if the log is internal (ie. not on a separate disk device). For an external
log device, this will be zero (the log will also start on the first block on the log device). The identity of the log
devices is not recorded in the filesystem, but the UUIDs of the filesystem and the log device are compared to
prevent corruption.

sb_rootino
Root inode number for the filesystem. Normally, the root inode is at the start of the first possible inode chunk
in AG 0. This is 128 when using a 4KB block size.

sb_rbmino
Bitmap inode for real-time extents.

sb_rsumino
Summary inode for real-time bitmap.

sb_rextsize
Realtime extent size in blocks.

sb_agblocks
Size of each AG in blocks. For the actual size of the last AG, refer to the free space Section 10.2 agf_length
value.

sb_agcount
Number of AGs in the filesystem.

sb_rbmblocks
Number of real-time bitmap blocks.

XFS Filesystem Disk Structures 24 / 160

sb_logblocks
Number of blocks for the journaling log.

sb_versionnum
Filesystem version number. This is a bitmask specifying the features enabled when creating the filesystem.
Any disk checking tools or drivers that do not recognize any set bits must not operate upon the filesystem.
Most of the flags indicate features introduced over time. If the value of the lower nibble is >= 4, the higher bits
indicate feature flags as follows:

Table 10.1: Version 4 Superblock version flags

Flag Description
XFS_SB_VERSION_ATTRBIT Set if any inode have extended attributes.
XFS_SB_VERSION_NLINKBIT Set if any inodes use 32-bit di_nlink values.
XFS_SB_VERSION_QUOTABIT Quotas are enabled on the filesystem. This also

brings in the various quota fields in the superblock.
XFS_SB_VERSION_ALIGNBIT Set if sb_inoalignmt is used.
XFS_SB_VERSION_DALIGNBIT Set if sb_unit and sb_width are used.
XFS_SB_VERSION_SHAREDBIT Set if sb_shared_vn is used.
XFS_SB_VERSION_LOGV2BIT Version 2 journaling logs are used.
XFS_SB_VERSION_SECTORBIT Set if sb_sectsize is not 512.
XFS_SB_VERSION_EXTFLGBIT Unwritten extents are used. This is always set.
XFS_SB_VERSION_DIRV2BIT Version 2 directories are used. This is always set.
XFS_SB_VERSION_MOREBITSBIT Set if the sb_features2 field in the superblock

contains more flags.

If the lower nibble of this value is 5, then this is a v5 filesystem; the XFS_SB_VERSION2_CRCBIT feature must
be set in sb_features2.

sb_sectsize
Specifies the underlying disk sector size in bytes. Typically this is 512 or 4096 bytes. This determines the
minimum I/O alignment, especially for direct I/O.

sb_inodesize
Size of the inode in bytes. The default is 256 (2 inodes per standard sector) but can be made as large as 2048
bytes when creating the filesystem. On a v5 filesystem, the default and minimum inode size are both 512 bytes.

sb_inopblock
Number of inodes per block. This is equivalent to sb_blocksize /sb_inodesize.

sb_fname[12]
Name for the filesystem. This value can be used in the mount command.

sb_blocklog
log2 value of sb_blocksize. In other terms, sb_blocksize =2sb_blocklog.

sb_sectlog
log2 value of sb_sectsize.

sb_inodelog
log2 value of sb_inodesize.

XFS Filesystem Disk Structures 25 / 160

sb_inopblog
log2 value of sb_inopblock.

sb_agblklog
log2 value of sb_agblocks (rounded up). This value is used to generate inode numbers and absolute block
numbers defined in extent maps.

sb_rextslog
log2 value of sb_rextents.

sb_inprogress
Flag specifying that the filesystem is being created.

sb_imax_pct
Maximum percentage of filesystem space that can be used for inodes. The default value is 5%.

sb_icount
Global count for number inodes allocated on the filesystem. This is only maintained in the first superblock.

sb_ifree
Global count of free inodes on the filesystem. This is only maintained in the first superblock.

sb_fdblocks
Global count of free data blocks on the filesystem. This is only maintained in the first superblock.

sb_frextents
Global count of free real-time extents on the filesystem. This is only maintained in the first superblock.

sb_uquotino
Inode for user quotas. This and the following two quota fields only apply if XFS_SB_VERSION_QUOTABIT
flag is set in sb_versionnum. Refer to quota inodes Section 12.1 for more information

sb_gquotino
Inode for group or project quotas. Group and Project quotas cannot be used at the same time.

sb_qflags
Quota flags. It can be a combination of the following flags:

Table 10.2: Superblock quota flags

Flag Description
XFS_UQUOTA_ACCT User quota accounting is enabled.
XFS_UQUOTA_ENFD User quotas are enforced.
XFS_UQUOTA_CHKD User quotas have been checked.
XFS_PQUOTA_ACCT Project quota accounting is enabled.
XFS_OQUOTA_ENFD Other (group/project) quotas are enforced.
XFS_OQUOTA_CHKD Other (group/project) quotas have been checked.
XFS_GQUOTA_ACCT Group quota accounting is enabled.

sb_flags
Miscellaneous flags.

XFS Filesystem Disk Structures 26 / 160

Table 10.3: Superblock flags

Flag Description
XFS_SBF_READONLY Only read-only mounts allowed.

sb_shared_vn
Reserved and must be zero (“vn” stands for version number).

sb_inoalignmt
Inode chunk alignment in fsblocks. Prior to v5, the default value provided for inode chunks to have an 8KiB
alignment. Starting with v5, the default value scales with the multiple of the inode size over 256 bytes. Con-
cretely, this means an alignment of 16KiB for 512-byte inodes, 32KiB for 1024-byte inodes, etc. If sparse inodes
are enabled, the ir_startino field of each inode B+tree record must be aligned to this block granularity,
even if the inode given by ir_startino itself is sparse.

sb_unit
Underlying stripe or raid unit in blocks.

sb_width
Underlying stripe or raid width in blocks.

sb_dirblklog
log2 multiplier that determines the granularity of directory block allocations in fsblocks.

sb_logsectlog
log2 value of the log subvolume’s sector size. This is only used if the journaling log is on a separate disk device
(i.e. not internal).

sb_logsectsize
The log’s sector size in bytes if the filesystem uses an external log device.

sb_logsunit
The log device’s stripe or raid unit size. This only applies to version 2 logs XFS_SB_VERSION_LOGV2BIT
is set in sb_versionnum.

sb_features2
Additional version flags if XFS_SB_VERSION_MOREBITSBIT is set in sb_versionnum. The currently
defined additional features include:

Table 10.4: Extended Version 4 Superblock flags

Flag Description
XFS_SB_VERSION2_LAZYSBCOUNTBIT Lazy global counters. Making a filesystem with this

bit set can improve performance. The global free
space and inode counts are only updated in the
primary superblock when the filesystem is cleanly
unmounted.

XFS_SB_VERSION2_ATTR2BIT Extended attributes version 2. Making a filesystem
with this optimises the inode layout of extended
attributes. See the section about extended attribute
versions Section 13.4.1 for more information.

XFS Filesystem Disk Structures 27 / 160

Table 10.4: (continued)

Flag Description
XFS_SB_VERSION2_PARENTBIT Parent pointers. All inodes must have an extended

attribute that points back to its parent inode. The
primary purpose for this information is in backup
systems.

XFS_SB_VERSION2_PROJID32BIT 32-bit Project ID. Inodes can be associated with a
project ID number, which can be used to enforce disk
space usage quotas for a particular group of
directories. This flag indicates that project IDs can be
32 bits in size.

XFS_SB_VERSION2_CRCBIT Metadata checksumming. All metadata blocks have
an extended header containing the block checksum,
a copy of the metadata UUID, the log sequence
number of the last update to prevent stale replays,
and a back pointer to the owner of the block. This
feature must be and can only be set if the lowest
nibble of sb_versionnum is set to 5.

XFS_SB_VERSION2_FTYPE Directory file type. Each directory entry records the
type of the inode to which the entry points. This
speeds up directory iteration by removing the need
to load every inode into memory.

sb_bad_features2
This field mirrors sb_features2, due to past 64-bit alignment errors.

sb_features_compat
Read-write compatible feature flags. The kernel can still read and write this FS even if it doesn’t understand
the flag. Currently, there are no valid flags.

sb_features_ro_compat
Read-only compatible feature flags. The kernel can still read this FS even if it doesn’t understand the flag.

Table 10.5: Extended Version 5 Superblock Read-Only compatibility
flags

Flag Description
XFS_SB_FEAT_RO_COMPAT_FINOBT Free inode B+tree. Each allocation group contains a

B+tree to track inode chunks containing free inodes.
This is a performance optimization to reduce the
time required to allocate inodes.

XFS_SB_FEAT_RO_COMPAT_RMAPBT Reverse mapping B+tree. Each allocation group
contains a B+tree containing records mapping AG
blocks to their owners. See the section about
reconstruction Chapter 4 for more details.

XFS Filesystem Disk Structures 28 / 160

Table 10.5: (continued)

Flag Description
XFS_SB_FEAT_RO_COMPAT_REFLINK Reference count B+tree. Each allocation group

contains a B+tree to track the reference counts of AG
blocks. This enables files to share data blocks safely.
See the section about reflink and deduplication
Chapter 3 for more details.

sb_features_incompat
Read-write incompatible feature flags. The kernel cannot read or write this FS if it doesn’t understand the flag.

Table 10.6: Extended Version 5 Superblock Read-Write incompatibility
flags

Flag Description
XFS_SB_FEAT_INCOMPAT_FTYPE Directory file type. Each directory entry tracks the

type of the inode to which the entry points. This is a
performance optimization to remove the need to
load every inode into memory to iterate a directory.

XFS_SB_FEAT_INCOMPAT_SPINODES Sparse inodes. This feature relaxes the requirement
to allocate inodes in chunks of 64. When the free
space is heavily fragmented, there might exist plenty
of free space but not enough contiguous free space to
allocate a new inode chunk. With this feature, the
user can continue to create files until all free space is
exhausted.
Unused space in the inode B+tree records are used to
track which parts of the inode chunk are not inodes.
See the chapter on Sparse Inodes Section 10.5 for
more information.

XFS_SB_FEAT_INCOMPAT_META_UUID Metadata UUID. The UUID stamped into each
metadata block must match the value in
sb_meta_uuid. This enables the administrator to
change sb_uuid at will without having to rewrite
the entire filesystem.

sb_features_log_incompat
Read-write incompatible feature flags for the log. The kernel cannot read or write this FS log if it doesn’t
understand the flag. Currently, no flags are defined.

sb_crc
Superblock checksum.

XFS Filesystem Disk Structures 29 / 160

sb_spino_align
Sparse inode alignment, in fsblocks. Each chunk of inodes referenced by a sparse inode B+tree record must be
aligned to this block granularity.

sb_pquotino
Project quota inode.

sb_lsn
Log sequence number of the last superblock update.

sb_meta_uuid
If the XFS_SB_FEAT_INCOMPAT_META_UUID feature is set, then the UUID field in all metadata blocks
must match this UUID. If not, the block header UUID field must match sb_uuid.

sb_rrmapino
If the XFS_SB_FEAT_RO_COMPAT_RMAPBT feature is set and a real-time device is present (sb_rblocks
> 0), this field points to an inode that contains the root to the Real-Time ReverseMapping B+tree Section 12.2.3.
This field is zero otherwise.

xfs_db Superblock Example

A filesystem is made on a single disk with the following command:

mkfs.xfs -i attr=2 -n size=16384 -f /dev/sda7
meta-data=/dev/sda7 isize=256 agcount=16, agsize=3923122 blks

= sectsz=512 attr=2
data = bsize=4096 blocks=62769952, imaxpct=25

= sunit=0 swidth=0 blks, unwritten=1
naming =version 2 bsize=16384
log =internal log bsize=4096 blocks=30649, version=1

= sectsz=512 sunit=0 blks
realtime =none extsz=65536 blocks=0, rtextents=0

And in xfs_db, inspecting the superblock:

xfs_db> sb
xfs_db> p
magicnum = 0x58465342
blocksize = 4096
dblocks = 62769952
rblocks = 0
rextents = 0
uuid = 32b24036-6931-45b4-b68c-cd5e7d9a1ca5
logstart = 33554436
rootino = 128
rbmino = 129
rsumino = 130
rextsize = 16
agblocks = 3923122
agcount = 16
rbmblocks = 0
logblocks = 30649
versionnum = 0xb084
sectsize = 512
inodesize = 256
inopblock = 16

XFS Filesystem Disk Structures 30 / 160

fname = ”\000\000\000\000\000\000\000\000\000\000\000\000”
blocklog = 12
sectlog = 9
inodelog = 8
inopblog = 4
agblklog = 22
rextslog = 0
inprogress = 0
imax_pct = 25
icount = 64
ifree = 61
fdblocks = 62739235
frextents = 0
uquotino = 0
gquotino = 0
qflags = 0
flags = 0
shared_vn = 0
inoalignmt = 2
unit = 0
width = 0
dirblklog = 2
logsectlog = 0
logsectsize = 0
logsunit = 0
features2 = 8

AG Free Space Management

The XFS filesystem tracks free space in an allocation group using two B+trees. One B+tree tracks space by block
number, the second by the size of the free space block. This scheme allows XFS to find quickly free space near a
given block or of a given size.

All block numbers, indexes, and counts are AG relative.

AG Free Space Block

The second sector in an AG contains the information about the two free space B+trees and associated free space
information for the AG. The “AG Free Space Block” also knows as the AGF, uses the following structure:

struct xfs_agf {
__be32 agf_magicnum;
__be32 agf_versionnum;
__be32 agf_seqno;
__be32 agf_length;
__be32 agf_roots[XFS_BTNUM_AGF];
__be32 agf_levels[XFS_BTNUM_AGF];
__be32 agf_flfirst;
__be32 agf_fllast;
__be32 agf_flcount;
__be32 agf_freeblks;
__be32 agf_longest;
__be32 agf_btreeblks;

XFS Filesystem Disk Structures 31 / 160

/* version 5 filesystem fields start here */
uuid_t agf_uuid;
__be32 agf_rmap_blocks;
__be32 agf_refcount_blocks;
__be32 agf_refcount_root;
__be32 agf_refcount_level;
__be64 agf_spare64[14];

/* unlogged fields, written during buffer writeback. */
__be64 agf_lsn;
__be32 agf_crc;
__be32 agf_spare2;

};

The rest of the bytes in the sector are zeroed. XFS_BTNUM_AGF is set to 3: index 0 for the free space B+tree indexed
by block number; index 1 for the free space B+tree indexed by extent size; and index 2 for the reverse-mapping
B+tree.

agf_magicnum
Specifies the magic number for the AGF sector: “XAGF” (0x58414746).

agf_versionnum
Set to XFS_AGF_VERSION which is currently 1.

agf_seqno
Specifies the AG number for the sector.

agf_length
Specifies the size of the AG in filesystem blocks. For all AGs except the last, this must be equal to the su-
perblock’s sb_agblocks value. For the last AG, this could be less than the sb_agblocks value. It is this
value that should be used to determine the size of the AG.

agf_roots
Specifies the block number for the root of the two free space B+trees and the reverse-mapping B+tree, if
enabled.

agf_levels
Specifies the level or depth of the two free space B+trees and the reverse-mapping B+tree, if enabled. For a
fresh AG, this value will be one, and the “roots” will point to a single leaf of level 0.

agf_flfirst
Specifies the index of the first “free list” block. Free lists are covered in more detail later on.

agf_fllast
Specifies the index of the last “free list” block.

agf_flcount
Specifies the number of blocks in the “free list”.

agf_freeblks
Specifies the current number of free blocks in the AG.

agf_longest
Specifies the number of blocks of longest contiguous free space in the AG.

XFS Filesystem Disk Structures 32 / 160

agf_btreeblks
Specifies the number of blocks used for the free space B+trees. This is only used if the XFS_SB_VERSION2
_LAZYSBCOUNTBIT bit is set in sb_features2.

agf_uuid
TheUUID of this block, which must match either sb_uuid or sb_meta_uuid depending on which features
are set.

agf_rmap_blocks
The size of the reverse mapping B+tree in this allocation group, in blocks.

agf_refcount_blocks
The size of the reference count B+tree in this allocation group, in blocks.

agf_refcount_root
Block number for the root of the reference count B+tree, if enabled.

agf_refcount_root
Depth of the reference count B+tree, if enabled.

agf_spare64
Empty space in the logged part of the AGF sector, for use for future features.

agf_lsn
Log sequence number of the last AGF write.

agf_crc
Checksum of the AGF sector.

agf_spare2
Empty space in the unlogged part of the AGF sector.

AG Free Space B+trees

The two Free Space B+trees store a sorted array of block offset and block counts in the leaves of the B+tree. The first
B+tree is sorted by the offset, the second by the count or size.

Leaf nodes contain a sorted array of offset/count pairs which are also used for node keys:

struct xfs_alloc_rec {
__be32 ar_startblock;
__be32 ar_blockcount;

};

ar_startblock
AG block number of the start of the free space.

ar_blockcount
Length of the free space.

Node pointers are an AG relative block pointer:

typedef __be32 xfs_alloc_ptr_t;

• As the free space tracking is AG relative, all the block numbers are only 32-bits.

XFS Filesystem Disk Structures 33 / 160

• Thebb_magic value depends on the B+tree: “ABTB” (0x41425442) for the block offset B+tree, “ABTC” (0x41425443)
for the block count B+tree. On a v5 filesystem, these are “AB3B” (0x41423342) and “AB3C” (0x41423343), respec-
tively.

• The xfs_btree_sblock_t header is used for intermediate B+tree node as well as the leaves.

• For a typical 4KB filesystem block size, the offset for the xfs_alloc_ptr_t array would be 0xab0 (2736
decimal).

• There are a series of macros in xfs_btree.h for deriving the offsets, counts, maximums, etc for the B+trees
used in XFS.

The following diagram shows a single level B+tree which consists of one leaf:

Figure 10.2: Freespace B+tree with one leaf.

With the intermediate nodes, the associated leaf pointers are stored in a separate array about two thirds into the
block. The following diagram illustrates a 2-level B+tree for a free space B+tree:

XFS Filesystem Disk Structures 34 / 160

Figure 10.3: Multi-level freespace B+tree.

AG Free List

The AG Free List is located in the 4th sector of each AG and is known as the AGFL. It is an array of AG relative
block pointers for reserved space for growing the free space B+trees. This space cannot be used for general user data
including inodes, data, directories and extended attributes.

With a freshly made filesystem, 4 blocks are reserved immediately after the free space B+tree root blocks (blocks 4
to 7). As they are used up as the free space fragments, additional blocks will be reserved from the AG and added to
the free list array. This size may increase as features are added.

As the free list array is located within a single sector, a typical device will have space for 128 elements in the array
(512 bytes per sector, 4 bytes per AG relative block pointer). The actual size can be determined by using the XFS_A
GFL_SIZE macro.

XFS Filesystem Disk Structures 35 / 160

Active elements in the array are specified by the AGF’s Section 10.2.1 agf_flfirst, agf_fllast and agf_fl
count values. The array is managed as a circular list.

On a v5 filesystem, the following header precedes the free list entries:

struct xfs_agfl {
__be32 agfl_magicnum;
__be32 agfl_seqno;
uuid_t agfl_uuid;
__be64 agfl_lsn;
__be32 agfl_crc;

};

agfl_magicnum
Specifies the magic number for the AGFL sector: ”XAFL” (0x5841464c).

agfl_seqno
Specifies the AG number for the sector.

agfl_uuid
TheUUID of this block, which must match either sb_uuid or sb_meta_uuid depending on which features
are set.

agfl_lsn
Log sequence number of the last AGFL write.

agfl_crc
Checksum of the AGFL sector.

On a v4 filesystem there is no header; the array of free block numbers begins at the beginning of the sector.

XFS Filesystem Disk Structures 36 / 160

Figure 10.4: AG Free List layout

The presence of these reserved blocks guarantees that the free space B+trees can be updated if any blocks are freed
by extent changes in a full AG.

xfs_db AGF Example

These examples are derived from an AG that has been deliberately fragmented. The AGF:
xfs_db> agf 0
xfs_db> p
magicnum = 0x58414746
versionnum = 1
seqno = 0
length = 3923122
bnoroot = 7
cntroot = 83343
bnolevel = 2
cntlevel = 2
flfirst = 22

XFS Filesystem Disk Structures 37 / 160

fllast = 27
flcount = 6
freeblks = 3654234
longest = 3384327
btreeblks = 0

In the AGFL, the active elements are from 22 to 27 inclusive which are obtained from the flfirst and fllast
values from the agf in the previous example:

xfs_db> agfl 0
xfs_db> p
bno[0-127] = 0:4 1:5 2:6 3:7 4:83342 5:83343 6:83344 7:83345 8:83346 9:83347

10:4 11:5 12:80205 13:80780 14:81496 15:81766 16:83346 17:4 18:5
19:80205 20:82449 21:81496 22:81766 23:82455 24:80780 25:5
26:80205 27:83344

The root block of the free space B+tree sorted by block offset is found in the AGF’s bnoroot value:

xfs_db> fsblock 7
xfs_db> type bnobt
xfs_db> p
magic = 0x41425442
level = 1
numrecs = 4
leftsib = null
rightsib = null
keys[1-4] = [startblock,blockcount]

1:[12,16] 2:[184586,3] 3:[225579,1] 4:[511629,1]
ptrs[1-4] = 1:2 2:83347 3:6 4:4

Blocks 2, 83347, 6 and 4 contain the leaves for the free space B+tree by starting block. Block 2 would contain offsets
12 up to but not including 184586 while block 4 would have all offsets from 511629 to the end of the AG.

The root block of the free space B+tree sorted by block count is found in the AGF’s cntroot value:

xfs_db> fsblock 83343
xfs_db> type cntbt
xfs_db> p
magic = 0x41425443
level = 1
numrecs = 4
leftsib = null
rightsib = null
keys[1-4] = [blockcount,startblock]

1:[1,81496] 2:[1,511729] 3:[3,191875] 4:[6,184595]
ptrs[1-4] = 1:3 2:83345 3:83342 4:83346

The leaf in block 3, in this example, would only contain single block counts. The offsets are sorted in ascending order
if the block count is the same.

Inspecting the leaf in block 83346, we can see the largest block at the end:

xfs_db> fsblock 83346
xfs_db> type cntbt
xfs_db> p
magic = 0x41425443
level = 0

XFS Filesystem Disk Structures 38 / 160

numrecs = 344
leftsib = 83342
rightsib = null
recs[1-344] = [startblock,blockcount]

1:[184595,6] 2:[187573,6] 3:[187776,6]
...
342:[513712,755] 343:[230317,258229] 344:[538795,3384327]

The longest block count (3384327) must be the same as the AGF’s longest value.

AG Inode Management

Inode Numbers

Inode numbers in XFS come in two forms: AG relative and absolute.

AG relative inode numbers always fit within 32 bits. The number of bits actually used is determined by the sum of
the superblock’s Section 10.1 sb_inoplog and sb_agblklog values. Relative inode numbers are found within
the AG’s inode structures.

Absolute inode numbers include the AG number in the high bits, above the bits used for the AG relative inode
number. Absolute inode numbers are found in directory Chapter 15 entries and the superblock.

Figure 10.5: Inode number formats

Inode Information

Each AG manages its own inodes. The third sector in the AG contains information about the AG’s inodes and is
known as the AGI.

The AGI uses the following structure:

struct xfs_agi {
__be32 agi_magicnum;
__be32 agi_versionnum;
__be32 agi_seqno
__be32 agi_length;

XFS Filesystem Disk Structures 39 / 160

__be32 agi_count;
__be32 agi_root;
__be32 agi_level;
__be32 agi_freecount;
__be32 agi_newino;
__be32 agi_dirino;
__be32 agi_unlinked[64];

/*
* v5 filesystem fields start here; this marks the end of logging region 1
* and start of logging region 2.
*/

uuid_t agi_uuid;
__be32 agi_crc;
__be32 agi_pad32;
__be64 agi_lsn;

__be32 agi_free_root;
__be32 agi_free_level;

}

agi_magicnum
Specifies the magic number for the AGI sector: “XAGI” (0x58414749).

agi_versionnum
Set to XFS_AGI_VERSION which is currently 1.

agi_seqno
Specifies the AG number for the sector.

agi_length
Specifies the size of the AG in filesystem blocks.

agi_count
Specifies the number of inodes allocated for the AG.

agi_root
Specifies the block number in the AG containing the root of the inode B+tree.

agi_level
Specifies the number of levels in the inode B+tree.

agi_freecount
Specifies the number of free inodes in the AG.

agi_newino
Specifies AG-relative inode number of the most recently allocated chunk.

agi_dirino
Deprecated and not used, this is always set to NULL (-1).

agi_unlinked[64]
Hash table of unlinked (deleted) inodes that are still being referenced. Refer to unlinked list pointers Sec-
tion 13.2 for more information.

agi_uuid
TheUUID of this block, which must match either sb_uuid or sb_meta_uuid depending on which features
are set.

XFS Filesystem Disk Structures 40 / 160

agi_crc
Checksum of the AGI sector.

agi_pad32
Padding field, otherwise unused.

agi_lsn
Log sequence number of the last write to this block.

agi_free_root
Specifies the block number in the AG containing the root of the free inode B+tree.

agi_free_level
Specifies the number of levels in the free inode B+tree.

Inode B+trees

Inodes are traditionally allocated in chunks of 64, and a B+tree is used to track these chunks of inodes as they
are allocated and freed. The block containing root of the B+tree is defined by the AGI’s agi_root value. If the
XFS_SB_FEAT_RO_COMPAT_FINOBT feature is enabled, a second B+tree is used to track the chunks containing
free inodes; this is an optimization to speed up inode allocation.

The B+tree header for the nodes and leaves use the xfs_btree_sblock structure which is the same as the header
used in the AGF B+trees Section 10.2.2.

The magic number of the inode B+tree is “IABT” (0x49414254). On a v5 filesystem, the magic number is “IAB3”
(0x49414233).

The magic number of the free inode B+tree is “FIBT” (0x46494254). On a v5 filesystem, the magic number is “FIB3”
(0x46494254).

Leaves contain an array of the following structure:

struct xfs_inobt_rec {
__be32 ir_startino;
__be32 ir_freecount;
__be64 ir_free;

};

ir_startino
The lowest-numbered inode in this chunk.

ir_freecount
Number of free inodes in this chunk.

ir_free
A 64 element bitmap showing which inodes in this chunk are free.

