LCOV - code coverage report
Current view: top level - fs/xfs - xfs_log_recover.c (source / functions) Hit Total Coverage
Test: fstests of 6.5.0-rc3-acha @ Mon Jul 31 20:08:06 PDT 2023 Lines: 1052 1288 81.7 %
Date: 2023-07-31 20:08:07 Functions: 55 56 98.2 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
       4             :  * All Rights Reserved.
       5             :  */
       6             : #include "xfs.h"
       7             : #include "xfs_fs.h"
       8             : #include "xfs_shared.h"
       9             : #include "xfs_format.h"
      10             : #include "xfs_log_format.h"
      11             : #include "xfs_trans_resv.h"
      12             : #include "xfs_bit.h"
      13             : #include "xfs_sb.h"
      14             : #include "xfs_mount.h"
      15             : #include "xfs_defer.h"
      16             : #include "xfs_inode.h"
      17             : #include "xfs_trans.h"
      18             : #include "xfs_log.h"
      19             : #include "xfs_log_priv.h"
      20             : #include "xfs_log_recover.h"
      21             : #include "xfs_trans_priv.h"
      22             : #include "xfs_alloc.h"
      23             : #include "xfs_ialloc.h"
      24             : #include "xfs_trace.h"
      25             : #include "xfs_icache.h"
      26             : #include "xfs_error.h"
      27             : #include "xfs_buf_item.h"
      28             : #include "xfs_ag.h"
      29             : #include "xfs_quota.h"
      30             : #include "xfs_reflink.h"
      31             : 
      32             : #define BLK_AVG(blk1, blk2)     ((blk1+blk2) >> 1)
      33             : 
      34             : STATIC int
      35             : xlog_find_zeroed(
      36             :         struct xlog     *,
      37             :         xfs_daddr_t     *);
      38             : STATIC int
      39             : xlog_clear_stale_blocks(
      40             :         struct xlog     *,
      41             :         xfs_lsn_t);
      42             : STATIC int
      43             : xlog_do_recovery_pass(
      44             :         struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
      45             : 
      46             : /*
      47             :  * Sector aligned buffer routines for buffer create/read/write/access
      48             :  */
      49             : 
      50             : /*
      51             :  * Verify the log-relative block number and length in basic blocks are valid for
      52             :  * an operation involving the given XFS log buffer. Returns true if the fields
      53             :  * are valid, false otherwise.
      54             :  */
      55             : static inline bool
      56             : xlog_verify_bno(
      57             :         struct xlog     *log,
      58             :         xfs_daddr_t     blk_no,
      59             :         int             bbcount)
      60             : {
      61    12963303 :         if (blk_no < 0 || blk_no >= log->l_logBBsize)
      62             :                 return false;
      63    13213844 :         if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
      64           0 :                 return false;
      65             :         return true;
      66             : }
      67             : 
      68             : /*
      69             :  * Allocate a buffer to hold log data.  The buffer needs to be able to map to
      70             :  * a range of nbblks basic blocks at any valid offset within the log.
      71             :  */
      72             : static char *
      73      250541 : xlog_alloc_buffer(
      74             :         struct xlog     *log,
      75             :         int             nbblks)
      76             : {
      77             :         /*
      78             :          * Pass log block 0 since we don't have an addr yet, buffer will be
      79             :          * verified on read.
      80             :          */
      81      501082 :         if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) {
      82           0 :                 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
      83             :                         nbblks);
      84           0 :                 return NULL;
      85             :         }
      86             : 
      87             :         /*
      88             :          * We do log I/O in units of log sectors (a power-of-2 multiple of the
      89             :          * basic block size), so we round up the requested size to accommodate
      90             :          * the basic blocks required for complete log sectors.
      91             :          *
      92             :          * In addition, the buffer may be used for a non-sector-aligned block
      93             :          * offset, in which case an I/O of the requested size could extend
      94             :          * beyond the end of the buffer.  If the requested size is only 1 basic
      95             :          * block it will never straddle a sector boundary, so this won't be an
      96             :          * issue.  Nor will this be a problem if the log I/O is done in basic
      97             :          * blocks (sector size 1).  But otherwise we extend the buffer by one
      98             :          * extra log sector to ensure there's space to accommodate this
      99             :          * possibility.
     100             :          */
     101      250541 :         if (nbblks > 1 && log->l_sectBBsize > 1)
     102      117803 :                 nbblks += log->l_sectBBsize;
     103      250541 :         nbblks = round_up(nbblks, log->l_sectBBsize);
     104      250541 :         return kvzalloc(BBTOB(nbblks), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
     105             : }
     106             : 
     107             : /*
     108             :  * Return the address of the start of the given block number's data
     109             :  * in a log buffer.  The buffer covers a log sector-aligned region.
