Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0-only */
2 : /*
3 : * Copyright (C) 2012 ARM Ltd.
4 : */
5 : #ifndef __ASM_PGTABLE_H
6 : #define __ASM_PGTABLE_H
7 :
8 : #include <asm/bug.h>
9 : #include <asm/proc-fns.h>
10 :
11 : #include <asm/memory.h>
12 : #include <asm/mte.h>
13 : #include <asm/pgtable-hwdef.h>
14 : #include <asm/pgtable-prot.h>
15 : #include <asm/tlbflush.h>
16 :
17 : /*
18 : * VMALLOC range.
19 : *
20 : * VMALLOC_START: beginning of the kernel vmalloc space
21 : * VMALLOC_END: extends to the available space below vmemmap, PCI I/O space
22 : * and fixed mappings
23 : */
24 : #define VMALLOC_START (MODULES_END)
25 : #define VMALLOC_END (VMEMMAP_START - SZ_256M)
26 :
27 : #define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
28 :
29 : #ifndef __ASSEMBLY__
30 :
31 : #include <asm/cmpxchg.h>
32 : #include <asm/fixmap.h>
33 : #include <linux/mmdebug.h>
34 : #include <linux/mm_types.h>
35 : #include <linux/sched.h>
36 : #include <linux/page_table_check.h>
37 :
38 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
39 : #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
40 :
41 : /* Set stride and tlb_level in flush_*_tlb_range */
42 : #define flush_pmd_tlb_range(vma, addr, end) \
43 : __flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
44 : #define flush_pud_tlb_range(vma, addr, end) \
45 : __flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
46 : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
47 :
48 : static inline bool arch_thp_swp_supported(void)
49 : {
50 : return !system_supports_mte();
51 : }
52 : #define arch_thp_swp_supported arch_thp_swp_supported
53 :
54 : /*
55 : * Outside of a few very special situations (e.g. hibernation), we always
56 : * use broadcast TLB invalidation instructions, therefore a spurious page
57 : * fault on one CPU which has been handled concurrently by another CPU
58 : * does not need to perform additional invalidation.
59 : */
60 : #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
61 :
62 : /*
63 : * ZERO_PAGE is a global shared page that is always zero: used
64 : * for zero-mapped memory areas etc..
65 : */
66 : extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
67 : #define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page))
68 :
69 : #define pte_ERROR(e) \
70 : pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
71 :
72 : /*
73 : * Macros to convert between a physical address and its placement in a
74 : * page table entry, taking care of 52-bit addresses.
75 : */
76 : #ifdef CONFIG_ARM64_PA_BITS_52
77 : static inline phys_addr_t __pte_to_phys(pte_t pte)
78 : {
79 : return (pte_val(pte) & PTE_ADDR_LOW) |
80 : ((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT);
81 : }
82 : static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
83 : {
84 : return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PTE_ADDR_MASK;
85 : }
86 : #else
87 : #define __pte_to_phys(pte) (pte_val(pte) & PTE_ADDR_MASK)
88 : #define __phys_to_pte_val(phys) (phys)
89 : #endif
90 :
91 : #define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT)
92 : #define pfn_pte(pfn,prot) \
93 : __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
94 :
95 : #define pte_none(pte) (!pte_val(pte))
96 : #define pte_clear(mm,addr,ptep) set_pte(ptep, __pte(0))
97 : #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
98 :
99 : /*
100 : * The following only work if pte_present(). Undefined behaviour otherwise.
101 : */
102 : #define pte_present(pte) (!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)))
103 : #define pte_young(pte) (!!(pte_val(pte) & PTE_AF))
104 : #define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL))
105 : #define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE))
106 : #define pte_user(pte) (!!(pte_val(pte) & PTE_USER))
107 : #define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN))
108 : #define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT))
109 : #define pte_devmap(pte) (!!(pte_val(pte) & PTE_DEVMAP))
110 : #define pte_tagged(pte) ((pte_val(pte) & PTE_ATTRINDX_MASK) == \
111 : PTE_ATTRINDX(MT_NORMAL_TAGGED))
112 :
113 : #define pte_cont_addr_end(addr, end) \
114 : ({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \
115 : (__boundary - 1 < (end) - 1) ? __boundary : (end); \
116 : })
117 :
118 : #define pmd_cont_addr_end(addr, end) \
119 : ({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \
120 : (__boundary - 1 < (end) - 1) ? __boundary : (end); \
121 : })
122 :
123 : #define pte_hw_dirty(pte) (pte_write(pte) && !(pte_val(pte) & PTE_RDONLY))
124 : #define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY))
125 : #define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte))
126 :
127 : #define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID))
128 : /*
129 : * Execute-only user mappings do not have the PTE_USER bit set. All valid
130 : * kernel mappings have the PTE_UXN bit set.