Nodes contain key/pointer pairs using the following types:

struct xfs_inobt_key {
__be32 ir_startino;

};
typedef __be32 xfs_inobt_ptr_t;

XFS Filesystem Disk Structures 41 / 160

The following diagram illustrates a single level inode B+tree:

Figure 10.6: Single Level inode B+tree

And a 2-level inode B+tree:

XFS Filesystem Disk Structures 42 / 160

Figure 10.7: Multi-Level inode B+tree

xfs_db AGI Example

This is an AGI of a freshly populated filesystem:

xfs_db> agi 0
xfs_db> p
magicnum = 0x58414749
versionnum = 1
seqno = 0
length = 825457
count = 5440
root = 3
level = 1
freecount = 9
newino = 5792

XFS Filesystem Disk Structures 43 / 160

dirino = null
unlinked[0-63] =
uuid = 3dfa1e5c-5a5f-4ca2-829a-000e453600fe
lsn = 0x1000032c2
crc = 0x14cb7e5c (correct)
free_root = 4
free_level = 1

From this example, we see that the inode B+tree is rooted at AG block 3 and that the free inode B+tree is rooted at
AG block 4. Let’s look at the inode B+tree:
xfs_db> addr root
xfs_db> p
magic = 0x49414233
level = 0
numrecs = 85
leftsib = null
rightsib = null
bno = 24
lsn = 0x1000032c2
uuid = 3dfa1e5c-5a5f-4ca2-829a-000e453600fe
owner = 0
crc = 0x768f9592 (correct)
recs[1-85] = [startino,freecount,free]

1:[96,0,0] 2:[160,0,0] 3:[224,0,0] 4:[288,0,0]
5:[352,0,0] 6:[416,0,0] 7:[480,0,0] 8:[544,0,0]
9:[608,0,0] 10:[672,0,0] 11:[736,0,0] 12:[800,0,0]
...
85:[5792,9,0xff80000000000000]

Most of the inode chunks on this filesystem are totally full, since the free value is zero. This means that we ought
to expect inode 160 to be linked somewhere in the directory structure. However, notice that 0xff80000000000000 in
record 85 — this means that we would expect inode 5856 to be free. Moving on to the free inode B+tree, we see that
this is indeed the case:
xfs_db> addr free_root
xfs_db> p
magic = 0x46494233
level = 0
numrecs = 1
leftsib = null
rightsib = null
bno = 32
lsn = 0x1000032c2
uuid = 3dfa1e5c-5a5f-4ca2-829a-000e453600fe
owner = 0
crc = 0x338af88a (correct)
recs[1] = [startino,freecount,free] 1:[5792,9,0xff80000000000000]

Observe also that the AGI’s agi_newino points to this chunk, which has never been fully allocated.

Sparse Inodes

As mentioned in the previous section, XFS allocates inodes in chunks of 64. If there are no free extents large enough
to hold a full chunk of 64 inodes, the inode allocation fails and XFS claims to have run out of space. On a filesystem

XFS Filesystem Disk Structures 44 / 160

with highly fragmented free space, this can lead to out of space errors long before the filesystem runs out of free
blocks.

The sparse inode feature tracks inode chunks in the inode B+tree as if they were full chunks but uses some previously
unused bits in the freecount field to track which parts of the inode chunk are not allocated for use as inodes. This
allows XFS to allocate inodes one block at a time if absolutely necessary.

The inode and free inode B+trees operate in the same manner as they do without the sparse inode feature; the B+tree
header for the nodes and leaves use the xfs_btree_sblock structure which is the same as the header used in
the AGF B+trees Section 10.2.2.

It is theoretically possible for a sparse inode B+tree record to reference multiple non-contiguous inode chunks.

Leaves contain an array of the following structure:

struct xfs_inobt_rec {
__be32 ir_startino;
__be16 ir_holemask;
__u8 ir_count;
__u8 ir_freecount;
__be64 ir_free;

};

ir_startino
The lowest-numbered inode in this chunk, rounded down to the nearest multiple of 64, even if the start of this
chunk is sparse.

ir_holemask
A 16 element bitmap showing which parts of the chunk are not allocated to inodes. Each bit represents four
inodes; if a bit is marked here, the corresponding bits in ir_free must also be marked.

ir_count
Number of inodes allocated to this chunk.

ir_freecount
Number of free inodes in this chunk.

ir_free
A 64 element bitmap showing which inodes in this chunk are not available for allocation.

xfs_db Sparse Inode AGI Example

This example derives from an AG that has been deliberately fragmented. The inode B+tree:

xfs_db> agi 0
xfs_db> p
magicnum = 0x58414749
versionnum = 1
seqno = 0
length = 6400
count = 10432
root = 2381
level = 2
freecount = 0
newino = 14912
dirino = null

XFS Filesystem Disk Structures 45 / 160

unlinked[0-63] =
uuid = b9b4623b-f678-4d48-8ce7-ce08950e3cd6
lsn = 0x600000ac4
crc = 0xef550dbc (correct)
free_root = 4
free_level = 1

This AGI was formatted on a v5 filesystem; notice the extra v5 fields. So far everything else looks much the same as
always.
xfs_db> addr root
magic = 0x49414233
level = 1
numrecs = 2
leftsib = null
rightsib = null
bno = 19048
lsn = 0x50000192b
uuid = b9b4623b-f678-4d48-8ce7-ce08950e3cd6
owner = 0
crc = 0xd98cd2ca (correct)
keys[1-2] = [startino] 1:[128] 2:[35136]
ptrs[1-2] = 1:3 2:2380
xfs_db> addr ptrs[1]
xfs_db> p
magic = 0x49414233
level = 0
numrecs = 159
leftsib = null
rightsib = 2380
bno = 24
lsn = 0x600000ac4
uuid = b9b4623b-f678-4d48-8ce7-ce08950e3cd6
owner = 0
crc = 0x836768a6 (correct)
recs[1-159] = [startino,holemask,count,freecount,free]

1:[128,0,64,0,0]
2:[14912,0xff,32,0,0xffffffff]
3:[15040,0,64,0,0]
4:[15168,0xff00,32,0,0xffffffff00000000]
5:[15296,0,64,0,0]
6:[15424,0xff,32,0,0xffffffff]
7:[15552,0,64,0,0]
8:[15680,0xff00,32,0,0xffffffff00000000]
9:[15808,0,64,0,0]
10:[15936,0xff,32,0,0xffffffff]

Here we see the difference in the inode B+tree records. For example, in record 2, we see that the holemask has a
value of 0xff. This means that the first sixteen inodes in this chunk record do not actually map to inode blocks; the
first inode in this chunk is actually inode 14944:
xfs_db> inode 14912
Metadata corruption detected at block 0x3a40/0x2000
...
Metadata CRC error detected for ino 14912
xfs_db> p core.magic
core.magic = 0

XFS Filesystem Disk Structures 46 / 160

xfs_db> inode 14944
xfs_db> p core.magic
core.magic = 0x494e

The chunk record also indicates that this chunk has 32 inodes, and that the missing inodes are also “free”.

Real-time Devices

The performance of the standard XFS allocator varies depending on the internal state of the various metadata indices
enabled on the filesystem. For applications which need to minimize the jitter of allocation latency, XFS supports the
notion of a “real-time device”. This is a special device separate from the regular filesystem where extent allocations
are tracked with a bitmap and free space is indexed with a two-dimensional array. If an inode is flagged with
XFS_DIFLAG_REALTIME, its data will live on the real time device. The metadata for real time devices is discussed
in the section about real time inodes Section 12.2.

By placing the real time device (and the journal) on separate high-performance storage devices, it is possible to
reduce most of the unpredictability in I/O response times that come from metadata operations.

None of the XFS per-AG B+trees are involved with real time files. It is not possible for real time files to share data
blocks.

Reverse-Mapping B+tree

Note
This data structure is under construction! Details may change.

If the feature is enabled, each allocation group has its own reverse block-mapping B+tree, which grows in the free
space like the free space B+trees. As mentioned in the chapter about reconstruction Chapter 4, this data structure is
another piece of the puzzle necessary to reconstruct the data or attribute fork of a file from reverse-mapping records;
we can also use it to double-check allocations to ensure that we are not accidentally cross-linking blocks, which can
cause severe damage to the filesystem.

This B+tree is only present if the XFS_SB_FEAT_RO_COMPAT_RMAPBT feature is enabled. The feature requires
a version 5 filesystem.

Each record in the reverse-mapping B+tree has the following structure:

struct xfs_rmap_rec {
__be32 rm_startblock;
__be32 rm_blockcount;
__be64 rm_owner;
__be64 rm_fork:1;
__be64 rm_bmbt:1;
__be64 rm_unwritten:1;
__be64 rm_unused:7;
__be64 rm_offset:54;

};

rm_startblock
AG block number of this record.

XFS Filesystem Disk Structures 47 / 160

rm_blockcount
The length of this extent.

rm_owner
A 64-bit number describing the owner of this extent. This is typically the absolute inode number, but can also
correspond to one of the following:

Table 10.7: Special owner values

Value Description
XFS_RMAP_OWN_NULL No owner. This should never appear on disk.
XFS_RMAP_OWN_UNKNOWN Unknown owner; for EFI recovery. This should never

appear on disk.
XFS_RMAP_OWN_FS Allocation group headers
XFS_RMAP_OWN_LOG XFS log blocks
XFS_RMAP_OWN_AG Per-allocation group B+tree blocks. This means free

space B+tree blocks, blocks on the freelist, and
reverse-mapping B+tree blocks.

XFS_RMAP_OWN_INOBT Per-allocation group inode B+tree blocks. This
includes free inode B+tree blocks.

XFS_RMAP_OWN_INODES Inode chunks
XFS_RMAP_OWN_REFC Per-allocation group refcount B+tree blocks. This

will be used for reflink support.
XFS_RMAP_OWN_COW Blocks that have been reserved for a copy-on-write

operation that has not completed.

rm_fork
If rm_owner describes an inode, this can be 1 if this record is for an attribute fork.

rm_bmbt
If rm_owner describes an inode, this can be 1 to signify that this record is for a block map B+tree block. In
this case, rm_offset has no meaning.

rm_unwritten
A flag indicating that the extent is unwritten. This corresponds to the flag in the extent record Chapter 14
format which means XFS_EXT_UNWRITTEN.

rm_offset
The 54-bit logical file block offset, if rm_owner describes an inode. Meaningless otherwise.

Note
The single-bit flag values rm_unwritten, rm_fork, and rm_bmbt are packed into the larger fields in the C
structure definition.

The key has the following structure:

struct xfs_rmap_key {
__be32 rm_startblock;

XFS Filesystem Disk Structures 48 / 160

__be64 rm_owner;
__be64 rm_fork:1;
__be64 rm_bmbt:1;
__be64 rm_reserved:1;
__be64 rm_unused:7;
__be64 rm_offset:54;

};

For the reverse-mapping B+tree on a filesystem that supports sharing of file data blocks, the key definition is larger
than the usual AG block number. On a classic XFS filesystem, each block has only one owner, which means that
rm_startblock is sufficient to uniquely identify each record. However, shared block support (reflink) on XFS
breaks that assumption; now filesystem blocks can be linked to any logical block offset of any file inode. Therefore,
the key must include the owner and offset information to preserve the 1 to 1 relation between key and record.

• As the reference counting is AG relative, all the block numbers are only 32-bits.

• The bb_magic value is ”RMB3” (0x524d4233).

• The xfs_btree_sblock_t header is used for intermediate B+tree node as well as the leaves.

• Each pointer is associated with two keys. The first of these is the ”low key”, which is the key of the smallest record
accessible through the pointer. This low key has the same meaning as the key in all other btrees. The second key
is the high key, which is the maximum of the largest key that can be used to access a given record underneath the
pointer. Recall that each record in the reverse mapping b+tree describes an interval of physical blocks mapped to
an interval of logical file block offsets; therefore, it makes sense that a range of keys can be used to find to a record.

xfs_db rmapbt Example

This example shows a reverse-mapping B+tree from a freshly populated root filesystem:

xfs_db> agf 0
xfs_db> addr rmaproot
xfs_db> p
magic = 0x524d4233
level = 1
numrecs = 43
leftsib = null
rightsib = null
bno = 56
lsn = 0x3000004c8
uuid = 1977221d-8345-464e-b1f4-aa2ea36895f4
owner = 0
crc = 0x7cf8be6f (correct)
keys[1-43] = [startblock,owner,offset]
keys[1-43] = [startblock,owner,offset,attrfork,bmbtblock,startblock_hi,owner_hi,

offset_hi,attrfork_hi,bmbtblock_hi]
1:[0,-3,0,0,0,351,4418,66,0,0]
2:[417,285,0,0,0,827,4419,2,0,0]
3:[829,499,0,0,0,2352,573,55,0,0]
4:[1292,710,0,0,0,32168,262923,47,0,0]
5:[32215,-5,0,0,0,34655,2365,3411,0,0]
6:[34083,1161,0,0,0,34895,265220,1,0,1]
7:[34896,256191,0,0,0,36522,-9,0,0,0]
...
41:[50998,326734,0,0,0,51430,-5,0,0,0]

XFS Filesystem Disk Structures 49 / 160

42:[51431,327010,0,0,0,51600,325722,11,0,0]
43:[51611,327112,0,0,0,94063,23522,28375272,0,0]

ptrs[1-43] = 1:5 2:6 3:8 4:9 5:10 6:11 7:418 ... 41:46377 42:48784 43:49522

We arbitrarily pick pointer 17 to traverse downwards:
xfs_db> addr ptrs[17]
xfs_db> p
magic = 0x524d4233
level = 0
numrecs = 168
leftsib = 36284
rightsib = 37617
bno = 294760
lsn = 0x200002761
uuid = 1977221d-8345-464e-b1f4-aa2ea36895f4
owner = 0
crc = 0x2dad3fbe (correct)
recs[1-168] = [startblock,blockcount,owner,offset,extentflag,attrfork,bmbtblock]

1:[40326,1,259615,0,0,0,0] 2:[40327,1,-5,0,0,0,0]
3:[40328,2,259618,0,0,0,0] 4:[40330,1,259619,0,0,0,0]
...
127:[40540,1,324266,0,0,0,0] 128:[40541,1,324266,8388608,0,0,0]
129:[40542,2,324266,1,0,0,0] 130:[40544,32,-7,0,0,0,0]

Several interesting things pop out here. The first record shows that inode 259,615 has mapped AG block 40,326 at
offset 0. We confirm this by looking at the block map for that inode:
xfs_db> inode 259615
xfs_db> bmap
data offset 0 startblock 40326 (0/40326) count 1 flag 0

Next, notice records 127 and 128, which describe neighboring AG blocks that are mapped to non-contiguous logical
blocks in inode 324,266. Given the logical offset of 8,388,608 we surmise that this is a leaf directory, but let us confirm:
xfs_db> inode 324266
xfs_db> p core.mode
core.mode = 040755
xfs_db> bmap
data offset 0 startblock 40540 (0/40540) count 1 flag 0
data offset 1 startblock 40542 (0/40542) count 2 flag 0
data offset 3 startblock 40576 (0/40576) count 1 flag 0
data offset 8388608 startblock 40541 (0/40541) count 1 flag 0
xfs_db> p core.mode
core.mode = 0100644
xfs_db> dblock 0
xfs_db> p dhdr.hdr.magic
dhdr.hdr.magic = 0x58444433
xfs_db> dblock 8388608
xfs_db> p lhdr.info.hdr.magic
lhdr.info.hdr.magic = 0x3df1

Indeed, this inode 324,266 appears to be a leaf directory, as it has regular directory data blocks at low offsets, and a
single leaf block.
Notice further the two reverse-mapping records with negative owners. An owner of -7 corresponds to XFS_RMA
P_OWN_INODES, which is an inode chunk, and an owner code of -5 corresponds to XFS_RMAP_OWN_AG, which
covers free space B+trees and free space. Let’s see if block 40,544 is part of an inode chunk:

XFS Filesystem Disk Structures 50 / 160

xfs_db> blockget
xfs_db> fsblock 40544
xfs_db> blockuse
block 40544 (0/40544) type inode
xfs_db> stack
1:

byte offset 166068224, length 4096
buffer block 324352 (fsbno 40544), 8 bbs
inode 324266, dir inode 324266, type data

xfs_db> type inode
xfs_db> p
core.magic = 0x494e

Our suspicions are confirmed. Let’s also see if 40,327 is part of a free space tree:

xfs_db> fsblock 40327
xfs_db> blockuse
block 40327 (0/40327) type btrmap
xfs_db> type rmapbt
xfs_db> p
magic = 0x524d4233

As you can see, the reverse block-mapping B+tree is an important secondary metadata structure, which can be used
to reconstruct damaged primary metadata. Now let’s look at an extend rmap btree:

xfs_db> agf 0
xfs_db> addr rmaproot
xfs_db> p
magic = 0x34524d42
level = 1
numrecs = 5
leftsib = null
rightsib = null
bno = 6368
lsn = 0x100000d1b
uuid = 400f0928-6b88-4c37-af1e-cef1f8911f3f
owner = 0
crc = 0x8d4ace05 (correct)
keys[1-5] = [startblock,owner,offset,attrfork,bmbtblock,startblock_hi,owner_hi, ←↩

offset_hi,attrfork_hi,bmbtblock_hi]
1:[0,-3,0,0,0,705,132,681,0,0]
2:[24,5761,0,0,0,548,5761,524,0,0]
3:[24,5929,0,0,0,380,5929,356,0,0]
4:[24,6097,0,0,0,212,6097,188,0,0]
5:[24,6277,0,0,0,807,-7,0,0,0]
ptrs[1-5] = 1:5 2:771 3:9 4:10 5:11

The second pointer stores both the low key [24,5761,0,0,0] and the high key [548,5761,524,0,0], which means that
we can expect block 771 to contain records starting at physical block 24, inode 5761, offset zero; and that one of the
records can be used to find a reverse mapping for physical block 548, inode 5761, and offset 524:

xfs_db> addr ptrs[2]
xfs_db> p
magic = 0x34524d42
level = 0
numrecs = 168

XFS Filesystem Disk Structures 51 / 160

leftsib = 5
rightsib = 9
bno = 6168
lsn = 0x100000d1b
uuid = 400f0928-6b88-4c37-af1e-cef1f8911f3f
owner = 0
crc = 0xd58eff0e (correct)
recs[1-168] = [startblock,blockcount,owner,offset,extentflag,attrfork,bmbtblock]
1:[24,525,5761,0,0,0,0]
2:[24,524,5762,0,0,0,0]
3:[24,523,5763,0,0,0,0]
...
166:[24,360,5926,0,0,0,0]
167:[24,359,5927,0,0,0,0]
168:[24,358,5928,0,0,0,0]

Observe that the first record in the block starts at physical block 24, inode 5761, offset zero, just as we expected.
Note that this first record is also indexed by the highest key as provided in the node block; physical block 548, inode
5761, offset 524 is the very last block mapped by this record. Furthermore, note that record 168, despite being the
last record in this block, has a lower maximum key (physical block 382, inode 5928, offset 23) than the first record.

Reference Count B+tree

Note
This data structure is under construction! Details may change.

To support the sharing of file data blocks (reflink), each allocation group has its own reference count B+tree, which
grows in the allocated space like the inode B+trees. This data could be gleaned by performing an interval query of
the reverse-mapping B+tree, but doing so would come at a huge performance penalty. Therefore, this data structure
is a cache of computable information.

This B+tree is only present if the XFS_SB_FEAT_RO_COMPAT_REFLINK feature is enabled. The feature requires
a version 5 filesystem.

Each record in the reference count B+tree has the following structure:
struct xfs_refcount_rec {

__be32 rc_startblock;
__be32 rc_blockcount;
__be32 rc_refcount;

};

rc_startblock
AG block number of this record.

rc_blockcount
The length of this extent.

rc_refcount
Number of mappings of this filesystem extent.

Node pointers are an AG relative block pointer:

XFS Filesystem Disk Structures 52 / 160

struct xfs_refcount_key {
__be32 rc_startblock;

};

• As the reference counting is AG relative, all the block numbers are only 32-bits.

• The bb_magic value is ”R3FC” (0x52334643).

• The xfs_btree_sblock_t header is used for intermediate B+tree node as well as the leaves.

xfs_db refcntbt Example

For this example, an XFS filesystem was populated with a root filesystem and a deduplication program was run to
create shared blocks:

xfs_db> agf 0
xfs_db> addr refcntroot
xfs_db> p
magic = 0x52334643
level = 1
numrecs = 6
leftsib = null
rightsib = null
bno = 36892
lsn = 0x200004ec2
uuid = f1f89746-e00b-49c9-96b3-ecef0f2f14ae
owner = 0
crc = 0x75f35128 (correct)
keys[1-6] = [startblock] 1:[14] 2:[65633] 3:[65780] 4:[94571] 5:[117201] 6:[152442]
ptrs[1-6] = 1:7 2:25836 3:25835 4:18447 5:18445 6:18449
xfs_db> addr ptrs[3]
xfs_db> p
magic = 0x52334643
level = 0
numrecs = 80
leftsib = 25836
rightsib = 18447
bno = 51670
lsn = 0x200004ec2
uuid = f1f89746-e00b-49c9-96b3-ecef0f2f14ae
owner = 0
crc = 0xc3962813 (correct)
recs[1-80] = [startblock,blockcount,refcount]

1:[65780,1,2] 2:[65781,1,3] 3:[65785,2,2] 4:[66640,1,2]
5:[69602,4,2] 6:[72256,16,2] 7:[72871,4,2] 8:[72879,20,2]
9:[73395,4,2] 10:[75063,4,2] 11:[79093,4,2] 12:[86344,16,2]

Record 6 in the reference count B+tree for AG 0 indicates that the AG extent starting at block 72,256 and running
for 16 blocks has a reference count of 2. This means that there are two files sharing the block:

xfs_db> blockget -n
xfs_db> fsblock 72256
xfs_db> blockuse
block 72256 (0/72256) type rldata inode 25169197

XFS Filesystem Disk Structures 53 / 160

The blockuse type changes to “rldata” to indicate that the block is shared data. Unfortunately, blockuse only tells us
about one block owner. If we happen to have enabled the reverse-mapping B+tree, we can use it to find all inodes
that own this block:

xfs_db> agf 0
xfs_db> addr rmaproot
...
xfs_db> addr ptrs[3]
...
xfs_db> addr ptrs[7]
xfs_db> p
magic = 0x524d4233
level = 0
numrecs = 22
leftsib = 65057
rightsib = 65058
bno = 291478
lsn = 0x200004ec2
uuid = f1f89746-e00b-49c9-96b3-ecef0f2f14ae
owner = 0
crc = 0xed7da3f7 (correct)
recs[1-22] = [startblock,blockcount,owner,offset,extentflag,attrfork,bmbtblock]

1:[68957,8,3201,0,0,0,0] 2:[68965,4,25260953,0,0,0,0]
...
18:[72232,58,3227,0,0,0,0] 19:[72256,16,25169197,24,0,0,0]
20:[72290,75,3228,0,0,0,0] 21:[72365,46,3229,0,0,0,0]

Records 18 and 19 intersect the block 72,256; they tell us that inodes 3,227 and 25,169,197 both claim ownership. Let
us confirm this:

xfs_db> inode 25169197
xfs_db> bmap
data offset 0 startblock 12632259 (3/49347) count 24 flag 0
data offset 24 startblock 72256 (0/72256) count 16 flag 0
data offset 40 startblock 12632299 (3/49387) count 18 flag 0
xfs_db> inode 3227
xfs_db> bmap
data offset 0 startblock 72232 (0/72232) count 58 flag 0

Inodes 25,169,197 and 3,227 both contain mappings to block 0/72,256.

XFS Filesystem Disk Structures 54 / 160

Chapter 11

Journaling Log

Note
Only v2 log format is covered here.

The XFS journal exists on disk as a reserved extent of blocks within the filesystem, or as a separate journal device.
The journal itself can be thought of as a series of log records; each log record contains a part of or a whole transaction.
A transaction consists of a series of log operation headers (“log items”), formatting structures, and raw data. The first
operation in a transaction establishes the transaction ID and the last operation is a commit record. The operations
recorded between the start and commit operations represent the metadata changes made by the transaction. If the
commit operation is missing, the transaction is incomplete and cannot be recovered.

Log Records

The XFS log is split into a series of log records. Log records seem to correspond to an in-core log buffer, which can
be up to 256KiB in size. Each record has a log sequence number, which is the same LSN recorded in the v5 metadata
integrity fields.

Log sequence numbers are a 64-bit quantity consisting of two 32-bit quantities. The upper 32 bits are the “cycle
number”, which increments every time XFS cycles through the log. The lower 32 bits are the “block number”, which
is assigned when a transaction is committed, and should correspond to the block offset within the log.

A log record begins with the following header, which occupies 512 bytes on disk:

typedef struct xlog_rec_header {
__be32 h_magicno;
__be32 h_cycle;
__be32 h_version;
__be32 h_len;
__be64 h_lsn;
__be64 h_tail_lsn;
__le32 h_crc;
__be32 h_prev_block;
__be32 h_num_logops;
__be32 h_cycle_data[XLOG_HEADER_CYCLE_SIZE / BBSIZE];
/* new fields */
__be32 h_fmt;

XFS Filesystem Disk Structures 55 / 160

uuid_t h_fs_uuid;
__be32 h_size;

} xlog_rec_header_t;

h_magicno
The magic number of log records, 0xfeedbabe.

h_cycle
Cycle number of this log record.

h_version
Log record version, currently 2.

h_len
Length of the log record, in bytes. Must be aligned to a 64-bit boundary.

h_lsn
Log sequence number of this record.

h_tail_lsn
Log sequence number of the first log record with uncommitted buffers.

h_crc
Checksum of the log record header, the cycle data, and the log records themselves.

h_prev_block
Block number of the previous log record.

h_num_logops
The number of log operations in this record.

h_cycle_data
The first u32 of each log sector must contain the cycle number. Since log item buffers are formatted without
regard to this requirement, the original contents of the first four bytes of each sector in the log are copied into
the corresponding element of this array. After that, the first four bytes of those sectors are stamped with the
cycle number. This process is reversed at recovery time. If there are more sectors in this log record than there
are slots in this array, the cycle data continues for as many sectors are needed; each sector is formatted as type
xlog_rec_ext_header.

h_fmt
Format of the log record. This is one of the following values:

Table 11.1: Log record formats

Format value Log format
XLOG_FMT_UNKNOWN Unknown. Perhaps this log is corrupt.
XLOG_FMT_LINUX_LE Little-endian Linux.
XLOG_FMT_LINUX_BE Big-endian Linux.
XLOG_FMT_IRIX_BE Big-endian Irix.

h_fs_uuid

XFS Filesystem Disk Structures 56 / 160

Filesystem UUID.

h_size
In-core log record size. This is somewhere between 16 and 256KiB, with 32KiB being the default.

As mentioned earlier, if this log record is longer than 256 sectors, the cycle data overflows into the next sector(s) in
the log. Each of those sectors is formatted as follows:

typedef struct xlog_rec_ext_header {
__be32 xh_cycle;
__be32 xh_cycle_data[XLOG_HEADER_CYCLE_SIZE / BBSIZE];

} xlog_rec_ext_header_t;

xh_cycle
Cycle number of this log record. Should match h_cycle.

xh_cycle_data
Overflow cycle data.

Log Operations

Within a log record, log operations are recorded as a series consisting of an operation header immediately followed
by a data region. The operation header has the following format:

typedef struct xlog_op_header {
__be32 oh_tid;
__be32 oh_len;
__u8 oh_clientid;
__u8 oh_flags;
__u16 oh_res2;

} xlog_op_header_t;

oh_tid
Transaction ID of this operation.

oh_len
Number of bytes in the data region.

oh_clientid
The originator of this operation. This can be one of the following:

Table 11.2: Log Operation Client ID

Client ID Originator
XFS_TRANSACTION Operation came from a transaction.
XFS_VOLUME ⁇?
XFS_LOG ⁇?

XFS Filesystem Disk Structures 57 / 160

oh_flags
Specifies flags associated with this operation. This can be a combination of the following values (though most
likely only one will be set at a time):

Table 11.3: Log Operation Flags

Flag Description
XLOG_START_TRANS Start a new transaction. The next operation header

should describe a transaction header.
XLOG_COMMIT_TRANS Commit this transaction.
XLOG_CONTINUE_TRANS Continue this trans into new log record.
XLOG_WAS_CONT_TRANS This transaction started in a previous log record.
XLOG_END_TRANS End of a continued transaction.
XLOG_UNMOUNT_TRANS Transaction to unmount a filesystem.

oh_res2
Padding.