     110             :  */
     111             : static inline unsigned int
     112             : xlog_align(
     113             :         struct xlog     *log,
     114             :         xfs_daddr_t     blk_no)
     115             : {
     116    12961924 :         return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1));
     117             : }
     118             : 
     119             : static int
     120    12963303 : xlog_do_io(
     121             :         struct xlog             *log,
     122             :         xfs_daddr_t             blk_no,
     123             :         unsigned int            nbblks,
     124             :         char                    *data,
     125             :         enum req_op             op)
     126             : {
     127    12963303 :         int                     error;
     128             : 
     129    25926606 :         if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) {
     130           0 :                 xfs_warn(log->l_mp,
     131             :                          "Invalid log block/length (0x%llx, 0x%x) for buffer",
     132             :                          blk_no, nbblks);
     133           0 :                 return -EFSCORRUPTED;
     134             :         }
     135             : 
     136    12963303 :         blk_no = round_down(blk_no, log->l_sectBBsize);
     137    12963303 :         nbblks = round_up(nbblks, log->l_sectBBsize);
     138    12963303 :         ASSERT(nbblks > 0);
     139             : 
     140    12963303 :         error = xfs_rw_bdev(xfs_buftarg_bdev(log->l_targ),
     141    12963303 :                         log->l_logBBstart + blk_no,
     142             :                         BBTOB(nbblks), data, op);
     143    12963303 :         if (error && !xlog_is_shutdown(log)) {
     144           0 :                 xfs_alert(log->l_mp,
     145             :                           "log recovery %s I/O error at daddr 0x%llx len %d error %d",
     146             :                           op == REQ_OP_WRITE ? "write" : "read",
     147             :                           blk_no, nbblks, error);
     148             :         }
     149             :         return error;
     150             : }
     151             : 
     152             : STATIC int
     153        1379 : xlog_bread_noalign(
     154             :         struct xlog     *log,
     155             :         xfs_daddr_t     blk_no,
     156             :         int             nbblks,
     157             :         char            *data)
     158             : {
     159        1379 :         return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
     160             : }
     161             : 
     162             : STATIC int
     163    12858620 : xlog_bread(
     164             :         struct xlog     *log,
     165             :         xfs_daddr_t     blk_no,
     166             :         int             nbblks,
     167             :         char            *data,
     168             :         char            **offset)
     169             : {
     170    12858620 :         int             error;
     171             : 
     172    12858620 :         error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
     173    12858620 :         if (!error)
     174    12858620 :                 *offset = data + xlog_align(log, blk_no);
     175    12858620 :         return error;
     176             : }
     177             : 
     178             : STATIC int
     179      103304 : xlog_bwrite(
     180             :         struct xlog     *log,
     181             :         xfs_daddr_t     blk_no,
     182             :         int             nbblks,
     183             :         char            *data)
     184             : {
     185      103304 :         return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE);
     186             : }
     187             : 
     188             : #ifdef DEBUG
     189             : /*
     190             :  * dump debug superblock and log record information
     191             :  */
     192             : STATIC void
     193           0 : xlog_header_check_dump(
     194             :         xfs_mount_t             *mp,
     195             :         xlog_rec_header_t       *head)
     196             : {
     197           0 :         xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
     198             :                 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
     199           0 :         xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
     200             :                 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
     201           0 : }
     202             : #else
     203             : #define xlog_header_check_dump(mp, head)
     204             : #endif
     205             : 
     206             : /*
     207             :  * check log record header for recovery
     208             :  */
     209             : STATIC int
     210     2609736 : xlog_header_check_recover(
     211             :         xfs_mount_t             *mp,
     212             :         xlog_rec_header_t       *head)
     213             : {
     214     2609736 :         ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
     215             : 
     216             :         /*
     217             :          * IRIX doesn't write the h_fmt field and leaves it zeroed
     218             :          * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
     219             :          * a dirty log created in IRIX.
     220             :          */
     221     2609736 :         if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) {
     222           0 :                 xfs_warn(mp,
     223             :         "dirty log written in incompatible format - can't recover");
     224           0 :                 xlog_header_check_dump(mp, head);
     225           0 :                 return -EFSCORRUPTED;
     226             :         }
     227     2609736 :         if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
     228             :                                            &head->h_fs_uuid))) {
     229           0 :                 xfs_warn(mp,
     230             :         "dirty log entry has mismatched uuid - can't recover");
     231           0 :                 xlog_header_check_dump(mp, head);
     232           0 :                 return -EFSCORRUPTED;
     233             :         }
     234             :         return 0;
     235             : }
     236             : 
     237             : /*
     238             :  * read the head block of the log and check the header
     239             :  */
     240             : STATIC int
     241       24101 : xlog_header_check_mount(
     242             :         xfs_mount_t             *mp,
     243             :         xlog_rec_header_t       *head)
     244             : {
     245       24101 :         ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
     246             : 
     247       24101 :         if (uuid_is_null(&head->h_fs_uuid)) {
     248             :                 /*
     249             :                  * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
     250             :                  * h_fs_uuid is null, we assume this log was last mounted
     251             :                  * by IRIX and continue.