131 : */
132 : #define pte_valid_not_user(pte) \
133 : ((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
134 : /*
135 : * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
136 : * so that we don't erroneously return false for pages that have been
137 : * remapped as PROT_NONE but are yet to be flushed from the TLB.
138 : * Note that we can't make any assumptions based on the state of the access
139 : * flag, since ptep_clear_flush_young() elides a DSB when invalidating the
140 : * TLB.
141 : */
142 : #define pte_accessible(mm, pte) \
143 : (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
144 :
145 : /*
146 : * p??_access_permitted() is true for valid user mappings (PTE_USER
147 : * bit set, subject to the write permission check). For execute-only
148 : * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
149 : * not set) must return false. PROT_NONE mappings do not have the
150 : * PTE_VALID bit set.
151 : */
152 : #define pte_access_permitted(pte, write) \
153 : (((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
154 : #define pmd_access_permitted(pmd, write) \
155 : (pte_access_permitted(pmd_pte(pmd), (write)))
156 : #define pud_access_permitted(pud, write) \
157 : (pte_access_permitted(pud_pte(pud), (write)))
158 :
159 : static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
160 : {
161 : pte_val(pte) &= ~pgprot_val(prot);
162 : return pte;
163 : }
164 :
165 : static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
166 : {
167 : pte_val(pte) |= pgprot_val(prot);
168 : return pte;
169 : }
170 :
171 : static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
172 : {
173 : pmd_val(pmd) &= ~pgprot_val(prot);
174 : return pmd;
175 : }
176 :
177 : static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
178 : {
179 : pmd_val(pmd) |= pgprot_val(prot);
180 : return pmd;
181 : }
182 :
183 : static inline pte_t pte_mkwrite(pte_t pte)
184 : {
185 : pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
186 : pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
187 : return pte;
188 : }
189 :
190 : static inline pte_t pte_mkclean(pte_t pte)
191 : {
192 : pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
193 : pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
194 :
195 : return pte;
196 : }
197 :
198 : static inline pte_t pte_mkdirty(pte_t pte)
199 : {
200 : pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
201 :
202 : if (pte_write(pte))
203 : pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
204 :
205 : return pte;
206 : }
207 :
208 : static inline pte_t pte_wrprotect(pte_t pte)
209 : {
210 : /*
211 : * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
212 : * clear), set the PTE_DIRTY bit.
213 : */
214 : if (pte_hw_dirty(pte))
215 : pte = pte_mkdirty(pte);
216 :
217 : pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
218 : pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
219 : return pte;
220 : }
221 :
222 : static inline pte_t pte_mkold(pte_t pte)
223 : {
224 : return clear_pte_bit(pte, __pgprot(PTE_AF));
225 : }
226 :
227 : static inline pte_t pte_mkyoung(pte_t pte)
228 : {
229 : return set_pte_bit(pte, __pgprot(PTE_AF));
230 : }
231 :
232 : static inline pte_t pte_mkspecial(pte_t pte)
233 : {
234 : return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
235 : }
236 :
237 : static inline pte_t pte_mkcont(pte_t pte)
238 : {
239 : pte = set_pte_bit(pte, __pgprot(PTE_CONT));
240 : return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
241 : }
242 :
243 : static inline pte_t pte_mknoncont(pte_t pte)
244 : {
245 : return clear_pte_bit(pte, __pgprot(PTE_CONT));
246 : }
247 :
248 : static inline pte_t pte_mkpresent(pte_t pte)
249 : {
250 : return set_pte_bit(pte, __pgprot(PTE_VALID));
251 : }
252 :
253 : static inline pmd_t pmd_mkcont(pmd_t pmd)
254 : {
255 : return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
256 : }
257 :
258 : static inline pte_t pte_mkdevmap(pte_t pte)
259 : {
260 : return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
261 : }
262 :
263 : static inline void set_pte(pte_t *ptep, pte_t pte)
264 : {
265 : WRITE_ONCE(*ptep, pte);
266 :
267 : /*
268 : * Only if the new pte is valid and kernel, otherwise TLB maintenance
269 : * or update_mmu_cache() have the necessary barriers.