The data region follows immediately after the operation header and is exactly oh_len bytes long. These payloads
are in host-endian order, which means that one cannot replay the log from an unclean XFS filesystem on a system
with a different byte order.

Log Items

Following are the types of log item payloads that can follow an xlog_op_header. Except for buffer data and
inode cores, all log items have a magic number to distinguish themselves. Buffer data items only appear after xfs_
buf_log_format items; and inode core items only appear after xfs_inode_log_format items.

Table 11.4: Log Operation Magic Numbers

Magic Hexadecimal Operation Type
XFS_TRANS_HEADER_MAGIC 0x5452414e Log Transaction Header

Section 11.3.1
XFS_LI_EFI 0x1236 Extent Freeing Intent

Section 11.3.2
XFS_LI_EFD 0x1237 Extent Freeing Done

Section 11.3.3
XFS_LI_IUNLINK 0x1238 Unknown?
XFS_LI_INODE 0x123b Inode Updates Section 11.3.10
XFS_LI_BUF 0x123c Buffer Writes Section 11.3.12
XFS_LI_DQUOT 0x123d Update Quota Section 11.3.14
XFS_LI_QUOTAOFF 0x123e Quota Off Section 11.3.16
XFS_LI_ICREATE 0x123f Inode Creation Section 11.3.17
XFS_LI_RUI 0x1240 Reverse Mapping Update Intent

Section 11.3.4

XFS Filesystem Disk Structures 58 / 160

Table 11.4: (continued)

Magic Hexadecimal Operation Type
XFS_LI_RUD 0x1241 Reverse Mapping Update Done

Section 11.3.5
XFS_LI_CUI 0x1242 Reference Count Update Intent

Section 11.3.6
XFS_LI_CUD 0x1243 Reference Count Update Done

Section 11.3.7
XFS_LI_BUI 0x1244 File Block Mapping Update Intent

Section 11.3.8
XFS_LI_BUD 0x1245 File Block Mapping Update Done

Section 11.3.9

Transaction Headers

A transaction header is an operation payload that starts a transaction.

typedef struct xfs_trans_header {
uint th_magic;
uint th_type;
__int32_t th_tid;
uint th_num_items;

} xfs_trans_header_t;

th_magic
The signature of a transaction header, “TRAN” (0x5452414e). Note that this value is in host-endian order, not
big-endian like the rest of XFS.

th_type
Transaction type. This is one of the following values:

Type Description
XFS_TRANS_SETATTR_NOT_SIZE Set an inode attribute that isn’t the inode’s size.
XFS_TRANS_SETATTR_SIZE Setting the size attribute of an inode.
XFS_TRANS_INACTIVE Freeing blocks from an unlinked inode.
XFS_TRANS_CREATE Create a file.
XFS_TRANS_CREATE_TRUNC Unused?
XFS_TRANS_TRUNCATE_FILE Truncate a quota file.
XFS_TRANS_REMOVE Remove a file.
XFS_TRANS_LINK Link an inode into a directory.
XFS_TRANS_RENAME Rename a path.
XFS_TRANS_MKDIR Create a directory.
XFS_TRANS_RMDIR Remove a directory.
XFS_TRANS_SYMLINK Create a symbolic link.
XFS_TRANS_SET_DMATTRS Set the DMAPI attributes of an inode.
XFS_TRANS_GROWFS Expand the filesystem.
XFS_TRANS_STRAT_WRITE Convert an unwritten extent or delayed-allocate

some blocks to handle a write.

XFS Filesystem Disk Structures 59 / 160

Type Description
XFS_TRANS_DIOSTRAT Allocate some blocks to handle a direct I/O write.
XFS_TRANS_WRITEID Update an inode’s preallocation flag.
XFS_TRANS_ADDAFORK Add an attribute fork to an inode.
XFS_TRANS_ATTRINVAL Erase the attribute fork of an inode.
XFS_TRANS_ATRUNCATE Unused?
XFS_TRANS_ATTR_SET Set an extended attribute.
XFS_TRANS_ATTR_RM Remove an extended attribute.
XFS_TRANS_ATTR_FLAG Unused?
XFS_TRANS_CLEAR_AGI_BUCKET Clear a bad inode pointer in the AGI unlinked inode

hash bucket.
XFS_TRANS_SB_CHANGE Write the superblock to disk.
XFS_TRANS_QM_QUOTAOFF Start disabling quotas.
XFS_TRANS_QM_DQALLOC Allocate a disk quota structure.
XFS_TRANS_QM_SETQLIM Adjust quota limits.
XFS_TRANS_QM_DQCLUSTER Unused?
XFS_TRANS_QM_QINOCREATE Create a (quota) inode with reference taken.
XFS_TRANS_QM_QUOTAOFF_END Finish disabling quotas.
XFS_TRANS_FSYNC_TS Update only inode timestamps.
XFS_TRANS_GROWFSRT_ALLOC Grow the realtime bitmap and summary data for

growfs.
XFS_TRANS_GROWFSRT_ZERO Zero space in the realtime bitmap and summary data.
XFS_TRANS_GROWFSRT_FREE Free space in the realtime bitmap and summary data.
XFS_TRANS_SWAPEXT Swap data fork of two inodes.
XFS_TRANS_CHECKPOINT Checkpoint the log.
XFS_TRANS_ICREATE Unknown?
XFS_TRANS_CREATE_TMPFILE Create a temporary file.

th_tid
Transaction ID.

th_num_items
The number of operations appearing after this operation, not including the commit operation. In effect, this
tracks the number of metadata change operations in this transaction.

Intent to Free an Extent

The next two operation types work together to handle the freeing of filesystem blocks. Naturally, the ranges of
blocks to be freed can be expressed in terms of extents:

typedef struct xfs_extent_32 {
__uint64_t ext_start;
__uint32_t ext_len;

} __attribute__((packed)) xfs_extent_32_t;

typedef struct xfs_extent_64 {
__uint64_t ext_start;
__uint32_t ext_len;
__uint32_t ext_pad;

} xfs_extent_64_t;

XFS Filesystem Disk Structures 60 / 160

ext_start
Start block of this extent.

ext_len
Length of this extent.

The “extent freeing intent” operation comes first; it tells the log that XFS wants to free some extents. This record is
crucial for correct log recovery because it prevents the log from replaying blocks that are subsequently freed. If the
log lacks a corresponding “extent freeing done” operation, the recovery process will free the extents.

typedef struct xfs_efi_log_format {
__uint16_t efi_type;
__uint16_t efi_size;
__uint32_t efi_nextents;
__uint64_t efi_id;
xfs_extent_t efi_extents[1];

} xfs_efi_log_format_t;

efi_type
The signature of an EFI operation, 0x1236. This value is in host-endian order, not big-endian like the rest of
XFS.

efi_size
Size of this log item. Should be 1.

efi_nextents
Number of extents to free.

efi_id
A 64-bit number that binds the corresponding EFD log item to this EFI log item.

efi_extents
Variable-length array of extents to be freed. The array length is given by efi_nextents. The record type
will be either xfs_extent_64_t or xfs_extent_32_t; this can be determined from the log item size
(oh_len) and the number of extents (efi_nextents).

Completion of Intent to Free an Extent

The “extent freeing done” operation complements the “extent freeing intent” operation. This second operation in-
dicates that the block freeing actually happened, so that log recovery needn’t try to free the blocks. Typically, the
operations to update the free space B+trees follow immediately after the EFD.

typedef struct xfs_efd_log_format {
__uint16_t efd_type;
__uint16_t efd_size;
__uint32_t efd_nextents;
__uint64_t efd_efi_id;
xfs_extent_t efd_extents[1];

} xfs_efd_log_format_t;

efd_type
The signature of an EFD operation, 0x1237. This value is in host-endian order, not big-endian like the rest of
XFS.

XFS Filesystem Disk Structures 61 / 160

efd_size
Size of this log item. Should be 1.

efd_nextents
Number of extents to free.

efd_id
A 64-bit number that binds the corresponding EFI log item to this EFD log item.

efd_extents
Variable-length array of extents to be freed. The array length is given by efd_nextents. The record type
will be either xfs_extent_64_t or xfs_extent_32_t; this can be determined from the log item size
(oh_len) and the number of extents (efd_nextents).

Reverse Mapping Updates Intent

The next two operation types work together to handle deferred reverse mapping updates. Naturally, the mappings
to be updated can be expressed in terms of mapping extents:

struct xfs_map_extent {
__uint64_t me_owner;
__uint64_t me_startblock;
__uint64_t me_startoff;
__uint32_t me_len;
__uint32_t me_flags;

};

me_owner
Owner of this reverse mapping. See the values in the section about reverse mapping Section 10.7 for more
information.

me_startblock
Filesystem block of this mapping.

me_startoff
Logical block offset of this mapping.

me_len
The length of this mapping.

me_flags
The lower byte of this field is a type code indicating what sort of reverse mapping operation we want. The
upper three bytes are flag bits.

Table 11.5: Reverse mapping update log intent types

Value Description
XFS_RMAP_EXTENT_MAP Add a reverse mapping for file data.
XFS_RMAP_EXTENT_MAP_SHARED Add a reverse mapping for file data for a file with

shared blocks.
XFS_RMAP_EXTENT_UNMAP Remove a reverse mapping for file data.
XFS_RMAP_EXTENT_UNMAP_SHARED Remove a reverse mapping for file data for a file with

shared blocks.

XFS Filesystem Disk Structures 62 / 160

Table 11.5: (continued)

Value Description
XFS_RMAP_EXTENT_CONVERT Convert a reverse mapping for file data between

unwritten and normal.
XFS_RMAP_EXTENT_CONVERT_SHARED Convert a reverse mapping for file data between

unwritten and normal for a file with shared blocks.
XFS_RMAP_EXTENT_ALLOC Add a reverse mapping for non-file data.
XFS_RMAP_EXTENT_FREE Remove a reverse mapping for non-file data.

Table 11.6: Reverse mapping update log intent flags

Value Description
XFS_RMAP_EXTENT_ATTR_FORK Extent is for the attribute fork.
XFS_RMAP_EXTENT_BMBT_BLOCK Extent is for a block mapping btree block.
XFS_RMAP_EXTENT_UNWRITTEN Extent is unwritten.

The “rmap update intent” operation comes first; it tells the log that XFS wants to update some reverse mappings.
This record is crucial for correct log recovery because it enables us to spread a complex metadata update across
multiple transactions while ensuring that a crash midway through the complex update will be replayed fully during
log recovery.

struct xfs_rui_log_format {
__uint16_t rui_type;
__uint16_t rui_size;
__uint32_t rui_nextents;
__uint64_t rui_id;
struct xfs_map_extent rui_extents[1];

};

rui_type
The signature of an RUI operation, 0x1240. This value is in host-endian order, not big-endian like the rest of
XFS.

rui_size
Size of this log item. Should be 1.

rui_nextents
Number of reverse mappings.

rui_id
A 64-bit number that binds the corresponding RUD log item to this RUI log item.

rui_extents
Variable-length array of reverse mappings to update.

XFS Filesystem Disk Structures 63 / 160

Completion of Reverse Mapping Updates

The “reverse mapping update done” operation complements the “reverse mapping update intent” operation. This
second operation indicates that the update actually happened, so that log recovery needn’t replay the update. The
RUD and the actual updates are typically found in a new transaction following the transaction in which the RUI was
logged.

struct xfs_rud_log_format {
__uint16_t rud_type;
__uint16_t rud_size;
__uint32_t __pad;
__uint64_t rud_rui_id;

};

rud_type
The signature of an RUD operation, 0x1241. This value is in host-endian order, not big-endian like the rest of
XFS.

rud_size
Size of this log item. Should be 1.

rud_rui_id
A 64-bit number that binds the corresponding RUI log item to this RUD log item.

Reference Count Updates Intent

The next two operation types work together to handle reference count updates. Naturally, the ranges of extents
having reference count updates can be expressed in terms of physical extents:

struct xfs_phys_extent {
__uint64_t pe_startblock;
__uint32_t pe_len;
__uint32_t pe_flags;

};

pe_startblock
Filesystem block of this extent.

pe_len
The length of this extent.

pe_flags
The lower byte of this field is a type code indicating what sort of reverse mapping operation we want. The
upper three bytes are flag bits.

Table 11.7: Reference count update log intent types

Value Description
XFS_REFCOUNT_EXTENT_INCREASE Increase the reference count for this extent.
XFS_REFCOUNT_EXTENT_DECREASE Decrease the reference count for this extent.
XFS_REFCOUNT_EXTENT_ALLOC_COW Reserve an extent for staging copy on write.
XFS_REFCOUNT_EXTENT_FREE_COW Unreserve an extent for staging copy on write.

XFS Filesystem Disk Structures 64 / 160

The “reference count update intent” operation comes first; it tells the log that XFS wants to update some reference
counts. This record is crucial for correct log recovery because it enables us to spread a complex metadata update
across multiple transactions while ensuring that a crash midway through the complex update will be replayed fully
during log recovery.

struct xfs_cui_log_format {
__uint16_t cui_type;
__uint16_t cui_size;
__uint32_t cui_nextents;
__uint64_t cui_id;
struct xfs_map_extent cui_extents[1];

};

cui_type
The signature of an CUI operation, 0x1242. This value is in host-endian order, not big-endian like the rest of
XFS.

cui_size
Size of this log item. Should be 1.

cui_nextents
Number of reference count updates.

cui_id
A 64-bit number that binds the corresponding RUD log item to this RUI log item.

cui_extents
Variable-length array of reference count update information.

Completion of Reference Count Updates

The “reference count update done” operation complements the “reference count update intent” operation. This sec-
ond operation indicates that the update actually happened, so that log recovery needn’t replay the update. The CUD
and the actual updates are typically found in a new transaction following the transaction in which the CUI was
logged.

struct xfs_cud_log_format {
__uint16_t cud_type;
__uint16_t cud_size;
__uint32_t __pad;
__uint64_t cud_cui_id;

};

cud_type
The signature of an RUD operation, 0x1243. This value is in host-endian order, not big-endian like the rest of
XFS.

cud_size
Size of this log item. Should be 1.

cud_cui_id
A 64-bit number that binds the corresponding CUI log item to this CUD log item.

XFS Filesystem Disk Structures 65 / 160

File Block Mapping Intent

Thenext two operation types work together to handle deferred file blockmapping updates. The extents to be mapped
are expressed via the xfs_map_extent structure discussed in the section about reverse mapping intents Sec-
tion 11.3.4.

The lower byte of the me_flags field is a type code indicating what sort of file block mapping operation we want.
The upper three bytes are flag bits.

Table 11.8: File block mapping update log intent types

Value Description
XFS_BMAP_EXTENT_MAP Add a mapping for file data.
XFS_BMAP_EXTENT_UNMAP Remove a mapping for file data.

Table 11.9: File block mapping update log intent flags

Value Description
XFS_BMAP_EXTENT_ATTR_FORK Extent is for the attribute fork.
XFS_BMAP_EXTENT_UNWRITTEN Extent is unwritten.

The “file block mapping update intent” operation comes first; it tells the log that XFS wants to map or unmap some
extents in a file. This record is crucial for correct log recovery because it enables us to spread a complex metadata
update across multiple transactions while ensuring that a crash midway through the complex update will be replayed
fully during log recovery.
struct xfs_bui_log_format {

__uint16_t bui_type;
__uint16_t bui_size;
__uint32_t bui_nextents;
__uint64_t bui_id;
struct xfs_map_extent bui_extents[1];

};

bui_type
The signature of an BUI operation, 0x1244. This value is in host-endian order, not big-endian like the rest of
XFS.

bui_size
Size of this log item. Should be 1.

bui_nextents
Number of file mappings. Should be 1.

bui_id
A 64-bit number that binds the corresponding BUD log item to this BUI log item.

bui_extents
Variable-length array of file block mappings to update. There should only be one mapping present.

XFS Filesystem Disk Structures 66 / 160

Completion of File Block Mapping Updates

The “file block mapping update done” operation complements the “file block mapping update intent” operation. This
second operation indicates that the update actually happened, so that log recovery needn’t replay the update. The
BUD and the actual updates are typically found in a new transaction following the transaction in which the BUI was
logged.

struct xfs_bud_log_format {
__uint16_t bud_type;
__uint16_t bud_size;
__uint32_t __pad;
__uint64_t bud_bui_id;

};

bud_type
The signature of an BUD operation, 0x1245. This value is in host-endian order, not big-endian like the rest of
XFS.

bud_size
Size of this log item. Should be 1.

bud_bui_id
A 64-bit number that binds the corresponding BUI log item to this BUD log item.

Inode Updates

This operation records changes to an inode record. There are several types of inode updates, each corresponding to
different parts of the inode record. Allowing updates to proceed at a sub-inode granularity reduces contention for
the inode, since different parts of the inode can be updated simultaneously.

The actual buffer data are stored in subsequent log items.

The inode log format header is as follows:

typedef struct xfs_inode_log_format_64 {
__uint16_t ilf_type;
__uint16_t ilf_size;
__uint32_t ilf_fields;
__uint16_t ilf_asize;
__uint16_t ilf_dsize;
__uint32_t ilf_pad;
__uint64_t ilf_ino;
union {

__uint32_t ilfu_rdev;
uuid_t ilfu_uuid;

} ilf_u;
__int64_t ilf_blkno;
__int32_t ilf_len;
__int32_t ilf_boffset;

} xfs_inode_log_format_64_t;

ilf_type
The signature of an inode update operation, 0x123b. This value is in host-endian order, not big-endian like the
rest of XFS.

XFS Filesystem Disk Structures 67 / 160

ilf_size
Number of operations involved in this update, including this format operation.

ilf_fields
Specifies which parts of the inode are being updated. This can be certain combinations of the following:

Flag Inode changes to log include:
XFS_ILOG_CORE The standard inode fields.
XFS_ILOG_DDATA Data fork’s local data.
XFS_ILOG_DEXT Data fork’s extent list.
XFS_ILOG_DBROOT Data fork’s B+tree root.
XFS_ILOG_DEV Data fork’s device number.
XFS_ILOG_UUID Data fork’s UUID contents.
XFS_ILOG_ADATA Attribute fork’s local data.
XFS_ILOG_AEXT Attribute fork’s extent list.
XFS_ILOG_ABROOT Attribute fork’s B+tree root.
XFS_ILOG_DOWNER Change the data fork owner on replay.
XFS_ILOG_AOWNER Change the attr fork owner on replay.
XFS_ILOG_TIMESTAMP Timestamps are dirty, but not necessarily anything

else. Should never appear on disk.
XFS_ILOG_NONCORE (XFS_ILOG_DDATA | XFS_ILOG_DEXT |

XFS_ILOG_DBROOT | XFS_ILOG_DEV |
XFS_ILOG_UUID | XFS_ILOG_ADATA |
XFS_ILOG_AEXT | XFS_ILOG_ABROOT |
XFS_ILOG_DOWNER | XFS_ILOG_AOWNER)

XFS_ILOG_DFORK (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
XFS_ILOG_DBROOT)

XFS_ILOG_AFORK (XFS_ILOG_ADATA | XFS_ILOG_AEXT |
XFS_ILOG_ABROOT)

XFS_ILOG_ALL (XFS_ILOG_CORE | XFS_ILOG_DDATA |
XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
XFS_ILOG_DEV | XFS_ILOG_UUID |
XFS_ILOG_ADATA | XFS_ILOG_AEXT |
XFS_ILOG_ABROOT | XFS_ILOG_TIMESTAMP |
XFS_ILOG_DOWNER | XFS_ILOG_AOWNER)

ilf_asize
Size of the attribute fork, in bytes.

ilf_dsize
Size of the data fork, in bytes.

ilf_ino
Absolute node number.

ilfu_rdev
Device number information, for a device file update.

ilfu_uuid
UUID, for a UUID update?

ilf_blkno
Block number of the inode buffer, in sectors.

XFS Filesystem Disk Structures 68 / 160

ilf_len
Length of inode buffer, in sectors.

ilf_boffset
Byte offset of the inode in the buffer.

Be aware that there is a nearly identical xfs_inode_log_format_32 which may appear on disk. It is the same
as xfs_inode_log_format_64, except that it is missing the ilf_pad field and is 52 bytes long as opposed to
56 bytes.

Inode Data Log Item

This region contains the new contents of a part of an inode, as described in the previous section Section 11.3.10.
There are no magic numbers.

If XFS_ILOG_CORE is set in ilf_fields, the correpsonding data buffer must be in the format struct xfs
_icdinode, which has the same format as the first 96 bytes of an inode Chapter 13, but is recorded in host byte
order.

Buffer Log Item

This operation writes parts of a buffer to disk. The regions to write are tracked in the data map; the actual buffer
data are stored in subsequent log items.

typedef struct xfs_buf_log_format {
unsigned short blf_type;
unsigned short blf_size;
ushort blf_flags;
ushort blf_len;
__int64_t blf_blkno;
unsigned int blf_map_size;
unsigned int blf_data_map[XFS_BLF_DATAMAP_SIZE];

} xfs_buf_log_format_t;

blf_type
Magic number to specify a buffer log item, 0x123c.

blf_size
Number of buffer data items following this item.

blf_flags
Specifies flags associated with the buffer item. This can be any of the following:

Flag Description
XFS_BLF_INODE_BUF Inode buffer. These must be recovered before

replaying items that change this buffer.
XFS_BLF_CANCEL Don’t recover this buffer, blocks are being freed.
XFS_BLF_UDQUOT_BUF User quota buffer, don’t recover if there’s a

subsequent quotaoff.
XFS_BLF_PDQUOT_BUF Project quota buffer, don’t recover if there’s a

subsequent quotaoff.
XFS_BLF_GDQUOT_BUF Group quota buffer, don’t recover if there’s a

subsequent quotaoff.

XFS Filesystem Disk Structures 69 / 160

blf_len
Number of sectors affected by this buffer.

blf_blkno
Block number to write, in sectors.

blf_map_size
The size of blf_data_map, in 32-bit words.

blf_data_map
This variable-sized array acts as a dirty bitmap for the logged buffer. Each 1 bit represents a dirty region in the
buffer, and each run of 1 bits corresponds to a subsequent log item containing the new contents of the buffer
area. Each bit represents (blf_len * 512) /(blf_map_size * NBBY) bytes.

Buffer Data Log Item

This region contains the new contents of a part of a buffer, as described in the previous section Section 11.3.12. There
are no magic numbers.

Update Quota File

This updates a block in a quota file. The buffer data must be in the next log item.
typedef struct xfs_dq_logformat {

__uint16_t qlf_type;
__uint16_t qlf_size;
xfs_dqid_t qlf_id;
__int64_t qlf_blkno;
__int32_t qlf_len;
__uint32_t qlf_boffset;

} xfs_dq_logformat_t;

qlf_type
The signature of an inode create operation, 0x123e. This value is in host-endian order, not big-endian like the
rest of XFS.

qlf_size
Size of this log item. Should be 2.

qlf_id
The user/group/project ID to alter.

qlf_blkno
Block number of the quota buffer, in sectors.

qlf_len
Length of the quota buffer, in sectors.

qlf_boffset
Buffer offset of the quota data to update, in bytes.

Quota Update Data Log Item

This region contains the new contents of a part of a buffer, as described in the previous section Section 11.3.14. There
are no magic numbers.

XFS Filesystem Disk Structures 70 / 160

Disable Quota Log Item

A request to disable quota controls has the following format:

typedef struct xfs_qoff_logformat {
unsigned short qf_type;
unsigned short qf_size;
unsigned int qf_flags;
char qf_pad[12];

} xfs_qoff_logformat_t;

qf_type
The signature of an inode create operation, 0x123d. This value is in host-endian order, not big-endian like the
rest of XFS.

qf_size
Size of this log item. Should be 1.

qf_flags
Specifies which quotas are being turned off. Can be a combination of the following:

Flag Quota type to disable
XFS_UQUOTA_ACCT User quotas.
XFS_PQUOTA_ACCT Project quotas.
XFS_GQUOTA_ACCT Group quotas.

Inode Creation Log Item

This log item is created when inodes are allocated in-core. When replaying this item, the specified inode records will
be zeroed and some of the inode fields populated with default values.

struct xfs_icreate_log {
__uint16_t icl_type;
__uint16_t icl_size;
__be32 icl_ag;
__be32 icl_agbno;
__be32 icl_count;
__be32 icl_isize;
__be32 icl_length;
__be32 icl_gen;

};

icl_type
The signature of an inode create operation, 0x123f. This value is in host-endian order, not big-endian like the
rest of XFS.

icl_size
Size of this log item. Should be 1.

icl_ag
AG number of the inode chunk to create.

XFS Filesystem Disk Structures 71 / 160

icl_agbno
AG block number of the inode chunk.

icl_count
Number of inodes to initialize.

icl_isize
Size of each inode, in bytes.

icl_length
Length of the extent being initialized, in blocks.

icl_gen
Inode generation number to write into the new inodes.

xfs_logprint Example

Here’s an example of dumping the XFS log contents with xfs_logprint:
xfs_logprint /dev/sda
xfs_logprint: /dev/sda contains a mounted and writable filesystem
xfs_logprint:

data device: 0xfc03
log device: 0xfc03 daddr: 900931640 length: 879816

cycle: 48 version: 2 lsn: 48,0 tail_lsn: 47,879760
length of Log Record: 19968 prev offset: 879808 num ops: 53
uuid: 24afeec2-f418-46a2-a573-10091f5e200e format: little endian linux
h_size: 32768

This is the log record header.

Oper (0): tid: 30483aec len: 0 clientid: TRANS flags: START

This operation indicates that we’re starting a transaction, so the next operation should record the transaction header.

Oper (1): tid: 30483aec len: 16 clientid: TRANS flags: none
TRAN: type: CHECKPOINT tid: 30483aec num_items: 50

This operation records a transaction header. There should be fifty operations in this transaction and the transaction
ID is 0x30483aec.

Oper (2): tid: 30483aec len: 24 clientid: TRANS flags: none
BUF: #regs: 2 start blkno: 145400496 (0x8aaa2b0) len: 8 bmap size: 1 flags: 0 ←↩

x2000
Oper (3): tid: 30483aec len: 3712 clientid: TRANS flags: none
BUF DATA
...
Oper (4): tid: 30483aec len: 24 clientid: TRANS flags: none
BUF: #regs: 3 start blkno: 59116912 (0x3860d70) len: 8 bmap size: 1 flags: 0 ←↩

x2000
Oper (5): tid: 30483aec len: 128 clientid: TRANS flags: none
BUF DATA
0 43544241 49010000 fa347000 2c357000 3a40b200 13000000 2343c200 13000000
8 3296d700 13000000 375deb00 13000000 8a551501 13000000 56be1601 13000000

XFS Filesystem Disk Structures 72 / 160

10 af081901 13000000 ec741c01 13000000 9e911c01 13000000 69073501 13000000
18 4e539501 13000000 6549501 13000000 5d0e7f00 14000000 c6908200 14000000

Oper (6): tid: 30483aec len: 640 clientid: TRANS flags: none
BUF DATA
0 7f47c800 21000000 23c0e400 21000000 2d0dfe00 21000000 e7060c01 21000000
8 34b91801 21000000 9cca9100 22000000 26e69800 22000000 4c969900 22000000

...
90 1cf69900 27000000 42f79c00 27000000 6a99e00 27000000 6a99e00 27000000
98 6a99e00 27000000 6a99e00 27000000 6a99e00 27000000 6a99e00 27000000

Operations 4-6 describe two updates to a single dirty buffer at disk address 59,116,912. The first chunk of dirty data
is 128 bytes long. Notice how the first four bytes of the first chunk is 0x43544241? Remembering that log items are
in host byte order, reverse that to 0x41425443, which is the magic number for the free space B+tree ordered by size.