     252             :                  */
     253           0 :                 xfs_warn(mp, "null uuid in log - IRIX style log");
     254       24101 :         } else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
     255             :                                                   &head->h_fs_uuid))) {
     256           0 :                 xfs_warn(mp, "log has mismatched uuid - can't recover");
     257           0 :                 xlog_header_check_dump(mp, head);
     258           0 :                 return -EFSCORRUPTED;
     259             :         }
     260             :         return 0;
     261             : }
     262             : 
     263             : /*
     264             :  * This routine finds (to an approximation) the first block in the physical
     265             :  * log which contains the given cycle.  It uses a binary search algorithm.
     266             :  * Note that the algorithm can not be perfect because the disk will not
     267             :  * necessarily be perfect.
     268             :  */
     269             : STATIC int
     270       24101 : xlog_find_cycle_start(
     271             :         struct xlog     *log,
     272             :         char            *buffer,
     273             :         xfs_daddr_t     first_blk,
     274             :         xfs_daddr_t     *last_blk,
     275             :         uint            cycle)
     276             : {
     277       24101 :         char            *offset;
     278       24101 :         xfs_daddr_t     mid_blk;
     279       24101 :         xfs_daddr_t     end_blk;
     280       24101 :         uint            mid_cycle;
     281       24101 :         int             error;
     282             : 
     283       24101 :         end_blk = *last_blk;
     284       24101 :         mid_blk = BLK_AVG(first_blk, end_blk);
     285      431757 :         while (mid_blk != first_blk && mid_blk != end_blk) {
     286      407656 :                 error = xlog_bread(log, mid_blk, 1, buffer, &offset);
     287      407656 :                 if (error)
     288           0 :                         return error;
     289      407656 :                 mid_cycle = xlog_get_cycle(offset);
     290      407656 :                 if (mid_cycle == cycle)
     291             :                         end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
     292             :                 else
     293      131271 :                         first_blk = mid_blk; /* first_half_cycle == mid_cycle */
     294      407656 :                 mid_blk = BLK_AVG(first_blk, end_blk);
     295             :         }
     296       24101 :         ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
     297             :                (mid_blk == end_blk && mid_blk-1 == first_blk));
     298             : 
     299       24101 :         *last_blk = end_blk;
     300             : 
     301       24101 :         return 0;
     302             : }
     303             : 
     304             : /*
     305             :  * Check that a range of blocks does not contain stop_on_cycle_no.
     306             :  * Fill in *new_blk with the block offset where such a block is
     307             :  * found, or with -1 (an invalid block number) if there is no such
     308             :  * block in the range.  The scan needs to occur from front to back
     309             :  * and the pointer into the region must be updated since a later
     310             :  * routine will need to perform another test.
     311             :  */
     312             : STATIC int
     313       24743 : xlog_find_verify_cycle(
     314             :         struct xlog     *log,
     315             :         xfs_daddr_t     start_blk,
     316             :         int             nbblks,
     317             :         uint            stop_on_cycle_no,
     318             :         xfs_daddr_t     *new_blk)
     319             : {
     320       24743 :         xfs_daddr_t     i, j;
     321       24743 :         uint            cycle;
     322       24743 :         char            *buffer;
     323       24743 :         xfs_daddr_t     bufblks;
     324       24743 :         char            *buf = NULL;
     325       24743 :         int             error = 0;
     326             : 
     327             :         /*
     328             :          * Greedily allocate a buffer big enough to handle the full
     329             :          * range of basic blocks we'll be examining.  If that fails,
     330             :          * try a smaller size.  We need to be able to read at least
     331             :          * a log sector, or we're out of luck.
     332             :          */
     333       24743 :         bufblks = 1 << ffs(nbblks);
     334       24743 :         while (bufblks > log->l_logBBsize)
     335           0 :                 bufblks >>= 1;
     336       24743 :         while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
     337           0 :                 bufblks >>= 1;
     338           0 :                 if (bufblks < log->l_sectBBsize)
     339             :                         return -ENOMEM;
     340             :         }
     341             : 
     342      213957 :         for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
     343      189233 :                 int     bcount;
     344             : 
     345      189233 :                 bcount = min(bufblks, (start_blk + nbblks - i));
     346             : 
     347      189233 :                 error = xlog_bread(log, i, bcount, buffer, &buf);
     348      189233 :                 if (error)
     349           0 :                         goto out;
     350             : 
     351    71341082 :                 for (j = 0; j < bcount; j++) {
     352    71151868 :                         cycle = xlog_get_cycle(buf);
     353    71151868 :                         if (cycle == stop_on_cycle_no) {
     354          19 :                                 *new_blk = i+j;
     355          19 :                                 goto out;
     356             :                         }
     357             : 
     358    71151849 :                         buf += BBSIZE;
     359             :                 }
     360             :         }
     361             : 
     362       24724 :         *new_blk = -1;
     363             : 
     364       24743 : out:
     365       24743 :         kmem_free(buffer);
     366       24743 :         return error;
     367             : }
     368             : 
     369             : static inline int
     370       93349 : xlog_logrec_hblks(struct xlog *log, struct xlog_rec_header *rh)
     371             : {
     372       93349 :         if (xfs_has_logv2(log->l_mp)) {
     373       93337 :                 int     h_size = be32_to_cpu(rh->h_size);
     374             : 
     375       93337 :                 if ((be32_to_cpu(rh->h_version) & XLOG_VERSION_2) &&
     376             :                     h_size > XLOG_HEADER_CYCLE_SIZE)
     377         444 :                         return DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE);
     378             :         }
     379             :         return 1;
     380             : }
     381             : 
     382             : /*
     383             :  * Potentially backup over partial log record write.