270 : */
271 : if (pte_valid_not_user(pte)) {
272 : dsb(ishst);
273 : isb();
274 : }
275 : }
276 :
277 : extern void __sync_icache_dcache(pte_t pteval);
278 : bool pgattr_change_is_safe(u64 old, u64 new);
279 :
280 : /*
281 : * PTE bits configuration in the presence of hardware Dirty Bit Management
282 : * (PTE_WRITE == PTE_DBM):
283 : *
284 : * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw)
285 : * 0 0 | 1 0 0
286 : * 0 1 | 1 1 0
287 : * 1 0 | 1 0 1
288 : * 1 1 | 0 1 x
289 : *
290 : * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
291 : * the page fault mechanism. Checking the dirty status of a pte becomes:
292 : *
293 : * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
294 : */
295 :
296 : static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep,
297 : pte_t pte)
298 : {
299 : pte_t old_pte;
300 :
301 : if (!IS_ENABLED(CONFIG_DEBUG_VM))
302 : return;
303 :
304 : old_pte = READ_ONCE(*ptep);
305 :
306 : if (!pte_valid(old_pte) || !pte_valid(pte))
307 : return;
308 : if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
309 : return;
310 :
311 : /*
312 : * Check for potential race with hardware updates of the pte
313 : * (ptep_set_access_flags safely changes valid ptes without going
314 : * through an invalid entry).
315 : */
316 : VM_WARN_ONCE(!pte_young(pte),
317 : "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
318 : __func__, pte_val(old_pte), pte_val(pte));
319 : VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
320 : "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
321 : __func__, pte_val(old_pte), pte_val(pte));
322 : VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)),
323 : "%s: unsafe attribute change: 0x%016llx -> 0x%016llx",
324 : __func__, pte_val(old_pte), pte_val(pte));
325 : }
326 :
327 : static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
328 : pte_t *ptep, pte_t pte)
329 : {
330 : if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
331 : __sync_icache_dcache(pte);
332 :
333 : /*
334 : * If the PTE would provide user space access to the tags associated
335 : * with it then ensure that the MTE tags are synchronised. Although
336 : * pte_access_permitted() returns false for exec only mappings, they
337 : * don't expose tags (instruction fetches don't check tags).
338 : */
339 : if (system_supports_mte() && pte_access_permitted(pte, false) &&
340 : !pte_special(pte)) {
341 : pte_t old_pte = READ_ONCE(*ptep);
342 : /*
343 : * We only need to synchronise if the new PTE has tags enabled
344 : * or if swapping in (in which case another mapping may have
345 : * set tags in the past even if this PTE isn't tagged).
346 : * (!pte_none() && !pte_present()) is an open coded version of
347 : * is_swap_pte()
348 : */
349 : if (pte_tagged(pte) || (!pte_none(old_pte) && !pte_present(old_pte)))
350 : mte_sync_tags(old_pte, pte);
351 : }
352 :
353 : __check_safe_pte_update(mm, ptep, pte);
354 :
355 : set_pte(ptep, pte);
356 : }
357 :
358 : static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
359 : pte_t *ptep, pte_t pte)
360 : {
361 : page_table_check_pte_set(mm, addr, ptep, pte);
362 : return __set_pte_at(mm, addr, ptep, pte);
363 : }
364 :
365 : /*
366 : * Huge pte definitions.
367 : */
368 : #define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT))
369 :
370 : /*
371 : * Hugetlb definitions.
372 : */
373 : #define HUGE_MAX_HSTATE 4
374 : #define HPAGE_SHIFT PMD_SHIFT
375 : #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
376 : #define HPAGE_MASK (~(HPAGE_SIZE - 1))
377 : #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
378 :
379 : static inline pte_t pgd_pte(pgd_t pgd)
380 : {
381 : return __pte(pgd_val(pgd));
382 : }
383 :
384 : static inline pte_t p4d_pte(p4d_t p4d)
385 : {
386 : return __pte(p4d_val(p4d));
387 : }
388 :
389 : static inline pte_t pud_pte(pud_t pud)
390 : {
391 : return __pte(pud_val(pud));
392 : }
393 :
394 : static inline pud_t pte_pud(pte_t pte)
395 : {
396 : return __pud(pte_val(pte));
397 : }
398 :
399 : static inline pmd_t pud_pmd(pud_t pud)
400 : {
401 : return __pmd(pud_val(pud));
402 : }
403 :
404 : static inline pte_t pmd_pte(pmd_t pmd)
405 : {
406 : return __pte(pmd_val(pmd));
407 : }
408 :
409 : static inline pmd_t pte_pmd(pte_t pte)
410 : {
411 : return __pmd(pte_val(pte));
412 : }
413 :
414 : static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
415 : {
416 : return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT);
417 : }
418 :
419 : static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
420 : {
421 : return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT);
422 : }
423 :
424 : static inline pte_t pte_swp_mkexclusive(pte_t pte)
425 : {
426 : return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
427 : }
428 :