The second chunk is 640 bytes. There are more buffer changes, so we’ll skip ahead a few operations:

Oper (19): tid: 30483aec len: 56 clientid: TRANS flags: none
INODE: #regs: 2 ino: 0x63a73b4e flags: 0x1 dsize: 40

blkno: 1412688704 len: 16 boff: 7168
Oper (20): tid: 30483aec len: 96 clientid: TRANS flags: none
INODE CORE
magic 0x494e mode 0100600 version 2 format 3
nlink 1 uid 1000 gid 1000
atime 0x5633d58d mtime 0x563a391b ctime 0x563a391b
size 0x109dc8 nblocks 0x111 extsize 0x0 nextents 0x1b
naextents 0x0 forkoff 0 dmevmask 0x0 dmstate 0x0
flags 0x0 gen 0x389071be

This is an update to the core of inode 0x63a73b4e. There were similar inode core updates after this, so we’ll skip
ahead a bit:

Oper (32): tid: 30483aec len: 56 clientid: TRANS flags: none
INODE: #regs: 3 ino: 0x4bde428 flags: 0x5 dsize: 16

blkno: 79553568 len: 16 boff: 4096
Oper (33): tid: 30483aec len: 96 clientid: TRANS flags: none
INODE CORE
magic 0x494e mode 0100644 version 2 format 2
nlink 1 uid 1000 gid 1000
atime 0x563a3924 mtime 0x563a3931 ctime 0x563a3931
size 0x1210 nblocks 0x2 extsize 0x0 nextents 0x1
naextents 0x0 forkoff 0 dmevmask 0x0 dmstate 0x0
flags 0x0 gen 0x2829c6f9
Oper (34): tid: 30483aec len: 16 clientid: TRANS flags: none
EXTENTS inode data

This inode update changes both the core and also the data fork. Since we’re changing the block map, it’s unsurprising
that one of the subsequent operations is an EFI:

Oper (37): tid: 30483aec len: 32 clientid: TRANS flags: none
EFI: #regs: 1 num_extents: 1 id: 0xffff8801147b5c20
(s: 0x720daf, l: 1)
\--
Oper (38): tid: 30483aec len: 32 clientid: TRANS flags: none
EFD: #regs: 1 num_extents: 1 id: 0xffff8801147b5c20
\--
Oper (39): tid: 30483aec len: 24 clientid: TRANS flags: none

XFS Filesystem Disk Structures 73 / 160

BUF: #regs: 2 start blkno: 8 (0x8) len: 8 bmap size: 1 flags: 0x2800
Oper (40): tid: 30483aec len: 128 clientid: TRANS flags: none
AGF Buffer: XAGF
ver: 1 seq#: 0 len: 56308224
root BNO: 18174905 CNT: 18175030
level BNO: 2 CNT: 2
1st: 41 last: 46 cnt: 6 freeblks: 35790503 longest: 19343245
\--
Oper (41): tid: 30483aec len: 24 clientid: TRANS flags: none
BUF: #regs: 3 start blkno: 145398760 (0x8aa9be8) len: 8 bmap size: 1 flags: 0 ←↩

x2000
Oper (42): tid: 30483aec len: 128 clientid: TRANS flags: none
BUF DATA
Oper (43): tid: 30483aec len: 128 clientid: TRANS flags: none
BUF DATA
\--
Oper (44): tid: 30483aec len: 24 clientid: TRANS flags: none
BUF: #regs: 3 start blkno: 145400224 (0x8aaa1a0) len: 8 bmap size: 1 flags: 0 ←↩

x2000
Oper (45): tid: 30483aec len: 128 clientid: TRANS flags: none
BUF DATA
Oper (46): tid: 30483aec len: 3584 clientid: TRANS flags: none
BUF DATA
\--
Oper (47): tid: 30483aec len: 24 clientid: TRANS flags: none
BUF: #regs: 3 start blkno: 59066216 (0x3854768) len: 8 bmap size: 1 flags: 0 ←↩

x2000
Oper (48): tid: 30483aec len: 128 clientid: TRANS flags: none
BUF DATA
Oper (49): tid: 30483aec len: 768 clientid: TRANS flags: none
BUF DATA

Here we see an EFI, followed by an EFD, followed by updates to the AGF and the free space B+trees. Most probably,
we just unmapped a few blocks from a file.

Oper (50): tid: 30483aec len: 56 clientid: TRANS flags: none
INODE: #regs: 2 ino: 0x3906f20 flags: 0x1 dsize: 16

blkno: 59797280 len: 16 boff: 0
Oper (51): tid: 30483aec len: 96 clientid: TRANS flags: none
INODE CORE
magic 0x494e mode 0100644 version 2 format 2
nlink 1 uid 1000 gid 1000
atime 0x563a3938 mtime 0x563a3938 ctime 0x563a3938
size 0x0 nblocks 0x0 extsize 0x0 nextents 0x0
naextents 0x0 forkoff 0 dmevmask 0x0 dmstate 0x0
flags 0x0 gen 0x35ed661
\--
Oper (52): tid: 30483aec len: 0 clientid: TRANS flags: COMMIT

One more inode core update and this transaction commits.

XFS Filesystem Disk Structures 74 / 160

Chapter 12

Internal Inodes

XFS allocates several inodes when a filesystem is created. These are internal and not accessible from the standard
directory structure. These inodes are only accessible from the superblock.

Quota Inodes

If quotas are used, two inodes are allocated for user and group quota management. If project quotas are used, these
replace the group quota management and therefore uses the group quota inode.

• Project quota’s primary purpose is to track and monitor disk usage for directories. For this to occur, the directory
inode must have the XFS_DIFLAG_PROJINHERIT flag set so all inodes created underneath the directory inherit
the project ID.

• Inodes and blocks owned by ID zero do not have enforced quotas, but only quota accounting.

• Extended attributes do not contribute towards the ID’s quota.

• To access each ID’s quota information in the file, seek to the ID offset multiplied by the size of xfs_dqblk_t
(136 bytes).

XFS Filesystem Disk Structures 75 / 160

Figure 12.1: Quota inode layout

Quota information is stored in the data extents of the two reserved quota inodes as an array of the xfs_dqblk
structures, where there is one array element for each ID in the system:
struct xfs_disk_dquot {

__be16 d_magic;
__u8 d_version;
__u8 d_flags;
__be32 d_id;
__be64 d_blk_hardlimit;
__be64 d_blk_softlimit;
__be64 d_ino_hardlimit;
__be64 d_ino_softlimit;
__be64 d_bcount;
__be64 d_icount;
__be32 d_itimer;
__be32 d_btimer;
__be16 d_iwarns;
__be16 d_bwarns;
__be32 d_pad0;
__be64 d_rtb_hardlimit;
__be64 d_rtb_softlimit;
__be64 d_rtbcount;
__be32 d_rtbtimer;
__be16 d_rtbwarns;
__be16 d_pad;

};
struct xfs_dqblk {

struct xfs_disk_dquot dd_diskdq;
char dd_fill[32];

/* version 5 filesystem fields begin here */
__be32 dd_crc;

XFS Filesystem Disk Structures 76 / 160

__be64 dd_lsn;
uuid_t dd_uuid;

};

d_magic
Specifies the signature where these two bytes are 0x4451 (XFS_DQUOT_MAGIC), or “DQ” in ASCII.

d_version
The structure version, currently this is 1 (XFS_DQUOT_VERSION).

d_flags
Specifies which type of ID the structure applies to:

#define XFS_DQ_USER 0x0001
#define XFS_DQ_PROJ 0x0002
#define XFS_DQ_GROUP 0x0004

d_id
The ID for the quota structure. This will be a uid, gid or projid based on the value of d_flags.

d_blk_hardlimit
The hard limit for the number of filesystem blocks the ID can own. The ID will not be able to use more space
than this limit. If it is attempted, ENOSPC will be returned.

d_blk_softlimit
The soft limit for the number of filesystem blocks the ID can own. The ID can temporarily use more space
than by d_blk_softlimit up to d_blk_hardlimit. If the space is not freed by the time limit specified
by ID zero’s d_btimer value, the ID will be denied more space until the total blocks owned goes below
d_blk_softlimit.

d_ino_hardlimit
The hard limit for the number of inodes the ID can own. The ID will not be able to create or own any more
inodes if d_icount reaches this value.

d_ino_softlimit
The soft limit for the number of inodes the ID can own. The ID can temporarily create or own more inodes
than specified by d_ino_softlimit up to d_ino_hardlimit. If the inode count is not reduced by the
time limit specified by ID zero’s d_itimer value, the ID will be denied from creating or owning more inodes
until the count goes below d_ino_softlimit.

d_bcount
How many filesystem blocks are actually owned by the ID.

d_icount
How many inodes are actually owned by the ID.

d_itimer
Specifies the time when the ID’s d_icount exceeded d_ino_softlimit. The soft limit will turn into
a hard limit after the elapsed time exceeds ID zero’s d_itimer value. When d_icount goes back below
d_ino_softlimit, d_itimer is reset back to zero.

d_btimer
Specifies the time when the ID’s d_bcount exceeded d_blk_softlimit. The soft limit will turn into
a hard limit after the elapsed time exceeds ID zero’s d_btimer value. When d_bcount goes back below
d_blk_softlimit, d_btimer is reset back to zero.

XFS Filesystem Disk Structures 77 / 160

d_iwarns , d_bwarns , d_rtbwarns
Specifies how many times a warning has been issued. Currently not used.

d_rtb_hardlimit
The hard limit for the number of real-time blocks the ID can own. The ID cannot own more space on the
real-time subvolume beyond this limit.

d_rtb_softlimit
The soft limit for the number of real-time blocks the ID can own. The ID can temporarily own more space than
specified by d_rtb_softlimit up to d_rtb_hardlimit. If d_rtbcount is not reduced by the time
limit specified by ID zero’s d_rtbtimer value, the ID will be denied from owning more space until the
count goes below d_rtb_softlimit.

d_rtbcount
How many real-time blocks are currently owned by the ID.

d_rtbtimer
Specifies the time when the ID’s d_rtbcount exceeded d_rtb_softlimit. The soft limit will turn into
a hard limit after the elapsed time exceeds ID zero’s d_rtbtimer value. When d_rtbcount goes back
below d_rtb_softlimit, d_rtbtimer is reset back to zero.

dd_uuid
TheUUID of this block, which must match either sb_uuid or sb_meta_uuid depending on which features
are set.

dd_lsn
Log sequence number of the last DQ block write.

dd_crc
Checksum of the DQ block.

Real-time Inodes

There are two inodes allocated to managing the real-time device’s space, the Bitmap Inode and the Summary Inode.

Real-Time Bitmap Inode

The real time bitmap inode, sb_rbmino, tracks the used/free space in the real-time device using an old-style bitmap.
One bit is allocated per real-time extent. The size of an extent is specified by the superblock’s sb_rextsize value.
The number of blocks used by the bitmap inode is equal to the number of real-time extents (sb_rextents) divided
by the block size (sb_blocksize) and bits per byte. This value is stored in sb_rbmblocks. The nblocks and
extent array for the inode should match this. Each real time block gets its own bit in the bitmap.

Real-Time Summary Inode

The real time summary inode, sb_rsumino, tracks the used and free space accounting information for the real-time
device. This file indexes the approximate location of each free extent on the real-time device first by log2(extent size)
and then by the real-time bitmap block number. The size of the summary inode file is equal to sb_rbmblocks ×
log2(realtime device size) × sizeof(xfs_suminfo_t). The entry for a given log2(extent size) and rtbitmap block
number is 0 if there is no free extents of that size at that rtbitmap location, and positive if there are any.
This data structure is not particularly space efficient, however it is a very fast way to provide the same data as the
two free space B+trees for regular files since the space is preallocated and metadata maintenance is minimal.

XFS Filesystem Disk Structures 78 / 160

Real-Time Reverse-Mapping B+tree

Note
This data structure is under construction! Details may change.

If the reverse-mapping B+tree and real-time storage device features are enabled, the real-time device has its own
reverse block-mapping B+tree.

As mentioned in the chapter about reconstruction Chapter 4, this data structure is another piece of the puzzle nec-
essary to reconstruct the data or attribute fork of a file from reverse-mapping records; we can also use it to double-
check allocations to ensure that we are not accidentally cross-linking blocks, which can cause severe damage to the
filesystem.

This B+tree is only present if the XFS_SB_FEAT_RO_COMPAT_RMAPBT feature is enabled and a real time device
is present. The feature requires a version 5 filesystem.

The real-time reverse mapping B+tree is rooted in an inode’s data fork; the inode number is given by the sb_rrma
pino field in the superblock. The B+tree blocks themselves are stored in the regular filesystem. The structures used
for an inode’s B+tree root are:

struct xfs_rtrmap_root {
__be16 bb_level;
__be16 bb_numrecs;

};

• On disk, the B+tree node starts with the xfs_rtrmap_root header followed by an array of xfs_rtrmap_key
values and then an array of xfs_rtrmap_ptr_t values. The size of both arrays is specified by the header’s
bb_numrecs value.

• The root node in the inode can only contain up to 10 key/pointer pairs for a standard 512 byte inode before a new
level of nodes is added between the root and the leaves. di_forkoff should always be zero, because there are
no extended attributes.

Each record in the real-time reverse-mapping B+tree has the following structure:

struct xfs_rtrmap_rec {
__be64 rm_startblock;
__be64 rm_blockcount;
__be64 rm_owner;
__be64 rm_fork:1;
__be64 rm_bmbt:1;
__be64 rm_unwritten:1;
__be64 rm_unused:7;
__be64 rm_offset:54;

};

rm_startblock
Real-time device block number of this record.

rm_blockcount
The length of this extent, in real-time blocks.

XFS Filesystem Disk Structures 79 / 160

rm_owner
A 64-bit number describing the owner of this extent. This must be an inode number, because the real-time
device is for file data only.

rm_fork
If rm_owner describes an inode, this can be 1 if this record is for an attribute fork. This value will always be
zero for real-time extents.

rm_bmbt
If rm_owner describes an inode, this can be 1 to signify that this record is for a block map B+tree block. In
this case, rm_offset has no meaning. This value will always be zero for real-time extents.

rm_unwritten
A flag indicating that the extent is unwritten. This corresponds to the flag in the extent record Chapter 14
format which means XFS_EXT_UNWRITTEN.

rm_offset
The 54-bit logical file block offset, if rm_owner describes an inode.

Note
The single-bit flag values rm_unwritten, rm_fork, and rm_bmbt are packed into the larger fields in the C
structure definition.

The key has the following structure:

struct xfs_rtrmap_key {
__be64 rm_startblock;
__be64 rm_owner;
__be64 rm_fork:1;
__be64 rm_bmbt:1;
__be64 rm_reserved:1;
__be64 rm_unused:7;
__be64 rm_offset:54;

};

• All block numbers are 64-bit real-time device block numbers.

• The bb_magic value is “MAPR” (0x4d415052).

• The xfs_btree_lblock_t header is used for intermediate B+tree node as well as the leaves.

• Each pointer is associated with two keys. The first of these is the ”low key”, which is the key of the smallest record
accessible through the pointer. This low key has the same meaning as the key in all other btrees. The second key
is the high key, which is the maximum of the largest key that can be used to access a given record underneath the
pointer. Recall that each record in the real-time reverse mapping b+tree describes an interval of physical blocks
mapped to an interval of logical file block offsets; therefore, it makes sense that a range of keys can be used to find
to a record.

xfs_db rtrmapbt Example

This example shows a real-time reverse-mapping B+tree from a freshly populated root filesystem:

XFS Filesystem Disk Structures 80 / 160

xfs_db> sb 0
xfs_db> addr rrmapino
xfs_db> p
core.magic = 0x494e
core.mode = 0100000
core.version = 3
core.format = 5 (rtrmapbt)
...
u3.rtrmapbt.level = 3
u3.rtrmapbt.numrecs = 1
u3.rtrmapbt.keys[1] = [startblock,owner,offset,attrfork,bmbtblock,startblock_hi,

owner_hi,offset_hi,attrfork_hi,bmbtblock_hi]
1:[1,132,1,0,0,1705337,133,54431,0,0]

u3.rtrmapbt.ptrs[1] = 1:671
xfs_db> addr u3.rtrmapbt.ptrs[1]
xfs_db> p
magic = 0x4d415052
level = 2
numrecs = 8
leftsib = null
rightsib = null
bno = 5368
lsn = 0x400000000
uuid = 98bbde42-67e7-46a5-a73e-d64a76b1b5ce
owner = 131
crc = 0x2560d199 (correct)
keys[1-8] = [startblock,owner,offset,attrfork,bmbtblock,startblock_hi,owner_hi,

offset_hi,attrfork_hi,bmbtblock_hi]
1:[1,132,1,0,0,17749,132,17749,0,0]
2:[17751,132,17751,0,0,35499,132,35499,0,0]
3:[35501,132,35501,0,0,53249,132,53249,0,0]
4:[53251,132,53251,0,0,1658473,133,7567,0,0]
5:[1658475,133,7569,0,0,1667473,133,16567,0,0]
6:[1667475,133,16569,0,0,1685223,133,34317,0,0]
7:[1685225,133,34319,0,0,1694223,133,43317,0,0]
8:[1694225,133,43319,0,0,1705337,133,54431,0,0]

ptrs[1-8] = 1:134 2:238 3:345 4:453 5:795 6:563 7:670 8:780

We arbitrarily pick pointer 7 (twice) to traverse downwards:

xfs_db> addr ptrs[7]
xfs_db> p
magic = 0x4d415052
level = 1
numrecs = 36
leftsib = 563
rightsib = 780
bno = 5360
lsn = 0
uuid = 98bbde42-67e7-46a5-a73e-d64a76b1b5ce
owner = 131
crc = 0x6807761d (correct)
keys[1-36] = [startblock,owner,offset,attrfork,bmbtblock,startblock_hi,owner_hi,

offset_hi,attrfork_hi,bmbtblock_hi]
1:[1685225,133,34319,0,0,1685473,133,34567,0,0]
2:[1685475,133,34569,0,0,1685723,133,34817,0,0]

XFS Filesystem Disk Structures 81 / 160

3:[1685725,133,34819,0,0,1685973,133,35067,0,0]
...
34:[1693475,133,42569,0,0,1693723,133,42817,0,0]
35:[1693725,133,42819,0,0,1693973,133,43067,0,0]
36:[1693975,133,43069,0,0,1694223,133,43317,0,0]

ptrs[1-36] = 1:669 2:672 3:674...34:722 35:723 36:725
xfs_db> addr ptrs[7]
xfs_db> p
magic = 0x4d415052
level = 0
numrecs = 125
leftsib = 678
rightsib = 681
bno = 5440
lsn = 0
uuid = 98bbde42-67e7-46a5-a73e-d64a76b1b5ce
owner = 131
crc = 0xefce34d4 (correct)
recs[1-125] = [startblock,blockcount,owner,offset,extentflag,attrfork,bmbtblock]

1:[1686725,1,133,35819,0,0,0]
2:[1686727,1,133,35821,0,0,0]
3:[1686729,1,133,35823,0,0,0]
...
123:[1686969,1,133,36063,0,0,0]
124:[1686971,1,133,36065,0,0,0]
125:[1686973,1,133,36067,0,0,0]

Several interesting things pop out here. The first record shows that inode 133 has mapped real-time block 1,686,725
at offset 35,819. We confirm this by looking at the block map for that inode:

xfs_db> inode 133
xfs_db> p core.realtime
core.realtime = 1
xfs_db> bmap
data offset 35817 startblock 1686723 (1/638147) count 1 flag 0
data offset 35819 startblock 1686725 (1/638149) count 1 flag 0
data offset 35821 startblock 1686727 (1/638151) count 1 flag 0

Notice that inode 133 has the real-time flag set, which means that its data blocks are all allocated from the real-time
device.

XFS Filesystem Disk Structures 82 / 160

Part III

Dynamically Allocated Structures

XFS Filesystem Disk Structures 83 / 160

Chapter 13

On-disk Inode

All files, directories, and links are stored on disk with inodes and descend from the root inode with its number defined
in the superblock Section 10.1. The previous section on AG Inode Management Section 10.3 describes the allocation
and management of inodes on disk. This section describes the contents of inodes themselves.

An inode is divided into 3 parts:

Figure 13.1: On-disk inode sections

• The core contains what the inode represents, stat data, and information describing the data and attribute forks.

• The di_u “data fork” contains normal data related to the inode. Its contents depends on the file type specified
by di_core.di_mode (eg. regular file, directory, link, etc) and how much information is contained in the file
which determined by di_core.di_format. The following union to represent this data is declared as follows:

union {
xfs_bmdr_block_t di_bmbt;
xfs_bmbt_rec_t di_bmx[1];
xfs_dir2_sf_t di_dir2sf;
char di_c[1];
xfs_dev_t di_dev;

XFS Filesystem Disk Structures 84 / 160

uuid_t di_muuid;
char di_symlink[1];

} di_u;

• The di_a “attribute fork” contains extended attributes. Its layout is determined by the di_core.di_aformat
value. Its representation is declared as follows:

union {
xfs_bmdr_block_t di_abmbt;
xfs_bmbt_rec_t di_abmx[1];
xfs_attr_shortform_t di_attrsf;

} di_a;

Note
The above two unions are rarely used in the XFS code, but the structures within the union are directly cast de-
pending on the di_mode/di_format and di_aformat values. They are referenced in this document to
make it easier to explain the various structures in use within the inode.

The remaining space in the inode after di_next_unlinked where the two forks are located is called the inode’s
“literal area”. This starts at offset 100 (0x64) in a version 1 or 2 inode, and offset 176 (0xb0) in a version 3 inode.

The space for each of the two forks in the literal area is determined by the inode size, and di_core.di_forkoff.
The data fork is located between the start of the literal area and di_forkoff. The attribute fork is located between
di_forkoff and the end of the inode.

Inode Core

The inode’s core is 96 bytes on a V4 filesystem and 176 bytes on a V5 filesystem. It contains information about the
file itself including most stat data information about data and attribute forks after the core within the inode. It uses
the following structure:

struct xfs_dinode_core {
__uint16_t di_magic;
__uint16_t di_mode;
__int8_t di_version;
__int8_t di_format;
__uint16_t di_onlink;
__uint32_t di_uid;
__uint32_t di_gid;
__uint32_t di_nlink;
__uint16_t di_projid;
__uint16_t di_projid_hi;
__uint8_t di_pad[6];
__uint16_t di_flushiter;
xfs_timestamp_t di_atime;
xfs_timestamp_t di_mtime;
xfs_timestamp_t di_ctime;
xfs_fsize_t di_size;
xfs_rfsblock_t di_nblocks;
xfs_extlen_t di_extsize;

XFS Filesystem Disk Structures 85 / 160

xfs_extnum_t di_nextents;
xfs_aextnum_t di_anextents;
__uint8_t di_forkoff;
__int8_t di_aformat;
__uint32_t di_dmevmask;
__uint16_t di_dmstate;
__uint16_t di_flags;
__uint32_t di_gen;

/* di_next_unlinked is the only non-core field in the old dinode */
__be32 di_next_unlinked;

/* version 5 filesystem (inode version 3) fields start here */
__le32 di_crc;
__be64 di_changecount;
__be64 di_lsn;
__be64 di_flags2;
__be32 di_cowextsize;
__u8 di_pad2[12];
xfs_timestamp_t di_crtime;
__be64 di_ino;
uuid_t di_uuid;

};

di_magic
The inode signature; these two bytes are “IN” (0x494e).

di_mode
Specifies the mode access bits and type of file using the standard S_Ixxx values defined in stat.h.

di_version
Specifies the inode version which currently can only be 1, 2, or 3. The inode version specifies the usage of the
di_onlink, di_nlink and di_projid values in the inode core. Initially, inodes are created as v1 but
can be converted on the fly to v2 when required. v3 inodes are created only for v5 filesystems.

di_format
Specifies the format of the data fork in conjunction with the di_mode type. This can be one of several
values. For directories and links, it can be “local” where all metadata associated with the file is within the
inode; “extents” where the inode contains an array of extents to other filesystem blocks which contain the
associated metadata or data; or “btree” where the inode contains a B+tree root node which points to filesystem
blocks containing the metadata or data. Migration between the formats depends on the amount of metadata
associated with the inode. “dev” is used for character and block devices while “uuid” is currently not used.
“rmap” indicates that a reverse-mapping B+tree is rooted in the fork.

typedef enum xfs_dinode_fmt {
XFS_DINODE_FMT_DEV,
XFS_DINODE_FMT_LOCAL,
XFS_DINODE_FMT_EXTENTS,
XFS_DINODE_FMT_BTREE,
XFS_DINODE_FMT_UUID,
XFS_DINODE_FMT_RMAP,

} xfs_dinode_fmt_t;

XFS Filesystem Disk Structures 86 / 160

di_onlink
In v1 inodes, this specifies the number of links to the inode from directories. When the number exceeds 65535,
the inode is converted to v2 and the link count is stored in di_nlink.

di_uid
Specifies the owner’s UID of the inode.

di_gid
Specifies the owner’s GID of the inode.

di_nlink
Specifies the number of links to the inode from directories. This is maintained for both inode versions for
current versions of XFS. Prior to v2 inodes, this field was part of di_pad.

di_projid
Specifies the owner’s project ID in v2 inodes. An inode is converted to v2 if the project ID is set. This value
must be zero for v1 inodes.

di_projid_hi
Specifies the high 16 bits of the owner’s project ID in v2 inodes, if the XFS_SB_VERSION2_PROJID32BIT
feature is set; and zero otherwise.

di_pad[6]
Reserved, must be zero.

di_flushiter
Incremented on flush.

di_atime
Specifies the last access time of the files using UNIX time conventions the following structure. This value
may be undefined if the filesystem is mounted with the “noatime” option. XFS supports timestamps with
nanosecond resolution:

struct xfs_timestamp {
__int32_t t_sec;
__int32_t t_nsec;

};

di_mtime
Specifies the last time the file was modified.

di_ctime
Specifies when the inode’s status was last changed.

di_size
Specifies the EOF of the inode in bytes. This can be larger or smaller than the extent space (therefore actual
disk space) used for the inode. For regular files, this is the filesize in bytes, directories, the space taken by
directory entries and for links, the length of the symlink.

di_nblocks
Specifies the number of filesystem blocks used to store the inode’s data including relevant metadata like
B+trees. This does not include blocks used for extended attributes.