     384             :  *
     385             :  * In the typical case, last_blk is the number of the block directly after
     386             :  * a good log record.  Therefore, we subtract one to get the block number
     387             :  * of the last block in the given buffer.  extra_bblks contains the number
     388             :  * of blocks we would have read on a previous read.  This happens when the
     389             :  * last log record is split over the end of the physical log.
     390             :  *
     391             :  * extra_bblks is the number of blocks potentially verified on a previous
     392             :  * call to this routine.
     393             :  */
     394             : STATIC int
     395       24110 : xlog_find_verify_log_record(
     396             :         struct xlog             *log,
     397             :         xfs_daddr_t             start_blk,
     398             :         xfs_daddr_t             *last_blk,
     399             :         int                     extra_bblks)
     400             : {
     401       24110 :         xfs_daddr_t             i;
     402       24110 :         char                    *buffer;
     403       24110 :         char                    *offset = NULL;
     404       24110 :         xlog_rec_header_t       *head = NULL;
     405       24110 :         int                     error = 0;
     406       24110 :         int                     smallmem = 0;
     407       24110 :         int                     num_blks = *last_blk - start_blk;
     408       24110 :         int                     xhdrs;
     409             : 
     410       24110 :         ASSERT(start_blk != 0 || *last_blk != start_blk);
     411             : 
     412       24110 :         buffer = xlog_alloc_buffer(log, num_blks);
     413       24110 :         if (!buffer) {
     414           0 :                 buffer = xlog_alloc_buffer(log, 1);
     415           0 :                 if (!buffer)
     416             :                         return -ENOMEM;
     417             :                 smallmem = 1;
     418             :         } else {
     419       24110 :                 error = xlog_bread(log, start_blk, num_blks, buffer, &offset);
     420       24110 :                 if (error)
     421           0 :                         goto out;
     422       24110 :                 offset += ((num_blks - 1) << BBSHIFT);
     423             :         }
     424             : 
     425      538783 :         for (i = (*last_blk) - 1; i >= 0; i--) {
     426      538778 :                 if (i < start_blk) {
     427             :                         /* valid log record not found */
     428           4 :                         xfs_warn(log->l_mp,
     429             :                 "Log inconsistent (didn't find previous header)");
     430           4 :                         ASSERT(0);
     431           4 :                         error = -EFSCORRUPTED;
     432           4 :                         goto out;
     433             :                 }
     434             : 
     435      538774 :                 if (smallmem) {
     436           0 :                         error = xlog_bread(log, i, 1, buffer, &offset);
     437           0 :                         if (error)
     438           0 :                                 goto out;
     439             :                 }
     440             : 
     441      538774 :                 head = (xlog_rec_header_t *)offset;
     442             : 
     443      538774 :                 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
     444             :                         break;
     445             : 
     446      514673 :                 if (!smallmem)
     447      514673 :                         offset -= BBSIZE;
     448             :         }
     449             : 
     450             :         /*
     451             :          * We hit the beginning of the physical log & still no header.  Return
     452             :          * to caller.  If caller can handle a return of -1, then this routine
     453             :          * will be called again for the end of the physical log.
     454             :          */
     455       24106 :         if (i == -1) {
     456           5 :                 error = 1;
     457           5 :                 goto out;
     458             :         }
     459             : 
     460             :         /*
     461             :          * We have the final block of the good log (the first block
     462             :          * of the log record _before_ the head. So we check the uuid.
     463             :          */
     464       24101 :         if ((error = xlog_header_check_mount(log->l_mp, head)))
     465           0 :                 goto out;
     466             : 
     467             :         /*
     468             :          * We may have found a log record header before we expected one.
     469             :          * last_blk will be the 1st block # with a given cycle #.  We may end
     470             :          * up reading an entire log record.  In this case, we don't want to
     471             :          * reset last_blk.  Only when last_blk points in the middle of a log
     472             :          * record do we update last_blk.