429 : static inline int pte_swp_exclusive(pte_t pte)
430 : {
431 : return pte_val(pte) & PTE_SWP_EXCLUSIVE;
432 : }
433 :
434 : static inline pte_t pte_swp_clear_exclusive(pte_t pte)
435 : {
436 : return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
437 : }
438 :
439 : /*
440 : * Select all bits except the pfn
441 : */
442 : static inline pgprot_t pte_pgprot(pte_t pte)
443 : {
444 : unsigned long pfn = pte_pfn(pte);
445 :
446 : return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
447 : }
448 :
449 : #ifdef CONFIG_NUMA_BALANCING
450 : /*
451 : * See the comment in include/linux/pgtable.h
452 : */
453 : static inline int pte_protnone(pte_t pte)
454 : {
455 : return (pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)) == PTE_PROT_NONE;
456 : }
457 :
458 : static inline int pmd_protnone(pmd_t pmd)
459 : {
460 : return pte_protnone(pmd_pte(pmd));
461 : }
462 : #endif
463 :
464 : #define pmd_present_invalid(pmd) (!!(pmd_val(pmd) & PMD_PRESENT_INVALID))
465 :
466 : static inline int pmd_present(pmd_t pmd)
467 : {
468 0 : return pte_present(pmd_pte(pmd)) || pmd_present_invalid(pmd);
469 : }
470 :
471 : /*
472 : * THP definitions.
473 : */
474 :
475 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
476 0 : static inline int pmd_trans_huge(pmd_t pmd)
477 : {
478 0 : return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT);
479 : }
480 : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
481 :
482 : #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
483 : #define pmd_young(pmd) pte_young(pmd_pte(pmd))
484 : #define pmd_valid(pmd) pte_valid(pmd_pte(pmd))
485 : #define pmd_user(pmd) pte_user(pmd_pte(pmd))
486 : #define pmd_user_exec(pmd) pte_user_exec(pmd_pte(pmd))
487 : #define pmd_cont(pmd) pte_cont(pmd_pte(pmd))
488 : #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
489 : #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
490 : #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
491 : #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
492 : #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
493 : #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
494 :
495 : static inline pmd_t pmd_mkinvalid(pmd_t pmd)
496 : {
497 : pmd = set_pmd_bit(pmd, __pgprot(PMD_PRESENT_INVALID));
498 : pmd = clear_pmd_bit(pmd, __pgprot(PMD_SECT_VALID));
499 :
500 : return pmd;
501 : }
502 :
503 : #define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd))
504 :
505 : #define pmd_write(pmd) pte_write(pmd_pte(pmd))
506 :
507 : #define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
508 :
509 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
510 : #define pmd_devmap(pmd) pte_devmap(pmd_pte(pmd))
511 : #endif
512 : static inline pmd_t pmd_mkdevmap(pmd_t pmd)
513 : {
514 : return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
515 : }
516 :
517 : #define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd))
518 : #define __phys_to_pmd_val(phys) __phys_to_pte_val(phys)
519 : #define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
520 : #define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
521 : #define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot)
522 :
523 : #define pud_young(pud) pte_young(pud_pte(pud))
524 : #define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud)))
525 : #define pud_write(pud) pte_write(pud_pte(pud))
526 :
527 : #define pud_mkhuge(pud) (__pud(pud_val(pud) & ~PUD_TABLE_BIT))
528 :
529 : #define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud))
530 : #define __phys_to_pud_val(phys) __phys_to_pte_val(phys)
531 : #define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
532 : #define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
533 :
534 : static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
535 : pmd_t *pmdp, pmd_t pmd)
536 : {
537 : page_table_check_pmd_set(mm, addr, pmdp, pmd);
538 : return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd));
539 : }
540 :
541 : static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
542 : pud_t *pudp, pud_t pud)
543 : {
544 : page_table_check_pud_set(mm, addr, pudp, pud);
545 : return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud));
546 : }
547 :
548 : #define __p4d_to_phys(p4d) __pte_to_phys(p4d_pte(p4d))
549 : #define __phys_to_p4d_val(phys) __phys_to_pte_val(phys)
550 :
551 : #define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd))
552 : #define __phys_to_pgd_val(phys) __phys_to_pte_val(phys)
553 :
554 : #define __pgprot_modify(prot,mask,bits) \
555 : __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
556 :
557 : #define pgprot_nx(prot) \
558 : __pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
559 :
560 : /*
561 : * Mark the prot value as uncacheable and unbufferable.