XFS Filesystem Disk Structures 87 / 160

di_extsize
Specifies the extent size for filesystems with real-time devices or an extent size hint for standard filesystems.
For normal filesystems, and with directories, the XFS_DIFLAG_EXTSZINHERIT flag must be set in di_
flags if this field is used. Inodes created in these directories will inherit the di_extsize value and have
XFS_DIFLAG_EXTSIZE set in their di_flags. When a file is written to beyond allocated space, XFS will
attempt to allocate additional disk space based on this value.

di_nextents
Specifies the number of data extents associated with this inode.

di_anextents
Specifies the number of extended attribute extents associated with this inode.

di_forkoff
Specifies the offset into the inode’s literal area where the extended attribute fork starts. This is an 8-bit value
that is multiplied by 8 to determine the actual offset in bytes (ie. attribute data is 64-bit aligned). This also limits
the maximum size of the inode to 2048 bytes. This value is initially zero until an extended attribute is created.
When in attribute is added, the nature of di_forkoff depends on the XFS_SB_VERSION2_ATTR2BIT
 flag in the superblock. Refer to Extended Attribute Versions Section 13.4.1 for more details.

di_aformat
Specifies the format of the attribute fork. This uses the same values as di_format, but restricted to “local”,
“extents” and “btree” formats for extended attribute data.

di_dmevmask
DMAPI event mask.

di_dmstate
DMAPI state.

di_flags
Specifies flags associated with the inode. This can be a combination of the following values:

Table 13.1: Version 2 Inode flags

Flag Description
XFS_DIFLAG_REALTIME The inode’s data is located on the real-time device.
XFS_DIFLAG_PREALLOC The inode’s extents have been preallocated.
XFS_DIFLAG_NEWRTBM Specifies the sb_rbmino uses the new real-time

bitmap format
XFS_DIFLAG_IMMUTABLE Specifies the inode cannot be modified.
XFS_DIFLAG_APPEND The inode is in append only mode.
XFS_DIFLAG_SYNC The inode is written synchronously.
XFS_DIFLAG_NOATIME The inode’s di_atime is not updated.
XFS_DIFLAG_NODUMP Specifies the inode is to be ignored by xfsdump.
XFS_DIFLAG_RTINHERIT For directory inodes, new inodes inherit the

XFS_DIFLAG_REALTIME bit.
XFS_DIFLAG_PROJINHERIT For directory inodes, new inodes inherit the

di_projid value.
XFS_DIFLAG_NOSYMLINKS For directory inodes, symlinks cannot be created.
XFS_DIFLAG_EXTSIZE Specifies the extent size for real-time files or an

extent size hint for regular files.
XFS_DIFLAG_EXTSZINHERIT For directory inodes, new inodes inherit the

di_extsize value.

XFS Filesystem Disk Structures 88 / 160

Table 13.1: (continued)

Flag Description
XFS_DIFLAG_NODEFRAG Specifies the inode is to be ignored when

defragmenting the filesystem.
XFS_DIFLAG_FILESTREAMS Use the filestream allocator. The filestreams allocator

allows a directory to reserve an entire allocation
group for exclusive use by files created in that
directory. Files in other directories cannot use AGs
reserved by other directories.

di_gen
A generation number used for inode identification. This is used by tools that do inode scanning such as backup
tools and xfsdump. An inode’s generation number can change by unlinking and creating a new file that reuses
the inode.

di_next_unlinked
See the section on unlinked inode pointers Section 13.2 for more information.

di_crc
Checksum of the inode.

di_changecount
Counts the number of changes made to the attributes in this inode.

di_lsn
Log sequence number of the last inode write.

di_flags2
Specifies extended flags associated with a v3 inode.

Table 13.2: Version 3 Inode flags

Flag Description
XFS_DIFLAG2_DAX For a file, enable DAX to increase performance on

persistent-memory storage. If set on a directory, files
created in the directory will inherit this flag.

XFS_DIFLAG2_REFLINK This inode shares (or has shared) data blocks with
another inode.

XFS_DIFLAG2_COWEXTSIZE For files, this is the extent size hint for copy on write
operations; see di_cowextsize for details. For
directories, the value in di_cowextsize will be
copied to all newly created files and directories.

di_cowextsize
Specifies the extent size hint for copy on write operations. When allocating extents for a copy on write oper-
ation, the allocator will be asked to align its allocations to either di_cowextsize blocks or di_extsize

XFS Filesystem Disk Structures 89 / 160

blocks, whichever is greater. The XFS_DIFLAG2_COWEXTSIZE flag must be set if this field is used. If this
field and its flag are set on a directory file, the value will be copied into any files or directories created within
this directory. During a block sharing operation, this value will be copied from the source file to the destina-
tion file if the sharing operation completely overwrites the destination file’s contents and the destination file
does not already have di_cowextsize set.

di_pad2
Padding for future expansion of the inode.

di_crtime
Specifies the time when this inode was created.

di_ino
The full inode number of this inode.

di_uuid
TheUUID of this inode, which must match either sb_uuid or sb_meta_uuid depending on which features
are set.

Unlinked Pointer

The di_next_unlinked value in the inode is used to track inodes that have been unlinked (deleted) but are still
open by a program. When an inode is in this state, the inode is added to one of the AGI’s Section 10.3 agi_unlin
ked hash buckets. The AGI unlinked bucket points to an inode and the di_next_unlinked value points to the
next inode in the chain. The last inode in the chain has di_next_unlinked set to NULL (-1).

Once the last reference is released, the inode is removed from the unlinked hash chain and di_next_unlinked
is set to NULL. In the case of a system crash, XFS recovery will complete the unlink process for any inodes found in
these lists.

The only time the unlinked fields can be seen to be used on disk is either on an active filesystem or a crashed system.
A cleanly unmounted or recovered filesystem will not have any inodes in these unlink hash chains.

XFS Filesystem Disk Structures 90 / 160

Figure 13.2: Unlinked inode pointer

Data Fork

The structure of the inode’s data fork based is on the inode’s type and di_format. The data fork begins at the start
of the inode’s “literal area”. This area starts at offset 100 (0x64), or offset 176 (0xb0) in a v3 inode. The size of the data
fork is determined by the type and format. The maximum size is determined by the inode size and di_forkoff.
In code, use the XFS_DFORK_PTR macro specifying XFS_DATA_FORK for the “which” parameter. Alternatively,
the XFS_DFORK_DPTR macro can be used.

Each of the following sub-sections summarises the contents of the data fork based on the inode type.

XFS Filesystem Disk Structures 91 / 160

Regular Files (S_IFREG)

The data fork specifies the file’s data extents. The extents specify where the file’s actual data is located within the
filesystem. Extents can have 2 formats which is defined by the di_format value:

• XFS_DINODE_FMT_EXTENTS: The extent data is fully contained within the inode which contains an array of
extents to the filesystem blocks for the file’s data. To access the extents, cast the return value from XFS_DFORK
_DPTR to xfs_bmbt_rec_t*.

• XFS_DINODE_FMT_BTREE: The extent data is contained in the leaves of a B+tree. The inode contains the root
node of the tree and is accessed by casting the return value from XFS_DFORK_DPTR to xfs_bmdr_block_t*.

Details for each of these data extent formats are covered in the Data Extents Chapter 14 later on.

Directories (S_IFDIR)

The data fork contains the directory’s entries and associated data. The format of the entries is also determined by
the di_format value and can be one of 3 formats:

• XFS_DINODE_FMT_LOCAL: The directory entries are fully contained within the inode. This is accessed by cast-
ing the value from XFS_DFORK_DPTR to xfs_dir2_sf_t*.

• XFS_DINODE_FMT_EXTENTS: The actual directory entries are located in another filesystem block, the inode
contains an array of extents to these filesystem blocks (xfs_bmbt_rec_t*).

• XFS_DINODE_FMT_BTREE: The directory entries are contained in the leaves of a B+tree. The inode contains
the root node (xfs_bmdr_block_t*).

Details for each of these directory formats are covered in the Directories Chapter 15 later on.

Symbolic Links (S_IFLNK)

The data fork contains the contents of the symbolic link. The format of the link is determined by the di_format
value and can be one of 2 formats:

• XFS_DINODE_FMT_LOCAL: The symbolic link is fully contained within the inode. This is accessed by casting
the return value from XFS_DFORK_DPTR to char*.

• XFS_DINODE_FMT_EXTENTS: The actual symlink is located in another filesystem block, the inode contains the
extents to these filesystem blocks (xfs_bmbt_rec_t*).

Details for symbolic links is covered in the section about Symbolic Links Chapter 17.

Other File Types

For character and block devices (S_IFCHR and S_IFBLK), cast the value from XFS_DFORK_DPTR to xfs_dev
_t*.

XFS Filesystem Disk Structures 92 / 160

Attribute Fork

The attribute fork in the inode always contains the location of the extended attributes associated with the inode.

The location of the attribute fork in the inode’s literal area is specified by the di_forkoff value in the inode’s core.
If this value is zero, the inode does not contain any extended attributes. If non-zero, the attribute fork’s byte offset
into the literal area can be computed from di_forkoff × 8. Attributes must be allocated on a 64-bit boundary on
the disk. To access the extended attributes in code, use the XFS_DFORK_PTRmacro specifying XFS_ATTR_FORK
for the “which” parameter. Alternatively, the XFS_DFORK_APTR macro can be used.

The structure of the attribute fork depends on the di_aformat value in the inode. It can be one of the following
values:

• XFS_DINODE_FMT_LOCAL: The extended attributes are contained entirely within the inode. This is accessed by
casting the value from XFS_DFORK_APTR to xfs_attr_shortform_t*.

• XFS_DINODE_FMT_EXTENTS: The attributes are located in another filesystem block, the inode contains an
array of pointers to these filesystem blocks. They are accessed by casting the value from XFS_DFORK_APTR
to xfs_bmbt_rec_t*.

• XFS_DINODE_FMT_BTREE: The extents for the attributes are contained in the leaves of a B+tree. The inode
contains the root node of the tree and is accessed by casting the value from XFS_DFORK_APTR to xfs_bmdr_
block_t*.

Detailed information on the layouts of extended attributes are covered in the Extended Attributes Chapter 16 in this
document.

Extended Attribute Versions

Extended attributes come in two versions: “attr1” or “attr2”. The attribute version is specified by the XFS_SB_VER
SION2_ATTR2BIT flag in the sb_features2 field in the superblock. It determines how the inode’s extra space
is split between di_u and di_a forks which also determines how the di_forkoff value is maintained in the
inode’s core.

With “attr1” attributes, the di_forkoff is set to somewhere in the middle of the space between the core and end
of the inode and never changes (which has the effect of artificially limiting the space for data information). As the
data fork grows, when it gets to di_forkoff, it will move the data to the next format level (ie. local < extent <
btree). If very little space is used for either attributes or data, then a good portion of the available inode space is
wasted with this version.

“attr2” was introduced to maximum the utilisation of the inode’s literal area. The di_forkoff starts at the end
of the inode and works its way to the data fork as attributes are added. Attr2 is highly recommended if extended
attributes are used.

The following diagram compares the two versions:

XFS Filesystem Disk Structures 93 / 160

Figure 13.3: Extended attribute layouts

Note that because di_forkoff is an 8-bit value measuring units of 8 bytes, the maximum size of an inode is 28 ×
23 = 211 = 2048 bytes.

XFS Filesystem Disk Structures 94 / 160

Chapter 14

Data Extents

XFS manages space using extents, which are defined as a starting location and length. A fork in an XFS inode maps
a logical offset to a space extent. This enables a file’s extent map to support sparse files (i.e. “holes” in the file). A
flag is also used to specify if the extent has been preallocated but has not yet been written (unwritten extent).

A file can havemore than one extent if one chunk of contiguous disk space is not available for the file. As a file grows,
the XFS space allocator will attempt to keep space contiguous and to merge extents. If more than one file is being
allocated space in the same AG at the same time, multiple extents for the files will occur as the extent allocations
interleave. The effect of this can vary depending on the extent allocator used in the XFS driver.

An extent is 128 bits in size and uses the following packed layout:

Figure 14.1: Extent record format

The extent is represented by the xfs_bmbt_rec structure which uses a big endian format on-disk. In-core man-
agement of extents use the xfs_bmbt_irec structure which is the unpacked version of xfs_bmbt_rec:
struct xfs_bmbt_irec {

xfs_fileoff_t br_startoff;
xfs_fsblock_t br_startblock;
xfs_filblks_t br_blockcount;
xfs_exntst_t br_state;

};

br_startoff
Logical block offset of this mapping.

br_startblock
Filesystem block of this mapping.

XFS Filesystem Disk Structures 95 / 160

br_blockcount
The length of this mapping.

br_state
The extent br_state field uses the following enum declaration:

typedef enum {
XFS_EXT_NORM,
XFS_EXT_UNWRITTEN,
XFS_EXT_INVALID

} xfs_exntst_t;

Some other points about extents:

• The xfs_bmbt_rec_32_t and xfs_bmbt_rec_64_t structures were effectively the same as xfs_bmbt_
rec_t, just different representations of the same 128 bits in on-disk big endian format. xfs_bmbt_rec_32_t
was removed and xfs_bmbt_rec_64_t renamed to xfs_bmbt_rec_t some time ago.

• When a file is created and written to, XFS will endeavour to keep the extents within the same AG as the inode. It
may use a different AG if the AG is busy or there is no space left in it.

• If a file is zero bytes long, it will have no extents and di_nblocks and di_nexentswill be zero. Any file with
data will have at least one extent, and each extent can use from 1 to over 2 million blocks (221) on the filesystem.
For a default 4KB block size filesystem, a single extent can be up to 8GB in length.

The following two subsections cover the two methods of storing extent information for a file. The first is the fastest
and simplest where the inode completely contains an extent array to the file’s data. The second is slower and more
complex B+tree which can handle thousands to millions of extents efficiently.

Extent List

If the entire extent list is short enough to fit within the inode’s fork region, we say that the fork is in “extent list”
format. This is the most optimal in terms of speed and resource consumption. The trade-off is the file can only have
a few extents before the inode runs out of space.

The data fork of the inode contains an array of extents; the size of the array is determined by the inode’s di_next
ents value.

XFS Filesystem Disk Structures 96 / 160

Figure 14.2: Inode data fork extent layout

The number of extents that can fit in the inode depends on the inode size and di_forkoff. For a default 256 byte
inode with no extended attributes, a file can have up to 9 extents with this format. On a default v5 filesystem with
512 byte inodes, a file can have up to 21 extents with this format. Beyond that, extents have to use the B+tree format.

xfs_db Inode Data Fork Extents Example

An 8MB file with one extent:

xfs_db> inode <inode#>
xfs_db> p
core.magic = 0x494e
core.mode = 0100644
core.version = 1
core.format = 2 (extents)
...
core.size = 8294400
core.nblocks = 2025
core.extsize = 0

XFS Filesystem Disk Structures 97 / 160

core.nextents = 1
core.naextents = 0
core.forkoff = 0
...
u.bmx[0] = [startoff,startblock,blockcount,extentflag]

0:[0,25356,2025,0]

A 24MB file with three extents:

xfs_db> inode <inode#>
xfs_db> p
...
core.format = 2 (extents)
...
core.size = 24883200
core.nblocks = 6075
core.nextents = 3
...
u.bmx[0-2] = [startoff,startblock,blockcount,extentflag]

0:[0,27381,2025,0]
1:[2025,31431,2025,0]
2:[4050,35481,2025,0]

Raw disk version of the inode with the third extent highlighted (di_u starts at offset 0x64):

xfs_db> type text
xfs_db> p
00: 49 4e 81 a4 01 02 00 01 00 00 00 00 00 00 00 00 IN..............
10: 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 01
20: 44 b6 88 dd 2f 8a ed d0 44 b6 88 f7 10 8c 5b de D.......D.......
30: 44 b6 88 f7 10 8c 5b d0 00 00 00 00 01 7b b0 00 D...............
40: 00 00 00 00 00 00 17 bb 00 00 00 00 00 00 00 03
50: 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00
60: ff ff ff ff 00 00 00 00 00 00 00 00 00 00 00 0d
70: 5e a0 07 e9 00 00 00 00 00 0f d2 00 00 00 00 0f
80: 58 e0 07 e9 00 00 00 00 00 1f a4 00 00 00 00 11 X...............
90: 53 20 07 e9 00 00 00 00 00 00 00 00 00 00 00 00 S...............
a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
be: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
co: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
do: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
fo: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

We can expand the highlighted section into the following bit array fromMSB to LSB with the file offset and the block
count highlighted:

127-96: 0000 0000 0000 0000 0000 0000 0000 0000
95-64: 0000 0000 0001 1111 1010 0100 0000 0000
63-32: 0000 0000 0000 0000 0000 0000 0000 1111
31-0 : 0101 1000 1110 0000 0000 0111 1110 1001

Grouping by highlights we get:
file offset = 0x0fd2 (4050)
start block = 0x7ac7 (31431)
block count = 0x07e9 (2025)

XFS Filesystem Disk Structures 98 / 160

A 4MB file with two extents and a hole in the middle, the first extent containing 64KB of data, the second about 4MB
in containing 32KB (write 64KB, lseek 4MB, write 32KB operations):

xfs_db> inode <inode#>
xfs_db> p
...
core.format = 2 (extents)
...
core.size = 4063232
core.nblocks = 24
core.nextents = 2
...
u.bmx[0-1] = [startoff,startblock,blockcount,extentflag]

0:[0,37506,16,0]
1:[984,37522,8,0]

B+tree Extent List

To manage extent maps that cannot fit in the inode fork area, XFS uses long format B+trees Section 9.2. The root
node of the B+tree is stored in the inode’s data fork. All block pointers for extent B+trees are 64-bit filesystem block
numbers.

For a single level B+tree, the root node points to the B+tree’s leaves. Each leaf occupies one filesystem block and
contains a header and an array of extents sorted by the file’s offset. Each leaf has left and right (or backward and
forward) block pointers to adjacent leaves. For a standard 4KB filesystem block, a leaf can contain up to 254 extents
before a B+tree rebalance is triggered.

For a multi-level B+tree, the root node points to other B+tree nodes which eventually point to the extent leaves.
B+tree keys are based on the file’s offset and have pointers to the next level down. Nodes at each level in the B+tree
also have pointers to the adjacent nodes.

The base B+tree node is used for extents, directories and extended attributes. The structures used for an inode’s
B+tree root are:

struct xfs_bmdr_block {
__be16 bb_level;
__be16 bb_numrecs;

};
struct xfs_bmbt_key {

xfs_fileoff_t br_startoff;
};
typedef xfs_fsblock_t xfs_bmbt_ptr_t, xfs_bmdr_ptr_t;

• On disk, the B+tree node starts with the xfs_bmdr_block_t header followed by an array of xfs_bmbt_ke
y_t values and then an array of xfs_bmbt_ptr_t values. The size of both arrays is specified by the header’s
bb_numrecs value.

• The root node in the inode can only contain up to 9 key/pointer pairs for a standard 256 byte inode before a new
level of nodes is added between the root and the leaves. This will be less if di_forkoff is not zero (i.e. attributes
are in use on the inode).

• The magic number for a BMBT block is “BMAP” (0x424d4150). On a v5 filesystem, this is “BMA3” (0x424d4133).

XFS Filesystem Disk Structures 99 / 160

• For intermediate nodes, the data following xfs_btree_lblock is the same as the root node: array of xfs_b
mbt_key value followed by an array of xfs_bmbt_ptr_t values that starts halfway through the block (offset
0x808 for a 4096 byte filesystem block).

• For leaves, an array of xfs_bmbt_rec extents follow the xfs_btree_lblock header.

• Nodes and leaves use the same value for bb_magic.

• The bb_level value determines if the node is an intermediate node or a leaf. Leaves have a bb_level of zero,
nodes are one or greater.

• Intermediate nodes, like leaves, can contain up to 254 pointers to leaf blocks for a standard 4KB filesystem block
size as both the keys and pointers are 64 bits in size.

XFS Filesystem Disk Structures 100 / 160

Figure 14.3: Single level extent B+tree

XFS Filesystem Disk Structures 101 / 160

Figure 14.4: Multiple level extent B+tree

XFS Filesystem Disk Structures 102 / 160

xfs_db bmbt Example

In this example, we dissect the data fork of a VM image that is sufficiently sparse and interleaved to have become a
B+tree.

xfs_db> inode 132
xfs_db> p
core.magic = 0x494e
core.mode = 0100600
core.version = 3
core.format = 3 (btree)
...
u3.bmbt.level = 1
u3.bmbt.numrecs = 3
u3.bmbt.keys[1-3] = [startoff] 1:[0] 2:[9072] 3:[13136]
u3.bmbt.ptrs[1-3] = 1:8568 2:8569 3:8570

As you can see, the block map B+tree is rooted in the inode. This tree has two levels, so let’s go down a level to look
at the records:

xfs_db> addr u3.bmbt.ptrs[1]
xfs_db> p
magic = 0x424d4133
level = 0
numrecs = 251
leftsib = null
rightsib = 8569
bno = 68544
lsn = 0x100000006
uuid = 9579903c-333f-4673-a7d4-3254c05816ea
owner = 132
crc = 0xc61513dc (correct)
recs[1-251] = [startoff,startblock,blockcount,extentflag]

1:[0,8520,48,0] 2:[48,4421,16,0] 3:[80,9136,16,0] 4:[96,8569,16,0]
5:[144,8601,32,0] 6:[192,8637,16,0] 7:[240,8680,16,0] 8:[288,9870,16,0]
9:[320,9920,16,0] 10:[336,9950,16,0] 11:[384,4004,32,0]
12:[432,6771,16,0] 13:[480,2702,16,0] 14:[528,8420,16,0]
...

XFS Filesystem Disk Structures 103 / 160

Chapter 15

Directories

Note
Only v2 directories covered here. v1 directories are obsolete.

Note
The term “block” in this section will refer to directory blocks, not filesystem blocks unless otherwise specified.

The size of a “directory block” is defined by the superblock’s Section 10.1 sb_dirblklog value. The size in bytes
= sb_blocksize × 2sb_dirblklog. For example, if sb_blocksize = 4096 and sb_dirblklog = 2, the directory
block size is 16384 bytes. Directory blocks are always allocated in multiples based on sb_dirblklog. Directory
blocks cannot be more that 65536 bytes in size.
All directory entries contain the following “data”:

• The entry’s name (counted string consisting of a single byte namelen followed by name consisting of an array
of 8-bit chars without a NULL terminator).

• The entry’s absolute inode number Section 10.3.1, which are always 64 bits (8 bytes) in size except a special case
for shortform directories.

• An offset or tag used for iterative readdir calls.

All non-shortform directories also contain two additional structures: “leaves” and “freespace indexes”.

• Leaves contain the sorted hashed name value (xfs_da_hashname() in xfs_da_btree.c) and associated “ad-
dress” which points to the effective offset into the directory’s data structures. Leaves are used to optimise lookup
operations.

• Freespace indexes contain free space/empty entry tracking for quickly finding an appropriately sized location for
new entries. They maintain the largest free space for each “data” block.

A few common types are used for the directory structures:
typedef __uint16_t xfs_dir2_data_off_t;
typedef __uint32_t xfs_dir2_dataptr_t;

XFS Filesystem Disk Structures 104 / 160

Short Form Directories

• Directory entries are stored within the inode.

• The only data stored is the name, inode number, and offset. No “leaf” or “freespace index” information is required
as an inode can only store a few entries.

• “.” is not stored (as it’s in the inode itself), and “..” is a dedicated parent field in the header.

• The number of directories that can be stored in an inode depends on the inode Chapter 13 size, the number of
entries, the length of the entry names, and extended attribute data.

• Once the number of entries exceeds the space available in the inode, the format is converted to a block directory
Section 15.2.

• Shortform directory data is packed as tightly as possible on the disk with the remaining space zeroed:

typedef struct xfs_dir2_sf {
xfs_dir2_sf_hdr_t hdr;
xfs_dir2_sf_entry_t list[1];

} xfs_dir2_sf_t;

hdr
Short form directory header.

list
An array of variable-length directory entry records.

typedef struct xfs_dir2_sf_hdr {
__uint8_t count;
__uint8_t i8count;
xfs_dir2_inou_t parent;

} xfs_dir2_sf_hdr_t;

count
Number of directory entries.

i8count
Number of directory entries requiring 64-bit entries, if any inode numbers require 64-bits. Zero otherwise.

parent
The absolute inode number of this directory’s parent.

typedef struct xfs_dir2_sf_entry {
__uint8_t namelen;
xfs_dir2_sf_off_t offset;
__uint8_t name[1];
__uint8_t ftype;
xfs_dir2_inou_t inumber;

} xfs_dir2_sf_entry_t;

namelen
Length of the name, in bytes.

XFS Filesystem Disk Structures 105 / 160

offset
Offset tag used to assist with directory iteration.

name
The name of the directory entry. The entry is not NULL-terminated.

ftype
The type of the inode. This is used to avoid reading the inode while iterating a directory. The XFS_SB_VER
SION2_FTYPE feature must be set, or this field will not be present.

inumber
The inode number that this entry points to. The length is either 32 or 64 bits, depending on whether icount
or i8count, respectively, are set in the header.

Figure 15.1: Short form directory layout

• Inode numbers are stored using 4 or 8 bytes depending on whether all the inode numbers for the directory fit in 4
bytes (32 bits) or not. If all inode numbers fit in 4 bytes, the header’s count value specifies the number of entries
in the directory and i8countwill be zero. If any inode number exceeds 4 bytes, all inode numbers will be 8 bytes

XFS Filesystem Disk Structures 106 / 160

in size and the header’s i8count value specifies the number of entries requiring larger inodes. i4count is still
the number of entries. The following union covers the shortform inode number structure:

typedef struct { __uint8_t i[8]; } xfs_dir2_ino8_t;
typedef struct { __uint8_t i[4]; } xfs_dir2_ino4_t;
typedef union {

xfs_dir2_ino8_t i8;
xfs_dir2_ino4_t i4;

} xfs_dir2_inou_t;

xfs_db Short Form Directory Example

A directory is created with 4 files, all inode numbers fitting within 4 bytes:

xfs_db> inode <inode#>
xfs_db> p
core.magic = 0x494e
core.mode = 040755
core.version = 1
core.format = 1 (local)
core.nlinkv1 = 2
...
core.size = 94
core.nblocks = 0
core.extsize = 0
core.nextents = 0
...
u.sfdir2.hdr.count = 4
u.sfdir2.hdr.i8count = 0
u.sfdir2.hdr.parent.i4 = 128 /* parent = root inode */
u.sfdir2.list[0].namelen = 15
u.sfdir2.list[0].offset = 0x30
u.sfdir2.list[0].name = ”frame000000.tst”
u.sfdir2.list[0].inumber.i4 = 25165953
u.sfdir2.list[1].namelen = 15
u.sfdir2.list[1].offset = 0x50
u.sfdir2.list[1].name = ”frame000001.tst”
u.sfdir2.list[1].inumber.i4 = 25165954
u.sfdir2.list[2].namelen = 15
u.sfdir2.list[2].offset = 0x70
u.sfdir2.list[2].name = ”frame000002.tst”
u.sfdir2.list[2].inumber.i4 = 25165955
u.sfdir2.list[3].namelen = 15
u.sfdir2.list[3].offset = 0x90
u.sfdir2.list[3].name = ”frame000003.tst”
u.sfdir2.list[3].inumber.i4 = 25165956

The raw data on disk with the first entry highlighted. The six byte header precedes the first entry:

xfs_db> type text
xfs_db> p
00: 49 4e 41 ed 01 01 00 02 00 00 00 00 00 00 00 00 INA.............
10: 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 02
20: 44 ad 3a 83 1d a9 4a d0 44 ad 3a ab 0b c7 a7 d0 D.....J.D.......
30: 44 ad 3a ab 0b c7 a7 d0 00 00 00 00 00 00 00 5e D...............