     473             :          */
     474       24101 :         xhdrs = xlog_logrec_hblks(log, head);
     475             : 
     476       48202 :         if (*last_blk - i + extra_bblks !=
     477       24101 :             BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
     478          37 :                 *last_blk = i;
     479             : 
     480       24064 : out:
     481       24110 :         kmem_free(buffer);
     482       24110 :         return error;
     483             : }
     484             : 
     485             : /*
     486             :  * Head is defined to be the point of the log where the next log write
     487             :  * could go.  This means that incomplete LR writes at the end are
     488             :  * eliminated when calculating the head.  We aren't guaranteed that previous
     489             :  * LR have complete transactions.  We only know that a cycle number of
     490             :  * current cycle number -1 won't be present in the log if we start writing
     491             :  * from our current block number.
     492             :  *
     493             :  * last_blk contains the block number of the first block with a given
     494             :  * cycle number.
     495             :  *
     496             :  * Return: zero if normal, non-zero if error.
     497             :  */
     498             : STATIC int
     499       24105 : xlog_find_head(
     500             :         struct xlog     *log,
     501             :         xfs_daddr_t     *return_head_blk)
     502             : {
     503       24105 :         char            *buffer;
     504       24105 :         char            *offset;
     505       24105 :         xfs_daddr_t     new_blk, first_blk, start_blk, last_blk, head_blk;
     506       24105 :         int             num_scan_bblks;
     507       24105 :         uint            first_half_cycle, last_half_cycle;
     508       24105 :         uint            stop_on_cycle;
     509       24105 :         int             error, log_bbnum = log->l_logBBsize;
     510             : 
     511             :         /* Is the end of the log device zeroed? */
     512       24105 :         error = xlog_find_zeroed(log, &first_blk);
     513       24105 :         if (error < 0) {
     514           0 :                 xfs_warn(log->l_mp, "empty log check failed");
     515           0 :                 return error;
     516             :         }
     517       24105 :         if (error == 1) {
     518        8217 :                 *return_head_blk = first_blk;
     519             : 
     520             :                 /* Is the whole lot zeroed? */
     521        8217 :                 if (!first_blk) {
     522             :                         /* Linux XFS shouldn't generate totally zeroed logs -
     523             :                          * mkfs etc write a dummy unmount record to a fresh
     524             :                          * log so we can store the uuid in there
     525             :                          */
     526           0 :                         xfs_warn(log->l_mp, "totally zeroed log");
     527             :                 }
     528             : 
     529        8217 :                 return 0;
     530             :         }
     531             : 
     532       15888 :         first_blk = 0;                  /* get cycle # of 1st block */
     533       15888 :         buffer = xlog_alloc_buffer(log, 1);
     534       15888 :         if (!buffer)
     535             :                 return -ENOMEM;
     536             : 
     537       15888 :         error = xlog_bread(log, 0, 1, buffer, &offset);
     538       15888 :         if (error)
     539           0 :                 goto out_free_buffer;
     540             : 
     541       15888 :         first_half_cycle = xlog_get_cycle(offset);
     542             : 
     543       15888 :         last_blk = head_blk = log_bbnum - 1;    /* get cycle # of last block */
     544       15888 :         error = xlog_bread(log, last_blk, 1, buffer, &offset);
     545       15888 :         if (error)
     546           0 :                 goto out_free_buffer;
     547             : 
     548       15888 :         last_half_cycle = xlog_get_cycle(offset);
     549       15888 :         ASSERT(last_half_cycle != 0);
     550             : 
     551             :         /*
     552             :          * If the 1st half cycle number is equal to the last half cycle number,
     553             :          * then the entire log is stamped with the same cycle number.  In this
     554             :          * case, head_blk can't be set to zero (which makes sense).  The below
     555             :          * math doesn't work out properly with head_blk equal to zero.  Instead,
     556             :          * we set it to log_bbnum which is an invalid block number, but this
     557             :          * value makes the math correct.  If head_blk doesn't changed through
     558             :          * all the tests below, *head_blk is set to zero at the very end rather
     559             :          * than log_bbnum.  In a sense, log_bbnum and zero are the same block
     560             :          * in a circular file.
     561             :          */
     562       15888 :         if (first_half_cycle == last_half_cycle) {
     563             :                 /*
     564             :                  * In this case we believe that the entire log should have
     565             :                  * cycle number last_half_cycle.  We need to scan backwards
     566             :                  * from the end verifying that there are no holes still
     567             :                  * containing last_half_cycle - 1.  If we find such a hole,
     568             :                  * then the start of that hole will be the new head.  The
     569             :                  * simple case looks like
     570             :                  *        x | x ... | x - 1 | x
     571             :                  * Another case that fits this picture would be
     572             :                  *        x | x + 1 | x ... | x
     573             :                  * In this case the head really is somewhere at the end of the
     574             :                  * log, as one of the latest writes at the beginning was
     575             :                  * incomplete.
     576             :                  * One more case is
     577             :                  *        x | x + 1 | x ... | x - 1 | x
     578             :                  * This is really the combination of the above two cases, and
     579             :                  * the head has to end up at the start of the x-1 hole at the
     580             :                  * end of the log.