562 : */
563 : #define pgprot_noncached(prot) \
564 : __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
565 : #define pgprot_writecombine(prot) \
566 : __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
567 : #define pgprot_device(prot) \
568 : __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
569 : #define pgprot_tagged(prot) \
570 : __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
571 : #define pgprot_mhp pgprot_tagged
572 : /*
573 : * DMA allocations for non-coherent devices use what the Arm architecture calls
574 : * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
575 : * and merging of writes. This is different from "Device-nGnR[nE]" memory which
576 : * is intended for MMIO and thus forbids speculation, preserves access size,
577 : * requires strict alignment and can also force write responses to come from the
578 : * endpoint.
579 : */
580 : #define pgprot_dmacoherent(prot) \
581 : __pgprot_modify(prot, PTE_ATTRINDX_MASK, \
582 : PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
583 :
584 : #define __HAVE_PHYS_MEM_ACCESS_PROT
585 : struct file;
586 : extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
587 : unsigned long size, pgprot_t vma_prot);
588 :
589 : #define pmd_none(pmd) (!pmd_val(pmd))
590 :
591 : #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
592 : PMD_TYPE_TABLE)
593 : #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
594 : PMD_TYPE_SECT)
595 : #define pmd_leaf(pmd) (pmd_present(pmd) && !pmd_table(pmd))
596 : #define pmd_bad(pmd) (!pmd_table(pmd))
597 :
598 : #define pmd_leaf_size(pmd) (pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
599 : #define pte_leaf_size(pte) (pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
600 :
601 : #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
602 : static inline bool pud_sect(pud_t pud) { return false; }
603 : static inline bool pud_table(pud_t pud) { return true; }
604 : #else
605 : #define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
606 : PUD_TYPE_SECT)
607 : #define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
608 : PUD_TYPE_TABLE)
609 : #endif
610 :
611 : extern pgd_t init_pg_dir[PTRS_PER_PGD];
612 : extern pgd_t init_pg_end[];
613 : extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
614 : extern pgd_t idmap_pg_dir[PTRS_PER_PGD];
615 : extern pgd_t tramp_pg_dir[PTRS_PER_PGD];
616 : extern pgd_t reserved_pg_dir[PTRS_PER_PGD];
617 :
618 : extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
619 :
620 : static inline bool in_swapper_pgdir(void *addr)
621 : {
622 : return ((unsigned long)addr & PAGE_MASK) ==
623 : ((unsigned long)swapper_pg_dir & PAGE_MASK);
624 : }
625 :
626 : static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
627 : {
628 : #ifdef __PAGETABLE_PMD_FOLDED
629 : if (in_swapper_pgdir(pmdp)) {
630 : set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
631 : return;
632 : }
633 : #endif /* __PAGETABLE_PMD_FOLDED */
634 :
635 : WRITE_ONCE(*pmdp, pmd);
636 :
637 : if (pmd_valid(pmd)) {
638 : dsb(ishst);
639 : isb();
640 : }
641 : }
642 :
643 : static inline void pmd_clear(pmd_t *pmdp)
644 : {
645 : set_pmd(pmdp, __pmd(0));
646 : }
647 :
648 : static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
649 : {
650 : return __pmd_to_phys(pmd);
651 : }
652 :
653 : static inline unsigned long pmd_page_vaddr(pmd_t pmd)
654 : {
655 : return (unsigned long)__va(pmd_page_paddr(pmd));
656 : }
657 :
658 : /* Find an entry in the third-level page table. */
659 : #define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
660 :
661 : #define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr))
662 : #define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr))
663 : #define pte_clear_fixmap() clear_fixmap(FIX_PTE)
664 :
665 : #define pmd_page(pmd) phys_to_page(__pmd_to_phys(pmd))
666 :
667 : /* use ONLY for statically allocated translation tables */
668 : #define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
669 :
670 : /*
671 : * Conversion functions: convert a page and protection to a page entry,
672 : * and a page entry and page directory to the page they refer to.