XFS Filesystem Disk Structures 107 / 160

40: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
50: 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00
60: ff ff ff ff 04 00 00 00 00 80 0f 00 30 66 72 610fra
70: 6d 65 30 30 30 30 30 30 2e 74 73 74 01 80 00 81 me000000.tst....
80: 0f 00 50 66 72 61 6d 65 30 30 30 30 30 31 2e 74 ..Pframe000001.t
90: 73 74 01 80 00 82 0f 00 70 66 72 61 6d 65 30 30 st......pframe00
a0: 30 30 30 32 2e 74 73 74 01 80 00 83 0f 00 90 66 0002.tst........
b0: 72 61 6d 65 30 30 30 30 30 33 2e 74 73 74 01 80 rame000003.tst..
cO: 00 84 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Next, an entry is deleted (frame000001.tst), and any entries after the deleted entry are moved or compacted to “cover”
the hole:

xfs_db> inode <inode#>
xfs_db> p
core.magic = 0x494e
core.mode = 040755
core.version = 1
core.format = 1 (local)
core.nlinkv1 = 2
...
core.size = 72
core.nblocks = 0
core.extsize = 0
core.nextents = 0
...
u.sfdir2.hdr.count = 3
u.sfdir2.hdr.i8count = 0
u.sfdir2.hdr.parent.i4 = 128
u.sfdir2.list[0].namelen = 15
u.sfdir2.list[0].offset = 0x30
u.sfdir2.list[0].name = ”frame000000.tst”
u.sfdir2.list[0].inumber.i4 = 25165953
u.sfdir2.list[1].namelen = 15
u.sfdir2.list[1].offset = 0x70
u.sfdir2.list[1].name = ”frame000002.tst”
u.sfdir2.list[1].inumber.i4 = 25165955
u.sfdir2.list[2].namelen = 15
u.sfdir2.list[2].offset = 0x90
u.sfdir2.list[2].name = ”frame000003.tst”
u.sfdir2.list[2].inumber.i4 = 25165956

Raw disk data, the space beyond the shortform entries is invalid and could be non-zero:

xfs_db> type text
xfs_db> p
00: 49 4e 41 ed 01 01 00 02 00 00 00 00 00 00 00 00 INA.............
10: 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 03
20: 44 b2 45 a2 09 fd e4 50 44 b2 45 a3 12 ee b5 d0 D.E....PD.E.....
30: 44 b2 45 a3 12 ee b5 d0 00 00 00 00 00 00 00 48 D.E............H
40: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
50: 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00
60: ff ff ff ff 03 00 00 00 00 80 0f 00 30 66 72 610fra
70: 6d 65 30 30 30 30 30 30 2e 74 73 74 01 80 00 81 me000000.tst....
80: 0f 00 70 66 72 61 6d 65 30 30 30 30 30 32 2e 74 ..pframe000002.t
90: 73 74 01 80 00 83 0f 00 90 66 72 61 6d 65 30 30 st.......frame00
a0: 30 30 30 33 2e 74 73 74 01 80 00 84 0f 00 90 66 0003.tst.......f

XFS Filesystem Disk Structures 108 / 160

b0: 72 61 6d 65 30 30 30 30 30 33 2e 74 73 74 01 80 rame000003.tst..
c0: 00 84 00 00 00 00 00 00 00 00 00 00 00 00 00 00

This is an example of mixed 4-byte and 8-byte inodes in a directory:

xfs_db> inode 1024
xfs_db> p
core.magic = 0x494e
core.mode = 040755
core.version = 3
core.format = 1 (local)
core.nlinkv2 = 9
...
core.size = 125
core.nblocks = 0
core.extsize = 0
core.nextents = 0
...
u3.sfdir3.hdr.count = 7
u3.sfdir3.hdr.i8count = 4
u3.sfdir3.hdr.parent.i8 = 1024
u3.sfdir3.list[0].namelen = 3
u3.sfdir3.list[0].offset = 0x60
u3.sfdir3.list[0].name = ”git”
u3.sfdir3.list[0].inumber.i8 = 1027
u3.sfdir3.list[0].filetype = 2
u3.sfdir3.list[1].namelen = 4
u3.sfdir3.list[1].offset = 0x70
u3.sfdir3.list[1].name = ”home”
u3.sfdir3.list[1].inumber.i8 = 13422826546
u3.sfdir3.list[1].filetype = 2
u3.sfdir3.list[2].namelen = 10
u3.sfdir3.list[2].offset = 0x80
u3.sfdir3.list[2].name = ”mike”
u3.sfdir3.list[2].inumber.i8 = 4299308032
u3.sfdir3.list[2].filetype = 2
u3.sfdir3.list[3].namelen = 3
u3.sfdir3.list[3].offset = 0x98
u3.sfdir3.list[3].name = ”mtr”
u3.sfdir3.list[3].inumber.i8 = 13433252916
u3.sfdir3.list[3].filetype = 2
u3.sfdir3.list[4].namelen = 3
u3.sfdir3.list[4].offset = 0xa8
u3.sfdir3.list[4].name = ”vms”
u3.sfdir3.list[4].inumber.i8 = 16647516355
u3.sfdir3.list[4].filetype = 2
u3.sfdir3.list[5].namelen = 5
u3.sfdir3.list[5].offset = 0xb8
u3.sfdir3.list[5].name = ”rsync”
u3.sfdir3.list[5].inumber.i8 = 3494912
u3.sfdir3.list[5].filetype = 2
u3.sfdir3.list[6].namelen = 3
u3.sfdir3.list[6].offset = 0xd0
u3.sfdir3.list[6].name = ”tmp”
u3.sfdir3.list[6].inumber.i8 = 1593379
u3.sfdir3.list[6].filetype = 2

XFS Filesystem Disk Structures 109 / 160

Block Directories

When the shortform directory space exceeds the space in an inode, the directory data is moved into a new single
directory block outside the inode. The inode’s format is changed from “local” to “extent” Following is a list of points
about block directories.

• All directory data is stored within the one directory block, including “.” and “..” entries which are mandatory.

• The block also contains “leaf” and “freespace index” information.

• The location of the block is defined by the inode’s in-core extent list Section 14.1: the di_u.u_bmx[0] value.
The file offset in the extent must always be zero and the length = (directory block size / filesystem block size).
The block number points to the filesystem block containing the directory data.

• Block directory data is stored in the following structures:

#define XFS_DIR2_DATA_FD_COUNT 3
typedef struct xfs_dir2_block {

xfs_dir2_data_hdr_t hdr;
xfs_dir2_data_union_t u[1];
xfs_dir2_leaf_entry_t leaf[1];
xfs_dir2_block_tail_t tail;

} xfs_dir2_block_t;

hdr
Directory block header. On a v5 filesystem this is xfs_dir3_data_hdr_t.

u
Union of directory and unused entries.

leaf
Hash values of the entries in this block.

tail
Bookkeeping for the leaf entries.

typedef struct xfs_dir2_data_hdr {
__uint32_t magic;
xfs_dir2_data_free_t bestfree[XFS_DIR2_DATA_FD_COUNT];

} xfs_dir2_data_hdr_t;

magic
Magic number for this directory block.

bestfree
An array pointing to free regions in the directory block.

On a v5 filesystem, directory and attribute blocks are formatted with v3 headers, which contain extra data:
struct xfs_dir3_blk_hdr {

__be32 magic;
__be32 crc;
__be64 blkno;
__be64 lsn;
uuid_t uuid;
__be64 owner;

};

XFS Filesystem Disk Structures 110 / 160

magic
Magic number for this directory block.

crc
Checksum of the directory block.

blkno
Block number of this directory block.

lsn
Log sequence number of the last write to this block.

uuid
TheUUID of this block, which must match either sb_uuid or sb_meta_uuid depending on which features
are set.

owner
The inode number that this directory block belongs to.

struct xfs_dir3_data_hdr {
struct xfs_dir3_blk_hdr hdr;
xfs_dir2_data_free_t best_free[XFS_DIR2_DATA_FD_COUNT];
__be32 pad;

};

hdr
The v5 directory/attribute block header.

best_free
An array pointing to free regions in the directory block.

pad
Padding to maintain a 64-bit alignment.

Within the block, data structures are as follows:

typedef struct xfs_dir2_data_free {
xfs_dir2_data_off_t offset;
xfs_dir2_data_off_t length;

} xfs_dir2_data_free_t;

offset
Block offset of a free block, in bytes.

length
Length of the free block, in bytes.

Space inside the directory block can be used for directory entries or unused entries. This is signified via a union of
the two types:

typedef union {
xfs_dir2_data_entry_t entry;
xfs_dir2_data_unused_t unused;

} xfs_dir2_data_union_t;

XFS Filesystem Disk Structures 111 / 160

entry
A directory entry.

unused
An unused entry.

typedef struct xfs_dir2_data_entry {
xfs_ino_t inumber;
__uint8_t namelen;
__uint8_t name[1];
__uint8_t ftype;
xfs_dir2_data_off_t tag;

} xfs_dir2_data_entry_t;

inumber
The inode number that this entry points to.

namelen
Length of the name, in bytes.

name
The name associated with this entry.

ftype
The type of the inode. This is used to avoid reading the inode while iterating a directory. The XFS_SB_VER
SION2_FTYPE feature must be set, or this field will not be present.

tag
Starting offset of the entry, in bytes. This is used for directory iteration.

typedef struct xfs_dir2_data_unused {
__uint16_t freetag; /* 0xffff */
xfs_dir2_data_off_t length;
xfs_dir2_data_off_t tag;

} xfs_dir2_data_unused_t;

freetag
Magic number signifying that this is an unused entry. Must be 0xFFFF.

length
Length of this unused entry, in bytes.

tag
Starting offset of the entry, in bytes.

typedef struct xfs_dir2_leaf_entry {
xfs_dahash_t hashval;
xfs_dir2_dataptr_t address;

} xfs_dir2_leaf_entry_t;

hashval
Hash value of the name of the directory entry. This is used to speed up entry lookups.

XFS Filesystem Disk Structures 112 / 160

address
Block offset of the entry, in eight byte units.

typedef struct xfs_dir2_block_tail {
__uint32_t count;
__uint32_t stale;

} xfs_dir2_block_tail_t;

count
Number of leaf entries.

stale
Number of free leaf entries.

Following is a diagram of how these pieces fit together for a block directory.

XFS Filesystem Disk Structures 113 / 160

Figure 15.2: Block directory layout

XFS Filesystem Disk Structures 114 / 160

• The magic number in the header is “XD2B” (0x58443242), or “XDB3” (0x58444233) on a v5 filesystem.

• The tag in the xfs_dir2_data_entry_t structure stores its offset from the start of the block.

• The start of a free space region is marked with the xfs_dir2_data_unused_t structure where the freetag
is 0xffff. The freetag and length overwrites the inumber for an entry. The tag is located at length
-sizeof(tag) from the start of the unused entry on-disk.

• The bestfree array in the header points to as many as three of the largest spaces of free space within the block
for storing new entries sorted by largest to third largest. If there are less than 3 empty regions, the remaining
bestfree elements are zeroed. The offset specifies the offset from the start of the block in bytes, and the
length specifies the size of the free space in bytes. The location each points to must contain the above xfs_d
ir2_data_unused_t structure. As a block cannot exceed 64KB in size, each is a 16-bit value. bestfree is
used to optimise the time required to locate space to create an entry. It saves scanning through the block to find a
location suitable for every entry created.

• The tail structure specifies the number of elements in the leaf array and the number of stale entries in
the array. The tail is always located at the end of the block. The leaf data immediately precedes the tail
structure.

• The leaf array, which grows from the end of the block just before the tail structure, contains an array of
hash/address pairs for quickly looking up a name by a hash value. Hash values are covered by the introduction to
directories. The address on-disk is the offset into the block divided by 8 (XFS_DIR2_DATA_ALIGN). Hash/ad-
dress pairs are stored on disk to optimise lookup speed for large directories. If they were not stored, the hashes
would have to be calculated for all entries each time a lookup occurs in a directory.

xfs_db Block Directory Example

A directory is created with 8 entries, directory block size = filesystem block size:

xfs_db> sb 0
xfs_db> p
magicnum = 0x58465342
blocksize = 4096
...
dirblklog = 0
...
xfs_db> inode <inode#>
xfs_db> p
core.magic = 0x494e
core.mode = 040755
core.version = 1
core.format = 2 (extents)
core.nlinkv1 = 2
...
core.size = 4096
core.nblocks = 1
core.extsize = 0
core.nextents = 1
...
u.bmx[0] = [startoff,startblock,blockcount,extentflag] 0:[0,2097164,1,0]

Go to the “startblock” and show the raw disk data:

XFS Filesystem Disk Structures 115 / 160

xfs_db> dblock 0
xfs_db> type text
xfs_db> p
000: 58 44 32 42 01 30 0e 78 00 00 00 00 00 00 00 00 XD2B.0.x........
010: 00 00 00 00 02 00 00 80 01 2e 00 00 00 00 00 10
020: 00 00 00 00 00 00 00 80 02 2e 2e 00 00 00 00 20
030: 00 00 00 00 02 00 00 81 0f 66 72 61 6d 65 30 30frame00
040: 30 30 30 30 2e 74 73 74 80 8e 59 00 00 00 00 30 0000.tst..Y....0
050: 00 00 00 00 02 00 00 82 0f 66 72 61 6d 65 30 30frame00
060: 30 30 30 31 2e 74 73 74 d0 ca 5c 00 00 00 00 50 0001.tst.......P
070: 00 00 00 00 02 00 00 83 0f 66 72 61 6d 65 30 30frame00
080: 30 30 30 32 2e 74 73 74 00 00 00 00 00 00 00 70 0002.tst.......p
090: 00 00 00 00 02 00 00 84 0f 66 72 61 6d 65 30 30frame00
0a0: 30 30 30 33 2e 74 73 74 00 00 00 00 00 00 00 90 0003.tst........
0b0: 00 00 00 00 02 00 00 85 0f 66 72 61 6d 65 30 30frame00
0c0: 30 30 30 34 2e 74 73 74 00 00 00 00 00 00 00 b0 0004.tst........
0d0: 00 00 00 00 02 00 00 86 0f 66 72 61 6d 65 30 30frame00
0e0: 30 30 30 35 2e 74 73 74 00 00 00 00 00 00 00 d0 0005.tst........
0f0: 00 00 00 00 02 00 00 87 0f 66 72 61 6d 65 30 30frame00
100: 30 30 30 36 2e 74 73 74 00 00 00 00 00 00 00 f0 0006.tst........
110: 00 00 00 00 02 00 00 88 0f 66 72 61 6d 65 30 30frame00
120: 30 30 30 37 2e 74 73 74 00 00 00 00 00 00 01 10 0007.tst........
130: ff ff 0e 78 00 00 00 00 00 00 00 00 00 00 00 00 ...x............

The “leaf” and “tail” structures are stored at the end of the block, so as the directory grows, the middle is filled in:

fa0: 00 00 00 00 00 00 01 30 00 00 00 2e 00 00 00 020........
fb0: 00 00 17 2e 00 00 00 04 83 a0 40 b4 00 00 00 0e
fc0: 93 a0 40 b4 00 00 00 12 a3 a0 40 b4 00 00 00 06
fd0: b3 a0 40 b4 00 00 00 0a c3 a0 40 b4 00 00 00 1e
fe0: d3 a0 40 b4 00 00 00 22 e3 a0 40 b4 00 00 00 16
ff0: f3 a0 40 b4 00 00 00 1a 00 00 00 0a 00 00 00 00

In a readable format:

xfs_db> type dir2
xfs_db> p
bhdr.magic = 0x58443242
bhdr.bestfree[0].offset = 0x130
bhdr.bestfree[0].length = 0xe78
bhdr.bestfree[1].offset = 0
bhdr.bestfree[1].length = 0
bhdr.bestfree[2].offset = 0
bhdr.bestfree[2].length = 0
bu[0].inumber = 33554560
bu[0].namelen = 1
bu[0].name = ”.”
bu[0].tag = 0x10
bu[1].inumber = 128
bu[1].namelen = 2
bu[1].name = ”..”
bu[1].tag = 0x20
bu[2].inumber = 33554561
bu[2].namelen = 15
bu[2].name = ”frame000000.tst”
bu[2].tag = 0x30

XFS Filesystem Disk Structures 116 / 160

bu[3].inumber = 33554562
bu[3].namelen = 15
bu[3].name = ”frame000001.tst”
bu[3].tag = 0x50
...
bu[8].inumber = 33554567
bu[8].namelen = 15
bu[8].name = ”frame000006.tst”
bu[8].tag = 0xf0
bu[9].inumber = 33554568
bu[9].namelen = 15
bu[9].name = ”frame000007.tst”
bu[9].tag = 0x110
bu[10].freetag = 0xffff
bu[10].length = 0xe78
bu[10].tag = 0x130
bleaf[0].hashval = 0x2e
bleaf[0].address = 0x2
bleaf[1].hashval = 0x172e
bleaf[1].address = 0x4
bleaf[2].hashval = 0x83a040b4
bleaf[2].address = 0xe
...
bleaf[8].hashval = 0xe3a040b4
bleaf[8].address = 0x16
bleaf[9].hashval = 0xf3a040b4
bleaf[9].address = 0x1a
btail.count = 10
btail.stale = 0

Note
For block directories, all xfs_db fields are preceded with “b”.

For a simple lookup example, the hash of frame000000.tst is 0xb3a040b4. Looking up that value, we get an address
of 0x6. Multiply that by 8, it becomes offset 0x30 and the inode at that point is 33554561.

When we remove an entry from the middle (frame000004.tst), we can see how the freespace details are adjusted:

bhdr.magic = 0x58443242
bhdr.bestfree[0].offset = 0x130
bhdr.bestfree[0].length = 0xe78
bhdr.bestfree[1].offset = 0xb0
bhdr.bestfree[1].length = 0x20
bhdr.bestfree[2].offset = 0
bhdr.bestfree[2].length = 0
...
bu[5].inumber = 33554564
bu[5].namelen = 15
bu[5].name = ”frame000003.tst”
bu[5].tag = 0x90
bu[6].freetag = 0xffff
bu[6].length = 0x20
bu[6].tag = 0xb0
bu[7].inumber = 33554566

XFS Filesystem Disk Structures 117 / 160

bu[7].namelen = 15
bu[7].name = ”frame000005.tst”
bu[7].tag = 0xd0
...
bleaf[7].hashval = 0xd3a040b4
bleaf[7].address = 0x22
bleaf[8].hashval = 0xe3a040b4
bleaf[8].address = 0
bleaf[9].hashval = 0xf3a040b4
bleaf[9].address = 0x1a
btail.count = 10
btail.stale = 1

A new “bestfree” value is added for the entry, the start of the entry is marked as unused with 0xffff (which overwrites
the inode number for an actual entry), and the length of the space. The tag remains intact at the offset+length
-sizeof(tag). The address for the hash is also cleared. The affected areas are highlighted below:
090: 00 00 00 00 02 00 00 84 0f 66 72 61 6d 65 30 30frame00
0a0: 30 30 30 33 2e 74 73 74 00 00 00 00 00 00 00 90 0003.tst.........
0b0: ff ff 00 20 02 00 00 85 0f 66 72 61 6d 65 30 30frame00
0c0: 30 30 30 34 2e 74 73 74 00 00 00 00 00 00 00 b0 0004.tst.........
0d0: 00 00 00 00 02 00 00 86 0f 66 72 61 6d 65 30 30frame00
0e0: 30 30 30 35 2e 74 73 74 00 00 00 00 00 00 00 0d 0005.tst.........
...
fb0: 00 00 17 2e 00 00 00 04 83 a0 40 b4 00 00 00 0e
fc0: 93 a0 40 b4 00 00 00 12 a3 a0 40 b4 00 00 00 06
fd0: b3 a0 40 b4 00 00 00 0a c3 a0 40 b4 00 00 00 1e
fe0: d3 a0 40 b4 00 00 00 22 e3 a0 40 b4 00 00 00 00
ff0: f3 a0 40 b4 00 00 00 1a 00 00 00 0a 00 00 00 01

Leaf Directories

Once a Block Directory has filled the block, the directory data is changed into a new format. It still uses extents
Chapter 14 and the same basic structures, but the “data” and “leaf” are split up into their own extents. The “leaf”
information only occupies one extent. As “leaf” information is more compact than “data” information, more than
one “data” extent is common.

• Block to Leaf conversions retain the existing block for the data entries and allocate a new block for the leaf and
freespace index information.

• As with all directories, data blocks must start at logical offset zero.

• The “leaf” block has a special offset defined by XFS_DIR2_LEAF_OFFSET. Currently, this is 32GB and in the
extent view, a block offset of 32GB / sb_blocksize. On a 4KB block filesystem, this is 0x800000 (8388608
decimal).

• Blockswith directory entries (“data” extents) have themagic number “X2D2” (0x58443244), or “XDD3” (0x58444433)
on a v5 filesystem.

• The “data” extents have a new header (no “leaf” data):

typedef struct xfs_dir2_data {
xfs_dir2_data_hdr_t hdr;
xfs_dir2_data_union_t u[1];

} xfs_dir2_data_t;

XFS Filesystem Disk Structures 118 / 160

hdr
Data block header. On a v5 filesystem, this field is struct xfs_dir3_data_hdr.

u
Union of directory and unused entries, exactly the same as in a block directory.

• The “leaf” extent uses the following structures:

typedef struct xfs_dir2_leaf {
xfs_dir2_leaf_hdr_t hdr;
xfs_dir2_leaf_entry_t ents[1];
xfs_dir2_data_off_t bests[1];
xfs_dir2_leaf_tail_t tail;

} xfs_dir2_leaf_t;

hdr
Directory leaf header. On a v5 filesystem this is struct xfs_dir3_leaf_hdr_t.

ents
Hash values of the entries in this block.

bests
An array pointing to free regions in the directory block.

tail
Bookkeeping for the leaf entries.

typedef struct xfs_dir2_leaf_hdr {
xfs_da_blkinfo_t info;
__uint16_t count;
__uint16_t stale;

} xfs_dir2_leaf_hdr_t;

info
Leaf btree block header.

count
Number of leaf entries.

stale
Number of stale/zeroed leaf entries.

struct xfs_dir3_leaf_hdr {
struct xfs_da3_blkinfo info;
__uint16_t count;
__uint16_t stale;
__be32 pad;

};

info
Leaf B+tree block header.

XFS Filesystem Disk Structures 119 / 160

count
Number of leaf entries.

stale
Number of stale/zeroed leaf entries.

pad
Padding to maintain alignment rules.

typedef struct xfs_dir2_leaf_tail {
__uint32_t bestcount;

} xfs_dir2_leaf_tail_t;

bestcount
Number of best free entries.

Directory and Attribute Block Headers

• Leaf nodes in directories and extended attributes Chapter 16 use the xfs_da_blkinfo_t filesystem block
header. The structure appears as follows:

typedef struct xfs_da_blkinfo {
__be32 forw;
__be32 back;
__be16 magic;
__be16 pad;

} xfs_da_blkinfo_t;

forw
Logical block offset of the previous B+tree block at this level.

back
Logical block offset of the next B+tree block at this level.

magic
Magic number for this directory/attribute block.

pad
Padding to maintain alignment.

• On a v5 filesystem, the leaves use the struct xfs_da3_blkinfo_t filesystem block header. This header is
used in the same place as xfs_da_blkinfo_t:

struct xfs_da3_blkinfo {
/* these values are inside xfs_da_blkinfo */
__be32 forw;
__be32 back;
__be16 magic;
__be16 pad;

__be32 crc;
__be64 blkno;

XFS Filesystem Disk Structures 120 / 160

__be64 lsn;
uuid_t uuid;
__be64 owner;

};

forw
Logical block offset of the previous B+tree block at this level.

back
Logical block offset of the next B+tree block at this level.

magic
Magic number for this directory/attribute block.

pad
Padding to maintain alignment.

crc
Checksum of the directory/attribute block.

blkno
Block number of this directory/attribute block.

lsn
Log sequence number of the last write to this block.

uuid
TheUUID of this block, which must match either sb_uuid or sb_meta_uuid depending on which features
are set.

owner
The inode number that this directory/attribute block belongs to.

• The magic number of the leaf block is XFS_DIR2_LEAF1_MAGIC (0xd2f1); on a v5 filesystem it is XFS_DIR3_
LEAF1_MAGIC (0x3df1).

• The size of the ents array is specified by hdr.count.

• The size of the bests array is specified by the tail.bestcount, which is also the number of “data” blocks for
 the directory. The bests array maintains each data block’s bestfree[0].length value.

XFS Filesystem Disk Structures 121 / 160

Figure 15.3: Leaf directory free entry detail

XFS Filesystem Disk Structures 122 / 160

xfs_db Leaf Directory Example

For this example, a directory was created with 256 entries (frame000000.tst to frame000255.tst). Some files were
deleted (frame00005*, frame00018* and frame000240.tst) to show free list characteristics.

xfs_db> inode <inode#>
xfs_db> p
core.magic = 0x494e
core.mode = 040755
core.version = 1
core.format = 2 (extents)
core.nlinkv1 = 2
...
core.size = 12288
core.nblocks = 4
core.extsize = 0
core.nextents = 3
...
u.bmx[0-2] = [startoff,startblock,blockcount,extentflag]

0:[0,4718604,1,0]
1:[1,4718610,2,0]
2:[8388608,4718605,1,0]

As can be seen in this example, three blocks are used for “data” in two extents, and the “leaf” extent has a logical
offset of 8388608 blocks (32GB).

Examining the first block:

xfs_db> dblock 0
xfs_db> type dir2
xfs_db> p
dhdr.magic = 0x58443244
dhdr.bestfree[0].offset = 0x670
dhdr.bestfree[0].length = 0x140
dhdr.bestfree[1].offset = 0xff0
dhdr.bestfree[1].length = 0x10
dhdr.bestfree[2].offset = 0
dhdr.bestfree[2].length = 0
du[0].inumber = 75497600
du[0].namelen = 1
du[0].name = ”.”
du[0].tag = 0x10
du[1].inumber = 128
du[1].namelen = 2
du[1].name = ”..”
du[1].tag = 0x20
du[2].inumber = 75497601
du[2].namelen = 15
du[2].name = ”frame000000.tst”
du[2].tag = 0x30
du[3].inumber = 75497602
du[3].namelen = 15
du[3].name = ”frame000001.tst”
du[3].tag = 0x50
...
du[51].inumber = 75497650
du[51].namelen = 15

XFS Filesystem Disk Structures 123 / 160

du[51].name = ”frame000049.tst”
du[51].tag = 0x650
du[52].freetag = 0xffff
du[52].length = 0x140
du[52].tag = 0x670
du[53].inumber = 75497661
du[53].namelen = 15
du[53].name = ”frame000060.tst”
du[53].tag = 0x7b0
...
du[118].inumber = 75497758
du[118].namelen = 15
du[118].name = ”frame000125.tst”
du[118].tag = 0xfd0
du[119].freetag = 0xffff
du[119].length = 0x10
du[119].tag = 0xff0

Note
The xfs_db field output is preceded by a “d” for “data”.