     581             :                  *
     582             :                  * In the 256k log case, we will read from the beginning to the
     583             :                  * end of the log and search for cycle numbers equal to x-1.
     584             :                  * We don't worry about the x+1 blocks that we encounter,
     585             :                  * because we know that they cannot be the head since the log
     586             :                  * started with x.
     587             :                  */
     588           4 :                 head_blk = log_bbnum;
     589           4 :                 stop_on_cycle = last_half_cycle - 1;
     590             :         } else {
     591             :                 /*
     592             :                  * In this case we want to find the first block with cycle
     593             :                  * number matching last_half_cycle.  We expect the log to be
     594             :                  * some variation on
     595             :                  *        x + 1 ... | x ... | x
     596             :                  * The first block with cycle number x (last_half_cycle) will
     597             :                  * be where the new head belongs.  First we do a binary search
     598             :                  * for the first occurrence of last_half_cycle.  The binary
     599             :                  * search may not be totally accurate, so then we scan back
     600             :                  * from there looking for occurrences of last_half_cycle before
     601             :                  * us.  If that backwards scan wraps around the beginning of
     602             :                  * the log, then we look for occurrences of last_half_cycle - 1
     603             :                  * at the end of the log.  The cases we're looking for look
     604             :                  * like
     605             :                  *                               v binary search stopped here
     606             :                  *        x + 1 ... | x | x + 1 | x ... | x
     607             :                  *                   ^ but we want to locate this spot
     608             :                  * or
     609             :                  *        <---------> less than scan distance
     610             :                  *        x + 1 ... | x ... | x - 1 | x
     611             :                  *                           ^ we want to locate this spot
     612             :                  */
     613       15884 :                 stop_on_cycle = last_half_cycle;
     614       15884 :                 error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk,
     615             :                                 last_half_cycle);
     616       15884 :                 if (error)
     617           0 :                         goto out_free_buffer;
     618             :         }
     619             : 
     620             :         /*
     621             :          * Now validate the answer.  Scan back some number of maximum possible
     622             :          * blocks and make sure each one has the expected cycle number.  The
     623             :          * maximum is determined by the total possible amount of buffering
     624             :          * in the in-core log.  The following number can be made tighter if
     625             :          * we actually look at the block size of the filesystem.
     626             :          */
     627       15888 :         num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
     628       15888 :         if (head_blk >= num_scan_bblks) {
     629             :                 /*
     630             :                  * We are guaranteed that the entire check can be performed
     631             :                  * in one buffer.
     632             :                  */
     633       15250 :                 start_blk = head_blk - num_scan_bblks;
     634       15250 :                 if ((error = xlog_find_verify_cycle(log,
     635             :                                                 start_blk, num_scan_bblks,
     636             :                                                 stop_on_cycle, &new_blk)))
     637           0 :                         goto out_free_buffer;
     638       15250 :                 if (new_blk != -1)
     639          16 :                         head_blk = new_blk;
     640             :         } else {                /* need to read 2 parts of log */
     641             :                 /*
     642             :                  * We are going to scan backwards in the log in two parts.
     643             :                  * First we scan the physical end of the log.  In this part
     644             :                  * of the log, we are looking for blocks with cycle number
     645             :                  * last_half_cycle - 1.
     646             :                  * If we find one, then we know that the log starts there, as
     647             :                  * we've found a hole that didn't get written in going around
     648             :                  * the end of the physical log.  The simple case for this is
     649             :                  *        x + 1 ... | x ... | x - 1 | x
     650             :                  *        <---------> less than scan distance
     651             :                  * If all of the blocks at the end of the log have cycle number
     652             :                  * last_half_cycle, then we check the blocks at the start of
     653             :                  * the log looking for occurrences of last_half_cycle.  If we
     654             :                  * find one, then our current estimate for the location of the
     655             :                  * first occurrence of last_half_cycle is wrong and we move
     656             :                  * back to the hole we've found.  This case looks like
     657             :                  *        x + 1 ... | x | x + 1 | x ...
     658             :                  *                               ^ binary search stopped here
     659             :                  * Another case we need to handle that only occurs in 256k
     660             :                  * logs is
     661             :                  *        x + 1 ... | x ... | x+1 | x ...
     662             :                  *                   ^ binary search stops here
     663             :                  * In a 256k log, the scan at the end of the log will see the
     664             :                  * x + 1 blocks.  We need to skip past those since that is
     665             :                  * certainly not the head of the log.  By searching for
     666             :                  * last_half_cycle-1 we accomplish that.