673 : */
674 : #define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
675 :
676 : #if CONFIG_PGTABLE_LEVELS > 2
677 :
678 : #define pmd_ERROR(e) \
679 : pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
680 :
681 : #define pud_none(pud) (!pud_val(pud))
682 : #define pud_bad(pud) (!pud_table(pud))
683 : #define pud_present(pud) pte_present(pud_pte(pud))
684 : #define pud_leaf(pud) (pud_present(pud) && !pud_table(pud))
685 : #define pud_valid(pud) pte_valid(pud_pte(pud))
686 : #define pud_user(pud) pte_user(pud_pte(pud))
687 : #define pud_user_exec(pud) pte_user_exec(pud_pte(pud))
688 :
689 : static inline void set_pud(pud_t *pudp, pud_t pud)
690 : {
691 : #ifdef __PAGETABLE_PUD_FOLDED
692 : if (in_swapper_pgdir(pudp)) {
693 : set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
694 : return;
695 : }
696 : #endif /* __PAGETABLE_PUD_FOLDED */
697 :
698 : WRITE_ONCE(*pudp, pud);
699 :
700 : if (pud_valid(pud)) {
701 : dsb(ishst);
702 : isb();
703 : }
704 : }
705 :
706 : static inline void pud_clear(pud_t *pudp)
707 : {
708 : set_pud(pudp, __pud(0));
709 : }
710 :
711 : static inline phys_addr_t pud_page_paddr(pud_t pud)
712 : {
713 : return __pud_to_phys(pud);
714 : }
715 :
716 : static inline pmd_t *pud_pgtable(pud_t pud)
717 : {
718 : return (pmd_t *)__va(pud_page_paddr(pud));
719 : }
720 :
721 : /* Find an entry in the second-level page table. */
722 : #define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
723 :
724 : #define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
725 : #define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr))
726 : #define pmd_clear_fixmap() clear_fixmap(FIX_PMD)
727 :
728 : #define pud_page(pud) phys_to_page(__pud_to_phys(pud))
729 :
730 : /* use ONLY for statically allocated translation tables */
731 : #define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
732 :
733 : #else
734 :
735 : #define pud_page_paddr(pud) ({ BUILD_BUG(); 0; })
736 : #define pud_user_exec(pud) pud_user(pud) /* Always 0 with folding */
737 :
738 : /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
739 : #define pmd_set_fixmap(addr) NULL
740 : #define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp)
741 : #define pmd_clear_fixmap()
742 :
743 : #define pmd_offset_kimg(dir,addr) ((pmd_t *)dir)
744 :
745 : #endif /* CONFIG_PGTABLE_LEVELS > 2 */
746 :
747 : #if CONFIG_PGTABLE_LEVELS > 3
748 :
749 : #define pud_ERROR(e) \
750 : pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
751 :
752 : #define p4d_none(p4d) (!p4d_val(p4d))
753 : #define p4d_bad(p4d) (!(p4d_val(p4d) & 2))
754 : #define p4d_present(p4d) (p4d_val(p4d))
755 :
756 : static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
757 : {
758 : if (in_swapper_pgdir(p4dp)) {
759 : set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
760 : return;
761 : }
762 :
763 : WRITE_ONCE(*p4dp, p4d);
764 : dsb(ishst);
765 : isb();
766 : }
767 :
768 : static inline void p4d_clear(p4d_t *p4dp)
769 : {
770 : set_p4d(p4dp, __p4d(0));
771 : }
772 :
773 : static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
774 : {
775 : return __p4d_to_phys(p4d);
776 : }
777 :
778 : static inline pud_t *p4d_pgtable(p4d_t p4d)
779 : {
780 : return (pud_t *)__va(p4d_page_paddr(p4d));
781 : }
782 :
783 : /* Find an entry in the first-level page table. */
784 : #define pud_offset_phys(dir, addr) (p4d_page_paddr(READ_ONCE(*(dir))) + pud_index(addr) * sizeof(pud_t))
785 :
786 : #define pud_set_fixmap(addr) ((pud_t *)set_fixmap_offset(FIX_PUD, addr))
787 : #define pud_set_fixmap_offset(p4d, addr) pud_set_fixmap(pud_offset_phys(p4d, addr))
788 : #define pud_clear_fixmap() clear_fixmap(FIX_PUD)
789 :
790 : #define p4d_page(p4d) pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
791 :
792 : /* use ONLY for statically allocated translation tables */
793 : #define pud_offset_kimg(dir,addr) ((pud_t *)__phys_to_kimg(pud_offset_phys((dir), (addr))))
794 :
795 : #else
796 :
797 : #define p4d_page_paddr(p4d) ({ BUILD_BUG(); 0;})
798 : #define pgd_page_paddr(pgd) ({ BUILD_BUG(); 0;})
799 :
800 : /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
801 : #define pud_set_fixmap(addr) NULL
802 : #define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp)
803 : #define pud_clear_fixmap()
804 :
805 : #define pud_offset_kimg(dir,addr) ((pud_t *)dir)
806 :
807 : #endif /* CONFIG_PGTABLE_LEVELS > 3 */
808 :
809 : #define pgd_ERROR(e) \
810 : pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
811 :
812 : #define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
813 : #define pgd_clear_fixmap() clear_fixmap(FIX_PGD)
814 :
815 : static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
816 : {
817 : /*
818 : * Normal and Normal-Tagged are two different memory types and indices
819 : * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
820 : */
821 : const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
822 : PTE_PROT_NONE | PTE_VALID | PTE_WRITE | PTE_GP |
823 : PTE_ATTRINDX_MASK;
824 : /* preserve the hardware dirty information */
825 : if (pte_hw_dirty(pte))
826 : pte = pte_mkdirty(pte);
827 : pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
828 : return pte;
829 : }
830 :
831 : static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
832 : {
833 : return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
834 : }
835 :
836 : #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
837 : extern int ptep_set_access_flags(struct vm_area_struct *vma,
838 : unsigned long address, pte_t *ptep,
839 : pte_t entry, int dirty);
840 :
841 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
842 : #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
843 : static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
844 : unsigned long address, pmd_t *pmdp,
845 : pmd_t entry, int dirty)
846 : {