The next “data” block:

xfs_db> dblock 1
xfs_db> type dir2
xfs_db> p
dhdr.magic = 0x58443244
dhdr.bestfree[0].offset = 0x6d0
dhdr.bestfree[0].length = 0x140
dhdr.bestfree[1].offset = 0xe50
dhdr.bestfree[1].length = 0x20
dhdr.bestfree[2].offset = 0xff0
dhdr.bestfree[2].length = 0x10
du[0].inumber = 75497759
du[0].namelen = 15
du[0].name = ”frame000126.tst”
du[0].tag = 0x10
...
du[53].inumber = 75497844
du[53].namelen = 15
du[53].name = ”frame000179.tst”
du[53].tag = 0x6b0
du[54].freetag = 0xffff
du[54].length = 0x140
du[54].tag = 0x6d0
du[55].inumber = 75497855
du[55].namelen = 15
du[55].name = ”frame000190.tst”
du[55].tag = 0x810
...
du[104].inumber = 75497904
du[104].namelen = 15
du[104].name = ”frame000239.tst”
du[104].tag = 0xe30

XFS Filesystem Disk Structures 124 / 160

du[105].freetag = 0xffff
du[105].length = 0x20
du[105].tag = 0xe50
du[106].inumber = 75497906
du[106].namelen = 15
du[106].name = ”frame000241.tst”
du[106].tag = 0xe70
...
du[117].inumber = 75497917
du[117].namelen = 15
du[117].name = ”frame000252.tst”
du[117].tag = 0xfd0
du[118].freetag = 0xffff
du[118].length = 0x10
du[118].tag = 0xff0

And the last data block:

xfs_db> dblock 2
xfs_db> type dir2
xfs_db> p
dhdr.magic = 0x58443244
dhdr.bestfree[0].offset = 0x70
dhdr.bestfree[0].length = 0xf90
dhdr.bestfree[1].offset = 0
dhdr.bestfree[1].length = 0
dhdr.bestfree[2].offset = 0
dhdr.bestfree[2].length = 0
du[0].inumber = 75497918
du[0].namelen = 15
du[0].name = ”frame000253.tst”
du[0].tag = 0x10
du[1].inumber = 75497919
du[1].namelen = 15
du[1].name = ”frame000254.tst”
du[1].tag = 0x30
du[2].inumber = 75497920
du[2].namelen = 15
du[2].name = ”frame000255.tst”
du[2].tag = 0x50
du[3].freetag = 0xffff
du[3].length = 0xf90
du[3].tag = 0x70

Examining the “leaf” block (with the fields preceded by an “l” for “leaf”):

xfs_db> dblock 8388608
xfs_db> type dir2
xfs_db> p
lhdr.info.forw = 0
lhdr.info.back = 0
lhdr.info.magic = 0xd2f1
lhdr.count = 258
lhdr.stale = 0
lbests[0-2] = 0:0x10 1:0x10 2:0xf90
lents[0].hashval = 0x2e
lents[0].address = 0x2

XFS Filesystem Disk Structures 125 / 160

lents[1].hashval = 0x172e
lents[1].address = 0x4
lents[2].hashval = 0x23a04084
lents[2].address = 0x116
...
lents[257].hashval = 0xf3a048bc
lents[257].address = 0x366
ltail.bestcount = 3

Note how the lbests array correspond with the bestfree[0].length values in the “data” blocks:

xfs_db> dblock 0
xfs_db> type dir2
xfs_db> p
dhdr.magic = 0x58443244
dhdr.bestfree[0].offset = 0xff0
dhdr.bestfree[0].length = 0x10
...
xfs_db> dblock 1
xfs_db> type dir2
xfs_db> p
dhdr.magic = 0x58443244
dhdr.bestfree[0].offset = 0xff0
dhdr.bestfree[0].length = 0x10
...
xfs_db> dblock 2
xfs_db> type dir2
xfs_db> p
dhdr.magic = 0x58443244
dhdr.bestfree[0].offset = 0x70
dhdr.bestfree[0].length = 0xf90

Now after the entries have been deleted:

xfs_db> dblock 8388608
xfs_db> type dir2
xfs_db> p
lhdr.info.forw = 0
lhdr.info.back = 0
lhdr.info.magic = 0xd2f1
lhdr.count = 258
lhdr.stale = 21
lbests[0-2] = 0:0x140 1:0x140 2:0xf90
lents[0].hashval = 0x2e
lents[0].address = 0x2
lents[1].hashval = 0x172e
lents[1].address = 0x4
lents[2].hashval = 0x23a04084
lents[2].address = 0x116
...

As can be seen, the lbests values have been update to contain each hdr.bestfree[0].length values. The
leaf’s hdr.stale value has also been updated to specify the number of stale entries in the array. The stale entries
have an address of zero.

TODO: Need an example for where new entries get inserted with several large free spaces.

XFS Filesystem Disk Structures 126 / 160

Node Directories

When the “leaf” information fills a block, the extents undergo another separation. All “freeindex” information moves
into its own extent. Like Leaf Directories, the “leaf” block maintained the best free space information for each “data”
block. This is not possible with more than one leaf.

• The “data” blocks stay the same as leaf directories.

• After the “freeindex” data moves to its own block, it is possible for the leaf data to fit within a single leaf block.
This single leaf block has a magic number of XFS_DIR2_LEAFN_MAGIC (0xd2ff) or on a v5 filesystem, XFS_D
IR3_LEAFN_MAGIC (0x3dff).

• The “leaf” blocks eventually change into a B+tree with the generic B+tree header pointing to directory “leaves” as
described in Leaf Directories Section 15.3. Blocks with leaf data still have the LEAFN_MAGIC magic number as
outlined above. The top-level tree blocks are called “nodes” and have a magic number of XFS_DA_NODE_MAGIC
(0xfebe), or on a v5 filesystem, XFS_DA3_NODE_MAGIC (0x3ebe).

• Distinguishing between a combined leaf/freeindex block (LEAF1_MAGIC), a leaf-only block (LEAFN_MAGIC),
and a btree node block (NODE_MAGIC) can only be done by examining the magic number.

• The new “freeindex” block(s) only contains the bests for each data block.

• The freeindex block uses the following structures:

typedef struct xfs_dir2_free_hdr {
__uint32_t magic;
__int32_t firstdb;
__int32_t nvalid;
__int32_t nused;

} xfs_dir2_free_hdr_t;

magic
The magic number of the free block, “XD2F” (0x0x58443246).

firstdb
The starting directory block number for the bests array.

nvalid
Number of elements in the bests array.

nused
Number of valid elements in the bests array.

typedef struct xfs_dir2_free {
xfs_dir2_free_hdr_t hdr;
xfs_dir2_data_off_t bests[1];

} xfs_dir2_free_t;

hdr
Free block header.

bests
An array specifying the best free counts in each directory data block.

XFS Filesystem Disk Structures 127 / 160

• On a v5 filesystem, the freeindex block uses the following structures:

struct xfs_dir3_free_hdr {
struct xfs_dir3_blk_hdr hdr;
__int32_t firstdb;
__int32_t nvalid;
__int32_t nused;
__int32_t pad;

};

hdr
v3 directory block header. The magic number is ”XDF3” (0x0x58444633).

firstdb
The starting directory block number for the bests array.

nvalid
Number of elements in the bests array.

nused
Number of valid elements in the bests array.

pad
Padding to maintain alignment.

struct xfs_dir3_free {
xfs_dir3_free_hdr_t hdr;
__be16 bests[1];

};

hdr
Free block header.

bests
An array specifying the best free counts in each directory data block.

• The location of the leaf blocks can be in any order, the only way to determine the appropriate is by the node block
hash/before values. Given a hash to look up, you read the node’s btree array and first hashval in the array
that exceeds the given hash and it can then be found in the block pointed to by the before value.

Directory and Attribute Internal Nodes

The hashing B+tree of a directory or an extended attribute fork uses nodes with the following format:
typedef struct xfs_da_intnode {

struct xfs_da_node_hdr {
xfs_da_blkinfo_t info;
__uint16_t count;
__uint16_t level;

} hdr;
struct xfs_da_node_entry {

xfs_dahash_t hashval;
xfs_dablk_t before;

} btree[1];
} xfs_da_intnode_t;

XFS Filesystem Disk Structures 128 / 160

info
Directory/attribute block info. The magic number is XFS_DA_NODE_MAGIC (0xfebe).

count
Number of node entries in this block.

level
The level of this block in the B+tree.

hashval
The hash value of a particular record.

before
The directory/attribute logical block containing all entries up to the corresponding hash value.

• On a v5 filesystem, the directory/attribute node blocks have the following structure:

struct xfs_da3_intnode {
struct xfs_da3_node_hdr {

struct xfs_da3_blkinfo info;
__uint16_t count;
__uint16_t level;
__uint32_t pad32;

} hdr;
struct xfs_da_node_entry {

xfs_dahash_t hashval;
xfs_dablk_t before;

} btree[1];
};

info
Directory/attribute block info. The magic number is XFS_DA3_NODE_MAGIC (0x3ebe).

count
Number of node entries in this block.

level
The level of this block in the B+tree.

pad32
Padding to maintain alignment.

hashval
The hash value of a particular record.

before
The directory/attribute logical block containing all entries up to the corresponding hash value.

• The freeindex’s bests array starts from the end of the block and grows to the start of the block.

• When an data block becomes unused (ie. all entries in it have been deleted), the block is freed, the data extents
contain a hole, and the freeindex’s hdr.nused value is decremented and the associated bests[] entry is set to
0xffff.

• As the first data block always contains “.” and “..”, it’s invalid for the directory to have a hole at the start.

XFS Filesystem Disk Structures 129 / 160

• The freeindex’s hdr.nvalid should always be the same as the number of allocated data directory blocks con-
taining name/inode data and will always be less than or equal to hdr.nused. The value of hdr.nused should
be the same as the index of the last data directory block plus one (i.e. when the last data block is freed, nused
and nvalid are decremented).

XFS Filesystem Disk Structures 130 / 160

Figure 15.4: Node directory layout

XFS Filesystem Disk Structures 131 / 160

xfs_db Node Directory Example

With the node directory examples, we are using a filesystems with 4KB block size, and a 16KB directory size. The
directory has over 2000 entries:

xfs_db> sb 0
xfs_db> p
magicnum = 0x58465342
blocksize = 4096
...
dirblklog = 2
...
xfs_db> inode <inode#>
xfs_db> p
core.magic = 0x494e
core.mode = 040755
core.version = 1
core.format = 2 (extents)
...
core.size = 81920
core.nblocks = 36
core.extsize = 0
core.nextents = 8
...
u.bmx[0-7] = [startoff,startblock,blockcount,extentflag] 0:[0,7368,4,0]
1:[4,7408,4,0] 2:[8,7444,4,0] 3:[12,7480,4,0] 4:[16,7520,4,0]
5:[8388608,7396,4,0] 6:[8388612,7524,8,0] 7:[16777216,7516,4,0]

As can already be observed, all extents are allocated is multiples of 4 blocks.

Blocks 0 to 19 (16+4-1) are used for directory data blocks. Looking at blocks 16-19, we can seen that it’s the same as
the single-leaf format, except the length values are a lot larger to accommodate the increased directory block size:

xfs_db> dblock 16
xfs_db> type dir2
xfs_db> p
dhdr.magic = 0x58443244
dhdr.bestfree[0].offset = 0xb0
dhdr.bestfree[0].length = 0x3f50
dhdr.bestfree[1].offset = 0
dhdr.bestfree[1].length = 0
dhdr.bestfree[2].offset = 0
dhdr.bestfree[2].length = 0
du[0].inumber = 120224
du[0].namelen = 15
du[0].name = ”frame002043.tst”
du[0].tag = 0x10
du[1].inumber = 120225
du[1].namelen = 15
du[1].name = ”frame002044.tst”
du[1].tag = 0x30
du[2].inumber = 120226
du[2].namelen = 15
du[2].name = ”frame002045.tst”
du[2].tag = 0x50
du[3].inumber = 120227
du[3].namelen = 15

XFS Filesystem Disk Structures 132 / 160

du[3].name = ”frame002046.tst”
du[3].tag = 0x70
du[4].inumber = 120228
du[4].namelen = 15
du[4].name = ”frame002047.tst”
du[4].tag = 0x90
du[5].freetag = 0xffff
du[5].length = 0x3f50
du[5].tag = 0

Next, the “node” block, the fields are preceded with n for node blocks:
xfs_db> dblock 8388608
xfs_db> type dir2
xfs_db> p
nhdr.info.forw = 0
nhdr.info.back = 0
nhdr.info.magic = 0xfebe
nhdr.count = 2
nhdr.level = 1
nbtree[0-1] = [hashval,before] 0:[0xa3a440ac,8388616] 1:[0xf3a440bc,8388612]

The two following leaf blocks were allocated as part of the directory’s conversion to node format. All hashes less
than 0xa3a440ac are located at directory offset 8,388,616, and hashes less than 0xf3a440bc are located at directory
offset 8,388,612. Hashes greater or equal to 0xf3a440bc don’t exist in this directory.
xfs_db> dblock 8388616
xfs_db> type dir2
xfs_db> p
lhdr.info.forw = 8388612
lhdr.info.back = 0
lhdr.info.magic = 0xd2ff
lhdr.count = 1023
lhdr.stale = 0
lents[0].hashval = 0x2e
lents[0].address = 0x2
lents[1].hashval = 0x172e
lents[1].address = 0x4
lents[2].hashval = 0x23a04084
lents[2].address = 0x116
...
lents[1021].hashval = 0xa3a440a4
lents[1021].address = 0x1fa2
lents[1022].hashval = 0xa3a440ac
lents[1022].address = 0x1fca
xfs_db> dblock 8388612
xfs_db> type dir2
xfs_db> p
lhdr.info.forw = 0
lhdr.info.back = 8388616
lhdr.info.magic = 0xd2ff
lhdr.count = 1027
lhdr.stale = 0
lents[0].hashval = 0xa3a440b4
lents[0].address = 0x1f52
lents[1].hashval = 0xa3a440bc
lents[1].address = 0x1f7a

XFS Filesystem Disk Structures 133 / 160

...
lents[1025].hashval = 0xf3a440b4
lents[1025].address = 0x1f66
lents[1026].hashval = 0xf3a440bc
lents[1026].address = 0x1f8e

An example lookup using xfs_db:
xfs_db> hash frame001845.tst
0xf3a26094

Doing a binary search through the array, we get address 0x1ce6, which is offset 0xe730. Each fsblock is 4KB in size
(0x1000), so it will be offset 0x730 into directory offset 14. From the extent map, this will be fsblock 7482:
xfs_db> fsblock 7482
xfs_db> type text
xfs_db> p
...
730: 00 00 00 00 00 01 d4 da 0f 66 72 61 6d 65 30 30frame00
740: 31 38 34 35 2e 74 73 74 00 00 00 00 00 00 27 30 1845.tst.......0

Looking at the freeindex information (fields with an f tag):
xfs_db> fsblock 7516
xfs_db> type dir2
xfs_db> p
fhdr.magic = 0x58443246
fhdr.firstdb = 0
fhdr.nvalid = 5
fhdr.nused = 5
fbests[0-4] = 0:0x10 1:0x10 2:0x10 3:0x10 4:0x3f50

Like the Leaf Directory, each of the fbests values correspond to each data block’s bestfree[0].length value.
The fbests array is highlighted in a raw block dump:
xfs_db> type text
xfs_db> p
000: 58 44 32 46 00 00 00 00 00 00 00 05 00 00 00 05 XD2F............
010: 00 10 00 10 00 10 00 10 3f 50 00 00 1f 01 ff ffP......

TODO: Example with a hole in the middle

B+tree Directories

When the extent map in an inode grows beyond the inode’s space, the inode format is changed to a “btree”. The inode
contains a filesystem block point to the B+tree extent map for the directory’s blocks. The B+tree extents contain the
extent map for the “data”, “node”, “leaf”, and “freeindex” information as described in Node Directories.
Refer to the previous section on B+tree Data Extents Section 14.2 for more information on XFS B+tree extents.
The following properties apply to both node and B+tree directories:

• The node/leaf trees can be more than one level deep.

• More than one freeindex block may exist, but this will be quite rare. It would required hundreds of thousand files
with quite long file names (or millions with shorter names) to get a second freeindex block.

XFS Filesystem Disk Structures 134 / 160

xfs_db B+tree Directory Example

A directory has been created with 200,000 entries with each entry being 100 characters long. The filesystem block
size and directory block size are 4KB:

xfs_db> inode <inode#>
xfs_db> p
core.magic = 0x494e
core.mode = 040755
core.version = 1
core.format = 3 (btree)
...
core.size = 22757376
core.nblocks = 6145
core.extsize = 0
core.nextents = 234
core.naextents = 0
core.forkoff = 0
...
u.bmbt.level = 1
u.bmbt.numrecs = 1
u.bmbt.keys[1] = [startoff] 1:[0]
u.bmbt.ptrs[1] = 1:89
xfs_db> fsblock 89
xfs_db> type bmapbtd
xfs_db> p
magic = 0x424d4150
level = 0
numrecs = 234
leftsib = null
rightsib = null
recs[1-234] = [startoff,startblock,blockcount,extentflag]

1:[0,53,1,0] 2:[1,55,13,0] 3:[14,69,1,0] 4:[15,72,13,0]
5:[28,86,2,0] 6:[30,90,21,0] 7:[51,112,1,0] 8:[52,114,11,0]
...
125:[5177,902,15,0] 126:[5192,918,6,0] 127:[5198,524786,358,0]
128:[8388608,54,1,0] 129:[8388609,70,2,0] 130:[8388611,85,1,0]
...
229:[8389164,917,1,0] 230:[8389165,924,19,0] 231:[8389184,944,9,0]
232:[16777216,68,1,0] 233:[16777217,7340114,1,0] 234:[16777218,5767362,1,0]

We have 128 extents and a total of 5555 blocks being used to store name/inode pairs. With only about 2000 values
that can be stored in the freeindex block, 3 blocks have been allocated for this information. The firstdb field
specifies the starting directory block number for each array:

xfs_db> dblock 16777216
xfs_db> type dir2
xfs_db> p
fhdr.magic = 0x58443246
fhdr.firstdb = 0
fhdr.nvalid = 2040
fhdr.nused = 2040
fbests[0-2039] = ...
xfs_db> dblock 16777217
xfs_db> type dir2
xfs_db> p
fhdr.magic = 0x58443246

XFS Filesystem Disk Structures 135 / 160

fhdr.firstdb = 2040
fhdr.nvalid = 2040
fhdr.nused = 2040
fbests[0-2039] = ...
xfs_db> dblock 16777218
xfs_db> type dir2
xfs_db> p
fhdr.magic = 0x58443246
fhdr.firstdb = 4080
fhdr.nvalid = 1476
fhdr.nused = 1476
fbests[0-1475] = ...

Looking at the root node in the node block, it’s a pretty deep tree:
xfs_db> dblock 8388608
xfs_db> type dir2
xfs_db> p
nhdr.info.forw = 0
nhdr.info.back = 0
nhdr.info.magic = 0xfebe
nhdr.count = 2
nhdr.level = 2
nbtree[0-1] = [hashval,before] 0:[0x6bbf6f39,8389121] 1:[0xfbbf7f79,8389120]
xfs_db> dblock 8389121
xfs_db> type dir2
xfs_db> p
nhdr.info.forw = 8389120
nhdr.info.back = 0
nhdr.info.magic = 0xfebe
nhdr.count = 263
nhdr.level = 1
nbtree[0-262] = ... 262:[0x6bbf6f39,8388928]
xfs_db> dblock 8389120
xfs_db> type dir2
xfs_db> p
nhdr.info.forw = 0
nhdr.info.back = 8389121
nhdr.info.magic = 0xfebe
nhdr.count = 319
nhdr.level = 1
nbtree[0-318] = [hashval,before] 0:[0x70b14711,8388919] ...

The leaves at each the end of a node always point to the end leaves in adjacent nodes. Directory block 8388928 has
a forward pointer to block 8388919 and block 8388919 has a previous pointer to block 8388928, as highlighted in the
following example:
xfs_db> dblock 8388928
xfs_db> type dir2
xfs_db> p
lhdr.info.forw = 8388919
lhdr.info.back = 8388937
lhdr.info.magic = 0xd2ff
...

xfs_db> dblock 8388919
xfs_db> type dir2

XFS Filesystem Disk Structures 136 / 160

xfs_db> p
lhdr.info.forw = 8388706
lhdr.info.back = 8388928
lhdr.info.magic = 0xd2ff
...

XFS Filesystem Disk Structures 137 / 160

Chapter 16

Extended Attributes

Extended attributes enable users and administrators to attach (name: value) pairs to inodes within the XFS filesystem.
They could be used to store meta-information about the file.

Attribute names can be up to 256 bytes in length, terminated by the first 0 byte. The intent is that they be printable
ASCII (or other character set) names for the attribute. The values can contain up to 64KB of arbitrary binary data.
Some XFS internal attributes (eg. parent pointers) use non-printable names for the attribute.

Access Control Lists (ACLs) and Data Migration Facility (DMF) use extended attributes to store their associated
metadata with an inode.

XFS uses two disjoint attribute name spaces associated with every inode. These are the root and user address spaces.
The root address space is accessible only to the superuser, and then only by specifying a flag argument to the function
call. Other users will not see or be able to modify attributes in the root address space. The user address space is
protected by the normal file permissions mechanism, so the owner of the file can decide who is able to see and/or
modify the value of attributes on any particular file.

To view extended attributes from the command line, use the getfattr command. To set or delete extended at-
tributes, use the setfattr command. ACLs control should use the getfacl and setfacl commands.

XFS attributes supports three namespaces: “user”, “trusted” (or “root” using IRIX terminology), and “secure”.

See the section about extended attributes Section 13.4.1 in the inode for instructions on how to calculate the location
of the attributes.

The following four sections describe each of the on-disk formats.

Short Form Attributes

When the all extended attributes can fit within the inode’s attribute fork, the inode’s di_aformat is set to “local”
and the attributes are stored in the inode’s literal area starting at offset di_forkoff × 8.
Shortform attributes use the following structures:

typedef struct xfs_attr_shortform {
struct xfs_attr_sf_hdr {

__be16 totsize;
__u8 count;

} hdr;
struct xfs_attr_sf_entry {

XFS Filesystem Disk Structures 138 / 160

__uint8_t namelen;
__uint8_t valuelen;
__uint8_t flags;
__uint8_t nameval[1];

} list[1];
} xfs_attr_shortform_t;
typedef struct xfs_attr_sf_hdr xfs_attr_sf_hdr_t;
typedef struct xfs_attr_sf_entry xfs_attr_sf_entry_t;

totsize
Total size of the attribute structure in bytes.

count
The number of entries that can be found in this structure.

namelen and valuelen
These values specify the size of the two byte arrays containing the name and value pairs. valuelen is zero
for extended attributes with no value.

nameval[]
A single array whose size is the sum of namelen and valuelen. The names and values are not null termi-
nated on-disk. The value immediately follows the name in the array.

flags
A combination of the following:

Table 16.1: Attribute Namespaces

Flag Description
0 The attribute’s namespace is “user”.
XFS_ATTR_ROOT The attribute’s namespace is “trusted”.
XFS_ATTR_SECURE The attribute’s namespace is “secure”.
XFS_ATTR_INCOMPLETE This attribute is being modified.
XFS_ATTR_LOCAL The attribute value is contained within this block.

XFS Filesystem Disk Structures 139 / 160

Figure 16.1: Short form attribute layout

xfs_db Short Form Attribute Example

A file is created and two attributes are set:

setfattr -n user.empty few_attr
setfattr -n trusted.trust -v val1 few_attr

Using xfs_db, we dump the inode:

xfs_db> inode <inode#>
xfs_db> p
core.magic = 0x494e
core.mode = 0100644
...
core.naextents = 0
core.forkoff = 15
core.aformat = 1 (local)

XFS Filesystem Disk Structures 140 / 160

...
a.sfattr.hdr.totsize = 24
a.sfattr.hdr.count = 2
a.sfattr.list[0].namelen = 5
a.sfattr.list[0].valuelen = 0
a.sfattr.list[0].root = 0
a.sfattr.list[0].secure = 0
a.sfattr.list[0].name = ”empty”
a.sfattr.list[1].namelen = 5
a.sfattr.list[1].valuelen = 4
a.sfattr.list[1].root = 1
a.sfattr.list[1].secure = 0
a.sfattr.list[1].name = ”trust”
a.sfattr.list[1].value = ”val1”

We can determine the actual inode offset to be 220 (15 x 8 + 100) or 0xdc. Examining the raw dump, the second
attribute is highlighted:
xfs_db> type text
xfs_db> p
09: 49 4e 81 a4 01 02 00 01 00 00 00 00 00 00 00 00 IN..............
10: 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 02
20: 44 be 19 be 38 d1 26 98 44 be 1a be 38 d1 26 98 D...8...D...8...
30: 44 be 1a e1 3a 9a ea 18 00 00 00 00 00 00 00 04 D...............
40: 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 01
50: 00 00 0f 01 00 00 00 00 00 00 00 00 00 00 00 00
60: ff ff ff ff 00 00 00 00 00 00 00 00 00 00 00 12
70: 53 a0 00 01 00 00 00 00 00 00 00 00 00 00 00 00
80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 18 02 00 <-- hdr. ←↩

totsize = 0x18
e0: 05 00 00 65 6d 70 74 79 05 04 02 74 72 75 73 74 ...empty...trust
f0: 76 61 6c 31 00 00 00 00 00 00 00 00 00 00 00 00 val1............

Adding another attribute with attr1, the format is converted to extents and di_forkoff remains unchanged (and
all those zeros in the dump above remain unused):
xfs_db> inode <inode#>
xfs_db> p
...
core.naextents = 1
core.forkoff = 15
core.aformat = 2 (extents)
...
a.bmx[0] = [startoff,startblock,blockcount,extentflag] 0:[0,37534,1,0]

Performing the same steps with attr2, adding one attribute at a time, you can see di_forkoff change as attributes
are added:
xfs_db> inode <inode#>
xfs_db> p
...
core.naextents = 0

XFS Filesystem Disk Structures 141 / 160

core.forkoff = 15
core.aformat = 1 (local)
...
a.sfattr.hdr.totsize = 17
a.sfattr.hdr.count = 1
a.sfattr.list[0].namelen = 10
a.sfattr.list[0].valuelen = 0
a.sfattr.list[0].root = 0
a.sfattr.list[0].secure = 0
a.sfattr.list[0].name = ”empty_attr”

Attribute added:

xfs_db> p
...
core.naextents = 0
core.forkoff = 15
core.aformat = 1 (local)
...
a.sfattr.hdr.totsize = 31
a.sfattr.hdr.count = 2
a.sfattr.list[0].namelen = 10
a.sfattr.list[0].valuelen = 0
a.sfattr.list[0].root = 0
a.sfattr.list[0].secure = 0
a.sfattr.list[0].name = ”empty_attr”
a.sfattr.list[1].namelen = 7
a.sfattr.list[1].valuelen = 4
a.sfattr.list[1].root = 1
a.sfattr.list[1].secure = 0
a.sfattr.list[1].name = ”trust_a”
a.sfattr.list[1].value = ”val1”

Another attribute is added:

xfs_db> p
...
core.naextents = 0
core.forkoff = 13
core.aformat = 1 (local)
...
a.sfattr.hdr.totsize = 52
a.sfattr.hdr.count = 3
a.sfattr.list[0].namelen = 10
a.sfattr.list[0].valuelen = 0
a.sfattr.list[0].root = 0
a.sfattr.list[0].secure = 0
a.sfattr.list[0].name = ”empty_attr”
a.sfattr.list[1].namelen = 7
a.sfattr.list[1].valuelen = 4
a.sfattr.list[1].root = 1
a.sfattr.list[1].secure = 0
a.sfattr.list[1].name = ”trust_a”
a.sfattr.list[1].value = ”val1”
a.sfattr.list[2].namelen = 6
a.sfattr.list[2].valuelen = 12
a.sfattr.list[2].root = 0

XFS Filesystem Disk Structures 142 / 160

a.sfattr.list[2].secure = 0
a.sfattr.list[2].name = ”second”
a.sfattr.list[2].value = ”second_value”

One more is added:
xfs_db> p
core.naextents = 0
core.forkoff = 10
core.aformat = 1 (local)
...
a.sfattr.hdr.totsize = 69
a.sfattr.hdr.count = 4
a.sfattr.list[0].namelen = 10
a.sfattr.list[0].valuelen = 0
a.sfattr.list[0].root = 0
a.sfattr.list[0].secure = 0
a.sfattr.list[0].name = ”empty_attr”
a.sfattr.list[1].namelen = 7
a.sfattr.list[1].valuelen = 4
a.sfattr.list[1].root = 1
a.sfattr.list[1].secure = 0
a.sfattr.list[1].name = ”trust_a”
a.sfattr.list[1].value = ”val1”
a.sfattr.list[2].namelen = 6
a.sfattr.list[2].valuelen = 12
a.sfattr.list[2].root = 0
a.sfattr.list[2].secure = 0
a.sfattr.list[2].name = ”second”
a.sfattr.list[2].value = ”second_value”
a.sfattr.list[3].namelen = 6
a.sfattr.list[3].valuelen = 8
a.sfattr.list[3].root = 0
a.sfattr.list[3].secure = 1
a.sfattr.list[3].name = ”policy”
a.sfattr.list[3].value = ”contents”

A raw dump is shown to compare with the attr1 dump on a prior page, the header is highlighted:
xfs_db> type text
xfs_db> p
00: 49 4e 81 a4 01 02 00 01 00 00 00 00 00 00 00 00 IN..............
10: 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 05
20: 44 be 24 cd 0f b0 96 18 44 be 24 cd 0f b0 96 18 D.......D.......
30: 44 be 2d f5 01 62 7a 18 00 00 00 00 00 00 00 04 D....bz.........
40: 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 01
50: 00 00 0a 01 00 00 00 00 00 00 00 00 00 00 00 00
60: ff ff ff ff 00 00 00 00 00 00 00 00 00 00 00 01
70: 41 c0 00 01 00 00 00 00 00 00 00 00 00 00 00 00 A...............
80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
b0: 00 00 00 00 00 45 04 00 0a 00 00 65 6d 70 74 79E.....empty
c0: 5f 61 74 74 72 07 04 02 74 72 75 73 74 5f 61 76 .attr...trust.av
d0: 61 6c 31 06 0c 00 73 65 63 6f 6e 64 73 65 63 6f all...secondseco
e0: 6e 64 5f 76 61 6c 75 65 06 08 04 70 6f 6c 69 63 nd.value...polic
f0: 79 63 6f 6e 74 65 6e 74 73 64 5f 76 61 6c 75 65 ycontentsd.value

XFS Filesystem Disk Structures 143 / 160

It can be clearly seen that attr2 allowsmanymore attributes to be stored in an inode before they are moved to another
filesystem block.