     667             :                  */
     668         638 :                 ASSERT(head_blk <= INT_MAX &&
     669             :                         (xfs_daddr_t) num_scan_bblks >= head_blk);
     670         638 :                 start_blk = log_bbnum - (num_scan_bblks - head_blk);
     671         638 :                 if ((error = xlog_find_verify_cycle(log, start_blk,
     672         638 :                                         num_scan_bblks - (int)head_blk,
     673             :                                         (stop_on_cycle - 1), &new_blk)))
     674           0 :                         goto out_free_buffer;
     675         638 :                 if (new_blk != -1) {
     676           0 :                         head_blk = new_blk;
     677           0 :                         goto validate_head;
     678             :                 }
     679             : 
     680             :                 /*
     681             :                  * Scan beginning of log now.  The last part of the physical
     682             :                  * log is good.  This scan needs to verify that it doesn't find
     683             :                  * the last_half_cycle.
     684             :                  */
     685         638 :                 start_blk = 0;
     686         638 :                 ASSERT(head_blk <= INT_MAX);
     687         638 :                 if ((error = xlog_find_verify_cycle(log,
     688             :                                         start_blk, (int)head_blk,
     689             :                                         stop_on_cycle, &new_blk)))
     690           0 :                         goto out_free_buffer;
     691         638 :                 if (new_blk != -1)
     692           0 :                         head_blk = new_blk;
     693             :         }
     694             : 
     695         638 : validate_head:
     696             :         /*
     697             :          * Now we need to make sure head_blk is not pointing to a block in
     698             :          * the middle of a log record.
     699             :          */
     700       15888 :         num_scan_bblks = XLOG_REC_SHIFT(log);
     701       15888 :         if (head_blk >= num_scan_bblks) {
     702       15793 :                 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
     703             : 
     704             :                 /* start ptr at last block ptr before head_blk */
     705       15793 :                 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
     706       15793 :                 if (error == 1)
     707             :                         error = -EIO;
     708       15793 :                 if (error)
     709           4 :                         goto out_free_buffer;
     710             :         } else {
     711          95 :                 start_blk = 0;
     712          95 :                 ASSERT(head_blk <= INT_MAX);
     713          95 :                 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
     714          95 :                 if (error < 0)
     715           0 :                         goto out_free_buffer;
     716          95 :                 if (error == 1) {
     717             :                         /* We hit the beginning of the log during our search */
     718           5 :                         start_blk = log_bbnum - (num_scan_bblks - head_blk);
     719           5 :                         new_blk = log_bbnum;
     720           5 :                         ASSERT(start_blk <= INT_MAX &&
     721             :                                 (xfs_daddr_t) log_bbnum-start_blk >= 0);
     722           5 :                         ASSERT(head_blk <= INT_MAX);
     723           5 :                         error = xlog_find_verify_log_record(log, start_blk,
     724             :                                                         &new_blk, (int)head_blk);
     725           5 :                         if (error == 1)
     726             :                                 error = -EIO;
     727           5 :                         if (error)
     728           0 :                                 goto out_free_buffer;
     729           5 :                         if (new_blk != log_bbnum)
     730           0 :                                 head_blk = new_blk;
     731          90 :                 } else if (error)
     732           0 :                         goto out_free_buffer;
     733             :         }
     734             : 
     735       15884 :         kmem_free(buffer);
     736       15884 :         if (head_blk == log_bbnum)
     737           0 :                 *return_head_blk = 0;
     738             :         else
     739       15884 :                 *return_head_blk = head_blk;
     740             :         /*
     741             :          * When returning here, we have a good block number.  Bad block
     742             :          * means that during a previous crash, we didn't have a clean break
     743             :          * from cycle number N to cycle number N-1.  In this case, we need
     744             :          * to find the first block with cycle number N-1.
     745             :          */
     746             :         return 0;
     747             : 
     748           4 : out_free_buffer:
     749           4 :         kmem_free(buffer);
     750           4 :         if (error)
     751           4 :                 xfs_warn(log->l_mp, "failed to find log head");
     752           4 :         return error;
     753             : }
     754             : 
     755             : /*
     756             :  * Seek backwards in the log for log record headers.
     757             :  *
     758             :  * Given a starting log block, walk backwards until we find the provided number
     759             :  * of records or hit the provided tail block. The return value is the number of
     760             :  * records encountered or a negative error code. The log block and buffer
     761             :  * pointer of the last record seen are returned in rblk and rhead respectively.
     762             :  */
     763             : STATIC int
     764       35397 : xlog_rseek_logrec_hdr(
     765             :         struct xlog             *log,
     766             :         xfs_daddr_t             head_blk,
     767             :         xfs_daddr_t             tail_blk,
     768             :         int                     count,
     769             :         char                    *buffer,
     770             :         xfs_daddr_t             *rblk,
     771             :         struct xlog_rec_header  **rhead,
     772             :         bool                    *wrapped)
     773             : {
     774       35397 :         int                     i;
     775       35397 :         int                     error;
     776       35397 :         int                     found = 0;
     777       35397 :         char                    *offset = NULL;
     778       35397 :         xfs_daddr_t             end_blk;
     779             : 
     780       35397 :         *wrapped = false;
     781             : 
     782             :         /*
     783             :          * Walk backwards from the head block until we hit the tail or the first
     784             :          * block in the log.