847 : return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
848 : }
849 :
850 : static inline int pud_devmap(pud_t pud)
851 : {
852 : return 0;
853 : }
854 :
855 : static inline int pgd_devmap(pgd_t pgd)
856 : {
857 : return 0;
858 : }
859 : #endif
860 :
861 : #ifdef CONFIG_PAGE_TABLE_CHECK
862 : static inline bool pte_user_accessible_page(pte_t pte)
863 : {
864 : return pte_present(pte) && (pte_user(pte) || pte_user_exec(pte));
865 : }
866 :
867 : static inline bool pmd_user_accessible_page(pmd_t pmd)
868 : {
869 : return pmd_leaf(pmd) && !pmd_present_invalid(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
870 : }
871 :
872 : static inline bool pud_user_accessible_page(pud_t pud)
873 : {
874 : return pud_leaf(pud) && (pud_user(pud) || pud_user_exec(pud));
875 : }
876 : #endif
877 :
878 : /*
879 : * Atomic pte/pmd modifications.
880 : */
881 : #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
882 : static inline int __ptep_test_and_clear_young(pte_t *ptep)
883 : {
884 : pte_t old_pte, pte;
885 :
886 : pte = READ_ONCE(*ptep);
887 : do {
888 : old_pte = pte;
889 : pte = pte_mkold(pte);
890 : pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
891 : pte_val(old_pte), pte_val(pte));
892 : } while (pte_val(pte) != pte_val(old_pte));
893 :
894 : return pte_young(pte);
895 : }
896 :
897 : static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
898 : unsigned long address,
899 : pte_t *ptep)
900 : {
901 : return __ptep_test_and_clear_young(ptep);
902 : }
903 :
904 : #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
905 : static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
906 : unsigned long address, pte_t *ptep)
907 : {
908 : int young = ptep_test_and_clear_young(vma, address, ptep);
909 :
910 : if (young) {
911 : /*
912 : * We can elide the trailing DSB here since the worst that can
913 : * happen is that a CPU continues to use the young entry in its
914 : * TLB and we mistakenly reclaim the associated page. The
915 : * window for such an event is bounded by the next
916 : * context-switch, which provides a DSB to complete the TLB
917 : * invalidation.
918 : */
919 : flush_tlb_page_nosync(vma, address);
920 : }
921 :
922 : return young;
923 : }
924 :
925 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
926 : #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
927 : static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
928 : unsigned long address,
929 : pmd_t *pmdp)
930 : {
931 : return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
932 : }
933 : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
934 :
935 : #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
936 : static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
937 : unsigned long address, pte_t *ptep)
938 : {
939 : pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
940 :
941 : page_table_check_pte_clear(mm, address, pte);
942 :
943 : return pte;
944 : }
945 :
946 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
947 : #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
948 : static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
949 : unsigned long address, pmd_t *pmdp)
950 : {
951 : pmd_t pmd = __pmd(xchg_relaxed(&pmd_val(*pmdp), 0));
952 :
953 : page_table_check_pmd_clear(mm, address, pmd);
954 :
955 : return pmd;
956 : }
957 : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
958 :
959 : /*
960 : * ptep_set_wrprotect - mark read-only while trasferring potential hardware
961 : * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
962 : */
963 : #define __HAVE_ARCH_PTEP_SET_WRPROTECT
964 : static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
965 : {
966 : pte_t old_pte, pte;
967 :
968 : pte = READ_ONCE(*ptep);
969 : do {
970 : old_pte = pte;
971 : pte = pte_wrprotect(pte);
972 : pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
973 : pte_val(old_pte), pte_val(pte));
974 : } while (pte_val(pte) != pte_val(old_pte));
975 : }
976 :
977 : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
978 : #define __HAVE_ARCH_PMDP_SET_WRPROTECT
979 : static inline void pmdp_set_wrprotect(struct mm_struct *mm,
980 : unsigned long address, pmd_t *pmdp)
981 : {
982 : ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
983 : }
984 :
985 : #define pmdp_establish pmdp_establish
986 : static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
987 : unsigned long address, pmd_t *pmdp, pmd_t pmd)
988 : {
989 : page_table_check_pmd_set(vma->vm_mm, address, pmdp, pmd);
990 : return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
991 : }
992 : #endif
993 :
994 : /*
995 : * Encode and decode a swap entry:
996 : * bits 0-1: present (must be zero)
997 : * bits 2: remember PG_anon_exclusive
998 : * bits 3-7: swap type
999 : * bits 8-57: swap offset
1000 : * bit 58: PTE_PROT_NONE (must be zero)
1001 : */
1002 : #define __SWP_TYPE_SHIFT 3
1003 : #define __SWP_TYPE_BITS 5
1004 : #define __SWP_OFFSET_BITS 50
1005 : #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
1006 : #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
1007 : #define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1)
1008 :
1009 : #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1010 : #define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
1011 : #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
1012 :
1013 : #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1014 : #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
1015 :
1016 : #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1017 : #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
1018 : #define __swp_entry_to_pmd(swp) __pmd((swp).val)
1019 : #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1020 :
1021 : /*
1022 : * Ensure that there are not more swap files than can be encoded in the kernel
1023 : * PTEs.