Leaf Attributes

When an inode’s attribute fork space is used up with shortform attributes and more are added, the attribute format
is migrated to “extents”.

Extent based attributes use hash/index pairs to speed up an attribute lookup. The first part of the “leaf” contains an
array of fixed size hash/index pairs with the flags stored as well. The remaining part of the leaf block contains the
array name/value pairs, where each element varies in length.

Each leaf is based on the xfs_da_blkinfo_t block header declared in the section about directories Section 15.3.1.
On a v5 filesystem, the block header is xfs_da3_blkinfo_t. The structure encapsulating all other structures in
the attribute block is xfs_attr_leafblock_t.
The structures involved are:

typedef struct xfs_attr_leaf_map {
__be16 base;
__be16 size;

} xfs_attr_leaf_map_t;

base
Block offset of the free area, in bytes.

size
Size of the free area, in bytes.

typedef struct xfs_attr_leaf_hdr {
xfs_da_blkinfo_t info;
__be16 count;
__be16 usedbytes;
__be16 firstused;
__u8 holes;
__u8 pad1;
xfs_attr_leaf_map_t freemap[3];

} xfs_attr_leaf_hdr_t;

info
Directory/attribute block header.

count
Number of entries.

usedbytes
Number of bytes used in the leaf block.

firstused
Block offset of the first entry in use, in bytes.

holes
Set to 1 if block compaction is necessary.

XFS Filesystem Disk Structures 144 / 160

pad1
Padding to maintain alignment to 64-bit boundaries.

typedef struct xfs_attr_leaf_entry {
__be32 hashval;
__be16 nameidx;
__u8 flags;
__u8 pad2;

} xfs_attr_leaf_entry_t;

hashval
Hash value of the attribute name.

nameidx
Block offset of the name entry, in bytes.

flags
Attribute flags, as specified above Table 16.1.

pad2
Pads the structure to 64-bit boundaries.

typedef struct xfs_attr_leaf_name_local {
__be16 valuelen;
__u8 namelen;
__u8 nameval[1];

} xfs_attr_leaf_name_local_t;

valuelen
Length of the value, in bytes.

namelen
Length of the name, in bytes.

nameval
The name and the value. String values are not zero-terminated.

typedef struct xfs_attr_leaf_name_remote {
__be32 valueblk;
__be32 valuelen;
__u8 namelen;
__u8 name[1];

} xfs_attr_leaf_name_remote_t;

valueblk
The logical block in the attribute map where the value is located.

valuelen
Length of the value, in bytes.

namelen
Length of the name, in bytes.

XFS Filesystem Disk Structures 145 / 160

nameval
The name. String values are not zero-terminated.

typedef struct xfs_attr_leafblock {
xfs_attr_leaf_hdr_t hdr;
xfs_attr_leaf_entry_t entries[1];
xfs_attr_leaf_name_local_t namelist;
xfs_attr_leaf_name_remote_t valuelist;

} xfs_attr_leafblock_t;

hdr
Attribute block header.

entries
A variable-length array of attribute entries.

namelist
A variable-length array of descriptors of local attributes. The location and size of these entries is determined
dynamically.

valuelist
A variable-length array of descriptors of remote attributes. The location and size of these entries is determined
dynamically.

On a v5 filesystem, the header becomes xfs_da3_blkinfo_t to accomodate the extra metadata integrity fields:

typedef struct xfs_attr3_leaf_hdr {
xfs_da3_blkinfo_t info;
__be16 count;
__be16 usedbytes;
__be16 firstused;
__u8 holes;
__u8 pad1;
xfs_attr_leaf_map_t freemap[3];

} xfs_attr3_leaf_hdr_t;

typedef struct xfs_attr3_leafblock {
xfs_attr3_leaf_hdr_t hdr;
xfs_attr_leaf_entry_t entries[1];
xfs_attr_leaf_name_local_t namelist;
xfs_attr_leaf_name_remote_t valuelist;

} xfs_attr3_leafblock_t;

Each leaf header uses the magic number XFS_ATTR_LEAF_MAGIC (0xfbee). On a v5 filesystem, the magic number
is XFS_ATTR3_LEAF_MAGIC (0x3bee).

The hash/index elements in the entries[] array are packed from the top of the block. Name/values grow from the
bottom but are not packed. The freemap contains run-length-encoded entries for the free bytes after theentries[]
array, but only the three largest runs are stored (smaller runs are dropped). When thefreemap doesn’t show enough
space for an allocation, the name/value area is compacted and allocation is tried again. If there still isn’t enough
space, then the block is split. The name/value structures (both local and remote versions) must be 32-bit aligned.

For attributes with small values (ie. the value can be stored within the leaf), the XFS_ATTR_LOCAL flag is set for the
attribute. The entry details are stored using the xfs_attr_leaf_name_local_t structure. For large attribute

XFS Filesystem Disk Structures 146 / 160

values that cannot be stored within the leaf, separate filesystem blocks are allocated to store the value. They use the
xfs_attr_leaf_name_remote_t structure. See Remote Values Section 16.5 for more information.

XFS Filesystem Disk Structures 147 / 160

Figure 16.2: Leaf attribute layout

XFS Filesystem Disk Structures 148 / 160

Both local and remote entries can be interleaved as they are only addressed by the hash/index entries. The flag is
stored with the hash/index pairs so the appropriate structure can be used.

Since duplicate hash keys are possible, for each hash that matches during a lookup, the actual name string must be
compared.

An “incomplete” bit is also used for attribute flags. It shows that an attribute is in the middle of being created and
should not be shown to the user if we crash during the time that the bit is set. The bit is cleared when attribute has
finished being set up. This is done because some large attributes cannot be created inside a single transaction.

xfs_db Leaf Attribute Example

A single 30KB extended attribute is added to an inode:
xfs_db> inode <inode#>
xfs_db> p
...
core.nblocks = 9
core.nextents = 0
core.naextents = 1
core.forkoff = 15
core.aformat = 2 (extents)
...
a.bmx[0] = [startoff,startblock,blockcount,extentflag]

0:[0,37535,9,0]
xfs_db> ablock 0
xfs_db> p
hdr.info.forw = 0
hdr.info.back = 0
hdr.info.magic = 0xfbee
hdr.count = 1
hdr.usedbytes = 20
hdr.firstused = 4076
hdr.holes = 0
hdr.freemap[0-2] = [base,size] 0:[40,4036] 1:[0,0] 2:[0,0]
entries[0] = [hashval,nameidx,incomplete,root,secure,local]

0:[0xfcf89d4f,4076,0,0,0,0]
nvlist[0].valueblk = 0x1
nvlist[0].valuelen = 30692
nvlist[0].namelen = 8
nvlist[0].name = ”big_attr”

Attribute blocks 1 to 8 (filesystem blocks 37536 to 37543) contain the raw binary value data for the attribute.

Index 4076 (0xfec) is the offset into the block where the name/value information is. As can be seen by the value, it’s
at the end of the block:
xfs_db> type text
xfs_db> p

000: 00 00 00 00 00 00 00 00 fb ee 00 00 00 01 00 14
010: 0f ec 00 00 00 28 0f c4 00 00 00 00 00 00 00 00
020: fc f8 9d 4f 0f ec 00 00 00 00 00 00 00 00 00 00 ...O............
030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
...
fe0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01
ff0: 00 00 77 e4 08 62 69 67 5f 61 74 74 72 00 00 00 ..w..big.attr...

XFS Filesystem Disk Structures 149 / 160

A 30KB attribute and a couple of small attributes are added to a file:
xfs_db> inode <inode#>
xfs_db> p
...
core.nblocks = 10
core.extsize = 0
core.nextents = 1
core.naextents = 2
core.forkoff = 15
core.aformat = 2 (extents)
...
u.bmx[0] = [startoff,startblock,blockcount,extentflag]

0:[0,81857,1,0]
a.bmx[0-1] = [startoff,startblock,blockcount,extentflag]

0:[0,81858,1,0]
1:[1,182398,8,0]

xfs_db> ablock 0
xfs_db> p
hdr.info.forw = 0
hdr.info.back = 0
hdr.info.magic = 0xfbee
hdr.count = 3
hdr.usedbytes = 52
hdr.firstused = 4044
hdr.holes = 0
hdr.freemap[0-2] = [base,size] 0:[56,3988] 1:[0,0] 2:[0,0]
entries[0-2] = [hashval,nameidx,incomplete,root,secure,local]

0:[0x1e9d3934,4044,0,0,0,1]
1:[0x1e9d3937,4060,0,0,0,1]
2:[0xfcf89d4f,4076,0,0,0,0]

nvlist[0].valuelen = 6
nvlist[0].namelen = 5
nvlist[0].name = ”attr2”
nvlist[0].value = ”value2”
nvlist[1].valuelen = 6
nvlist[1].namelen = 5
nvlist[1].name = ”attr1”
nvlist[1].value = ”value1”
nvlist[2].valueblk = 0x1
nvlist[2].valuelen = 30692
nvlist[2].namelen = 8
nvlist[2].name = ”big_attr”

As can be seen in the entries array, the two small attributes have the local flag set and the values are printed.
A raw disk dump shows the attributes. The last attribute added is highlighted (offset 4044 or 0xfcc):
000: 00 00 00 00 00 00 00 00 fb ee 00 00 00 03 00 344
010: 0f cc 00 00 00 38 0f 94 00 00 00 00 00 00 00 008..........
020: 1e 9d 39 34 0f cc 01 00 1e 9d 39 37 0f dc 01 00 ..94......97....
030: fc f8 9d 4f 0f ec 00 00 00 00 00 00 00 00 00 00 ...0............
040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00.................
...
fc0: 00 00 00 00 00 00 00 00 00 00 00 00 00 06 05 61a
fd0: 74 74 72 32 76 61 6c 75 65 32 00 00 00 06 05 61 ttr2value2.....a
fe0: 74 74 72 31 76 61 6c 75 65 31 00 00 00 00 00 01 ttr1value1......
ff0: 00 00 77 e4 08 62 69 67 5f 61 74 74 72 00 00 00 ..w..big.attr...

XFS Filesystem Disk Structures 150 / 160

Node Attributes

When the number of attributes exceeds the space that can fit in one filesystem block (ie. hash, flag, name and
local values), the first attribute block becomes the root of a B+tree where the leaves contain the hash/name/value
information that was stored in a single leaf block. The inode’s attribute format itself remains extent based. The nodes
use the xfs_da_intnode_t or xfs_da3_intnode_t structures introduced in the section about directories
Section 15.4.1.

The location of the attribute leaf blocks can be in any order. The only way to find an attribute is by walking the node
block hash/before values. Given a hash to look up, search the node’s btree array for the first hashval in the array
that exceeds the given hash. The entry is in the block pointed to by the before value.

Each attribute node block has a magic number of XFS_DA_NODE_MAGIC (0xfebe). On a v5 filesystem this is
XFS_DA3_NODE_MAGIC (0x3ebe).

XFS Filesystem Disk Structures 151 / 160

Figure 16.3: Node attribute layout

xfs_db Node Attribute Example

An inode with 1000 small attributes with the naming “attribute_n” where n is a number:

xfs_db> inode <inode#>

XFS Filesystem Disk Structures 152 / 160

xfs_db> p
...
core.nblocks = 15
core.nextents = 0
core.naextents = 1
core.forkoff = 15
core.aformat = 2 (extents)
...
a.bmx[0] = [startoff,startblock,blockcount,extentflag] 0:[0,525144,15,0]
xfs_db> ablock 0
xfs_db> p
hdr.info.forw = 0
hdr.info.back = 0
hdr.info.magic = 0xfebe
hdr.count = 14
hdr.level = 1
btree[0-13] = [hashval,before]

0:[0x3435122d,1]
1:[0x343550a9,14]
2:[0x343553a6,13]
3:[0x3436122d,12]
4:[0x343650a9,8]
5:[0x343653a6,7]
6:[0x343691af,6]
7:[0x3436d0ab,11]
8:[0x3436d3a7,10]
9:[0x3437122d,9]
10:[0x3437922e,3]
11:[0x3437d22a,5]
12:[0x3e686c25,4]
13:[0x3e686fad,2]

The hashes are in ascending order in the btree array, and if the hash for the attribute we are looking up is before the
entry, we go to the addressed attribute block.

For example, to lookup attribute “attribute_267”:

xfs_db> hash attribute_267
0x3437d1a8

In the root btree node, this falls between 0x3437922e and 0x3437d22a, therefore leaf 11 or attribute block 5
will contain the entry.

xfs_db> ablock 5
xfs_db> p
hdr.info.forw = 4
hdr.info.back = 3
hdr.info.magic = 0xfbee
hdr.count = 96
hdr.usedbytes = 2688
hdr.firstused = 1408
hdr.holes = 0
hdr.freemap[0-2] = [base,size] 0:[800,608] 1:[0,0] 2:[0,0]
entries[0.95] = [hashval,nameidx,incomplete,root,secure,local]

0:[0x3437922f,4068,0,0,0,1]
1:[0x343792a6,4040,0,0,0,1]
2:[0x343792a7,4012,0,0,0,1]

XFS Filesystem Disk Structures 153 / 160

3:[0x343792a8,3984,0,0,0,1]
...
82:[0x3437d1a7,2892,0,0,0,1]
83:[0x3437d1a8,2864,0,0,0,1]
84:[0x3437d1a9,2836,0,0,0,1]
...
95:[0x3437d22a,2528,0,0,0,1]

nvlist[0].valuelen = 10
nvlist[0].namelen = 13
nvlist[0].name = ”attribute_310”
nvlist[0].value = ”value_316\d”
nvlist[1].valuelen = 16
nvlist[1].namelen = 13
nvlist[1].name = ”attribute_309”
nvlist[1].value = ”value_309\d”
nvlist[2].valuelen = 10
nvlist[2].namelen = 13
nvlist[2].name = ”attribute_308”
nvlist[2].value = ”value_308\d”
nvlist[3].valuelen = 10
nvlist[3].namelen = 13
nvlist[3].name = ”attribute_307”
nvlist[3].value = ”value_307\d”
...
nvlist[82].valuelen = 10
nvlist[82].namelen = 13
nvlist[82].name = ”attribute_268”
nvlist[82].value = ”value_268\d”
nvlist[83].valuelen = 10
nvlist[83].namelen = 13
nvlist[83].name = ”attribute_267”
nvlist[83].value = ”value_267\d”
nvlist[84].valuelen = 10
nvlist[84].namelen = 13
nvlist[84].name = ”attribute_266”
nvlist[84].value = ”value_266\d”
...

Each of the hash entries has XFS_ATTR_LOCAL flag set (1), which means the attribute’s value follows immediately
after the name. Raw disk of the name/value pair at offset 2864 (0xb30), highlighted with “value_267” following
immediately after the name:

b00: 62 75 74 65 5f 32 36 35 76 61 6c 75 65 5f 32 36 bute.265value.26
b10: 35 0a 00 00 00 0a 0d 61 74 74 72 69 62 75 74 65 5......attribute
b20: 51 32 36 36 76 61 6c 75 65 5f 32 36 36 0a 00 00 .266value.266...
b30: 00 0a 0d 61 74 74 72 69 62 75 74 65 5f 32 36 37 ...attribute.267
b40: 76 61 6c 75 65 5f 32 36 37 0a 00 00 00 0a 0d 61 value.267......a
b50: 74 74 72 69 62 75 74 65 5f 32 36 38 76 61 6c 75 ttribute.268va1u
b60: 65 5f 32 36 38 0a 00 00 00 0a 0d 61 74 74 72 69 e.268......attri
b70: 62 75 74 65 5f 32 36 39 76 61 6c 75 65 5f 32 36 bute.269value.26

Each entry starts on a 32-bit (4 byte) boundary, therefore the highlighted entry has 2 unused bytes after it.

XFS Filesystem Disk Structures 154 / 160

B+tree Attributes

When the attribute’s extentmap in an inode grows beyond the available space, the inode’s attribute format is changed
to a “btree”. The inode contains root node of the extent B+tree which then address the leaves that contains the extent
arrays for the attribute data. The attribute data itself in the allocated filesystem blocks use the same layout and
structures as described in Node Attributes Section 16.3.

Refer to the previous section on B+tree Data Extents Section 14.2 for more information on XFS B+tree extents.

xfs_db B+tree Attribute Example

Added 2000 attributes with 729 byte values to a file:

xfs_db> inode <inode#>
xfs_db> p
...
core.nblocks = 640
core.extsize = 0
core.nextents = 1
core.naextents = 274
core.forkoff = 15
core.aformat = 3 (btree)
...
a.bmbt.level = 1
a.bmbt.numrecs = 2
a.bmbt.keys[1-2] = [startoff] 1:[0] 2:[219]
a.bmbt.ptrs[1-2] = 1:83162 2:109968
xfs_db> fsblock 83162
xfs_db> type bmapbtd
xfs_db> p
magic = 0x424d4150
level = 0
numrecs = 127
leftsib = null
rightsib = 109968
recs[1-127] = [startoff,startblock,blockcount,extentflag]

1:[0,81870,1,0]
...

xfs_db> fsblock 109968
xfs_db> type bmapbtd
xfs_db> p
magic = 0x424d4150
level = 0
numrecs = 147
leftsib = 83162
rightsib = null
recs[1-147] = [startoff,startblock,blockcount,extentflag]

...
(which is fsblock 81870)

xfs_db> ablock 0
xfs_db> p
hdr.info.forw = 0
hdr.info.back = 0
hdr.info.magic = 0xfebe
hdr.count = 2

XFS Filesystem Disk Structures 155 / 160

hdr.level = 2
btree[0-1] = [hashval,before] 0:[0x343612a6,513] 1:[0x3e686fad,512]

The extent B+tree has two leaves that specify the 274 extents used for the attributes. Looking at the first block, it
can be seen that the attribute B+tree is two levels deep. The two blocks at offset 513 and 512 (ie. access using the
ablock command) are intermediate xfs_da_intnode_t nodes that index all the attribute leaves.

Remote Attribute Values

On a v5 filesystem, all remote value blocks start with this header:

struct xfs_attr3_rmt_hdr {
__be32 rm_magic;
__be32 rm_offset;
__be32 rm_bytes;
__be32 rm_crc;
uuid_t rm_uuid;
__be64 rm_owner;
__be64 rm_blkno;
__be64 rm_lsn;

};

rm_magic
Specifies the magic number for the remote value block: ”XARM” (0x5841524d).

rm_offset
Offset of the remote value data, in bytes.

rm_bytes
Number of bytes used to contain the remote value data.

rm_crc
Checksum of the remote value block.

rm_uuid
TheUUID of this block, which must match either sb_uuid or sb_meta_uuid depending on which features
are set.

rm_owner
The inode number that this remote value block belongs to.

rm_blkno
Disk block number of this remote value block.

rm_lsn
Log sequence number of the last write to this block.

Filesystems formatted prior to v5 do not have this header in the remote block. Value data begins immediately at
offset zero.

XFS Filesystem Disk Structures 156 / 160

Chapter 17

Symbolic Links

Symbolic links to a file can be stored in one of two formats: “local” and “extents”. The length of the symlink contents
is always specified by the inode’s di_size value.

Short Form Symbolic Links

Symbolic links are stored with the “local” di_format if the symbolic link can fit within the inode’s data fork. The
link data is an array of characters (di_symlink array in the data fork union).

Figure 17.1: Symbolic link short form layout

XFS Filesystem Disk Structures 157 / 160

xfs_db Short Form Symbolic Link Example

A short symbolic link to a file is created:

xfs_db> inode <inode#>
xfs_db> p
core.magic = 0x494e
core.mode = 0120777
core.version = 1
core.format = 1 (local)
...
core.size = 12
core.nblocks = 0
core.extsize = 0
core.nextents = 0
...
u.symlink = ”small_target”

Raw on-disk data with the link contents highlighted:

xfs_db> type text
xfs_db> p
00: 49 4e a1 ff 01 01 00 01 00 00 00 00 00 00 00 00 IN..............
10: 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 01
20: 44 be e1 c7 03 c4 d4 18 44 be el c7 03 c4 d4 18 D.......D.......
30: 44 be e1 c7 03 c4 d4 18 00 00 00 00 00 00 00 Oc D...............
40: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
50: 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00
60: ff ff ff ff 73 6d 61 6c 6c 5f 74 61 72 67 65 74small.target
70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Extent Symbolic Links

If the length of the symbolic link exceeds the space available in the inode’s data fork, the link is moved to a new
filesystem block and the inode’s di_format is changed to “extents”. The location of the block(s) is specified by the
data fork’s di_bmx[] array. In the significant majority of cases, this will be in one filesystem block as a symlink
cannot be longer than 1024 characters.

On a v5 filesystem, the first block of each extent starts with the following header structure:

struct xfs_dsymlink_hdr {
__be32 sl_magic;
__be32 sl_offset;
__be32 sl_bytes;
__be32 sl_crc;
uuid_t sl_uuid;
__be64 sl_owner;
__be64 sl_blkno;
__be64 sl_lsn;

};

sl_magic
Specifies the magic number for the symlink block: ”XSLM” (0x58534c4d).

XFS Filesystem Disk Structures 158 / 160

sl_offset
Offset of the symbolic link target data, in bytes.

sl_bytes
Number of bytes used to contain the link target data.

sl_crc
Checksum of the symlink block.

sl_uuid
TheUUID of this block, which must match either sb_uuid or sb_meta_uuid depending on which features
are set.

sl_owner
The inode number that this symlink block belongs to.

sl_blkno
Disk block number of this symlink.

sl_lsn
Log sequence number of the last write to this block.

Filesystems formatted prior to v5 do not have this header in the remote block. Symlink data begins immediately at
offset zero.

XFS Filesystem Disk Structures 159 / 160

Figure 17.2: Symbolic link extent layout

xfs_db Symbolic Link Extent Example

A longer link is created (greater than 156 bytes):

xfs_db> inode <inode#>
xfs_db> p
core.magic = 0x494e
core.mode = 0120777
core.version = 1
core.format = 2 (extents)
...
core.size = 182
core.nblocks = 1
core.extsize = 0
core.nextents = 1
...
u.bmx[0] = [startoff,startblock,blockcount,extentflag] 0:[0,37530,1,0]

XFS Filesystem Disk Structures 160 / 160

xfs_db> dblock 0
xfs_db> type symlink
xfs_db> p
”symlink contents...”

	I High Level Design
	Overview
	Metadata Integrity
	Sharing Data Blocks
	Metadata Reconstruction
	Common XFS Types
	Magic Numbers
	Theoretical Limits
	Testing Filesystem Changes

	II Global Structures
	B+trees
	Short Format B+trees
	Long Format B+trees

	Allocation Groups
	Superblocks
	xfs_db Superblock Example

	AG Free Space Management
	AG Free Space Block
	AG Free Space B+trees
	AG Free List
	xfs_db AGF Example

	AG Inode Management
	Inode Numbers
	Inode Information

	Inode B+trees
	xfs_db AGI Example

	Sparse Inodes
	xfs_db Sparse Inode AGI Example

	Real-time Devices
	Reverse-Mapping B+tree
	xfs_db rmapbt Example

	Reference Count B+tree
	xfs_db refcntbt Example

	Journaling Log
	Log Records
	Log Operations
	Log Items
	Transaction Headers
	Intent to Free an Extent
	Completion of Intent to Free an Extent
	Reverse Mapping Updates Intent
	Completion of Reverse Mapping Updates
	Reference Count Updates Intent
	Completion of Reference Count Updates
	File Block Mapping Intent
	Completion of File Block Mapping Updates
	Inode Updates
	Inode Data Log Item
	Buffer Log Item
	Buffer Data Log Item
	Update Quota File
	Quota Update Data Log Item
	Disable Quota Log Item
	Inode Creation Log Item

	xfs_logprint Example

	Internal Inodes
	Quota Inodes
	Real-time Inodes
	Real-Time Bitmap Inode
	Real-Time Summary Inode
	Real-Time Reverse-Mapping B+tree
	xfs_db rtrmapbt Example

	III Dynamically Allocated Structures
	On-disk Inode
	Inode Core
	Unlinked Pointer
	Data Fork
	Regular Files (S_IFREG)
	Directories (S_IFDIR)
	Symbolic Links (S_IFLNK)
	Other File Types

	Attribute Fork
	Extended Attribute Versions

	Data Extents
	Extent List
	xfs_db Inode Data Fork Extents Example

	B+tree Extent List
	xfs_db bmbt Example

	Directories
	Short Form Directories
	xfs_db Short Form Directory Example

	Block Directories
	xfs_db Block Directory Example

	Leaf Directories
	Directory and Attribute Block Headers
	xfs_db Leaf Directory Example

	Node Directories
	Directory and Attribute Internal Nodes
	xfs_db Node Directory Example

	B+tree Directories
	xfs_db B+tree Directory Example

	Extended Attributes
	Short Form Attributes
	xfs_db Short Form Attribute Example

	Leaf Attributes
	xfs_db Leaf Attribute Example

	Node Attributes
	xfs_db Node Attribute Example

	B+tree Attributes
	xfs_db B+tree Attribute Example

	Remote Attribute Values

	Symbolic Links
	Short Form Symbolic Links
	xfs_db Short Form Symbolic Link Example

	Extent Symbolic Links
	xfs_db Symbolic Link Extent Example