1024 : */
1025 : #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
1026 :
1027 : #ifdef CONFIG_ARM64_MTE
1028 :
1029 : #define __HAVE_ARCH_PREPARE_TO_SWAP
1030 : static inline int arch_prepare_to_swap(struct page *page)
1031 : {
1032 : if (system_supports_mte())
1033 : return mte_save_tags(page);
1034 : return 0;
1035 : }
1036 :
1037 : #define __HAVE_ARCH_SWAP_INVALIDATE
1038 : static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1039 : {
1040 : if (system_supports_mte())
1041 : mte_invalidate_tags(type, offset);
1042 : }
1043 :
1044 : static inline void arch_swap_invalidate_area(int type)
1045 : {
1046 : if (system_supports_mte())
1047 : mte_invalidate_tags_area(type);
1048 : }
1049 :
1050 : #define __HAVE_ARCH_SWAP_RESTORE
1051 : static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
1052 : {
1053 : if (system_supports_mte())
1054 : mte_restore_tags(entry, &folio->page);
1055 : }
1056 :
1057 : #endif /* CONFIG_ARM64_MTE */
1058 :
1059 : /*
1060 : * On AArch64, the cache coherency is handled via the set_pte_at() function.
1061 : */
1062 : static inline void update_mmu_cache(struct vm_area_struct *vma,
1063 : unsigned long addr, pte_t *ptep)
1064 : {
1065 : /*
1066 : * We don't do anything here, so there's a very small chance of
1067 : * us retaking a user fault which we just fixed up. The alternative
1068 : * is doing a dsb(ishst), but that penalises the fastpath.
1069 : */
1070 : }
1071 :
1072 : #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
1073 :
1074 : #ifdef CONFIG_ARM64_PA_BITS_52
1075 : #define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
1076 : #else
1077 : #define phys_to_ttbr(addr) (addr)
1078 : #endif
1079 :
1080 : /*
1081 : * On arm64 without hardware Access Flag, copying from user will fail because
1082 : * the pte is old and cannot be marked young. So we always end up with zeroed
1083 : * page after fork() + CoW for pfn mappings. We don't always have a
1084 : * hardware-managed access flag on arm64.
1085 : */
1086 : #define arch_has_hw_pte_young cpu_has_hw_af
1087 :
1088 : /*
1089 : * Experimentally, it's cheap to set the access flag in hardware and we
1090 : * benefit from prefaulting mappings as 'old' to start with.
1091 : */
1092 : #define arch_wants_old_prefaulted_pte cpu_has_hw_af
1093 :
1094 : static inline bool pud_sect_supported(void)
1095 : {
1096 : return PAGE_SIZE == SZ_4K;
1097 : }
1098 :
1099 :
1100 : #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1101 : #define ptep_modify_prot_start ptep_modify_prot_start
1102 : extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1103 : unsigned long addr, pte_t *ptep);
1104 :
1105 : #define ptep_modify_prot_commit ptep_modify_prot_commit
1106 : extern void ptep_modify_prot_commit(struct vm_area_struct *vma,
1107 : unsigned long addr, pte_t *ptep,
1108 : pte_t old_pte, pte_t new_pte);
1109 : #endif /* !__ASSEMBLY__ */
1110 :
1111 : #endif /* __ASM_PGTABLE_H */
|