     785             :          */
     786       35397 :         end_blk = head_blk > tail_blk ? tail_blk : 0;
     787     4095717 :         for (i = (int) head_blk - 1; i >= end_blk; i--) {
     788     4092360 :                 error = xlog_bread(log, i, 1, buffer, &offset);
     789     4092360 :                 if (error)
     790           0 :                         goto out_error;
     791             : 
     792     4092360 :                 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
     793       94978 :                         *rblk = i;
     794       94978 :                         *rhead = (struct xlog_rec_header *) offset;
     795       94978 :                         if (++found == count)
     796             :                                 break;
     797             :                 }
     798             :         }
     799             : 
     800             :         /*
     801             :          * If we haven't hit the tail block or the log record header count,
     802             :          * start looking again from the end of the physical log. Note that
     803             :          * callers can pass head == tail if the tail is not yet known.
     804             :          */
     805       35397 :         if (tail_blk >= head_blk && found != count) {
     806       24667 :                 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
     807       24664 :                         error = xlog_bread(log, i, 1, buffer, &offset);
     808       24664 :                         if (error)
     809           0 :                                 goto out_error;
     810             : 
     811       24664 :                         if (*(__be32 *)offset ==
     812             :                             cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
     813         194 :                                 *wrapped = true;
     814         194 :                                 *rblk = i;
     815         194 :                                 *rhead = (struct xlog_rec_header *) offset;
     816         194 :                                 if (++found == count)
     817             :                                         break;
     818             :                         }
     819             :                 }
     820             :         }
     821             : 
     822             :         return found;
     823             : 
     824             : out_error:
     825             :         return error;
     826             : }
     827             : 
     828             : /*
     829             :  * Seek forward in the log for log record headers.
     830             :  *
     831             :  * Given head and tail blocks, walk forward from the tail block until we find
     832             :  * the provided number of records or hit the head block. The return value is the
     833             :  * number of records encountered or a negative error code. The log block and
     834             :  * buffer pointer of the last record seen are returned in rblk and rhead
     835             :  * respectively.
     836             :  */
     837             : STATIC int
     838       11285 : xlog_seek_logrec_hdr(
     839             :         struct xlog             *log,
     840             :         xfs_daddr_t             head_blk,
     841             :         xfs_daddr_t             tail_blk,
     842             :         int                     count,
     843             :         char                    *buffer,
     844             :         xfs_daddr_t             *rblk,
     845             :         struct xlog_rec_header  **rhead,
     846             :         bool                    *wrapped)
     847             : {
     848       11285 :         int                     i;
     849       11285 :         int                     error;
     850       11285 :         int                     found = 0;
     851       11285 :         char                    *offset = NULL;
     852       11285 :         xfs_daddr_t             end_blk;
     853             : 
     854       11285 :         *wrapped = false;
     855             : 
     856             :         /*
     857             :          * Walk forward from the tail block until we hit the head or the last
     858             :          * block in the log.
     859             :          */
     860       11285 :         end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
     861       11285 :         for (i = (int) tail_blk; i <= end_blk; i++) {
     862       11285 :                 error = xlog_bread(log, i, 1, buffer, &offset);
     863       11285 :                 if (error)
     864           0 :                         goto out_error;
     865             : 
     866       11285 :                 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
     867       11285 :                         *rblk = i;
     868       11285 :                         *rhead = (struct xlog_rec_header *) offset;
     869       11285 :                         if (++found == count)
     870             :                                 break;
     871             :                 }
     872             :         }
     873             : 
     874             :         /*
     875             :          * If we haven't hit the head block or the log record header count,
     876             :          * start looking again from the start of the physical log.
     877             :          */
     878       11285 :         if (tail_blk > head_blk && found != count) {
     879           0 :                 for (i = 0; i < (int) head_blk; i++) {
     880           0 :                         error = xlog_bread(log, i, 1, buffer, &offset);
     881           0 :                         if (error)
     882           0 :                                 goto out_error;
     883             : 
     884           0 :                         if (*(__be32 *)offset ==
     885             :                             cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
     886           0 :                                 *wrapped = true;
     887           0 :                                 *rblk = i;
     888           0 :                                 *rhead = (struct xlog_rec_header *) offset;
     889           0 :                                 if (++found == count)
     890             :                                         break;
     891             :                         }
     892             :                 }
     893             :         }
     894             : 
     895             :         return found;
     896             : 
     897             : out_error:
     898             :         return error;
     899             : }
     900             : 
     901             : /*
     902             :  * Calculate distance from head to tail (i.e., unused space in the log).
     903             :  */
     904             : static inline int
     905             : xlog_tail_distance(
     906             :         struct xlog     *log,
     907             :         xfs_daddr_t     head_blk,
     908             :         xfs_daddr_t     tail_blk)
     909             : {
     910           0 :         if (head_blk < tail_blk)
     911           0 :                 return tail_blk - head_blk;
     912             : 
     913           0 :         return tail_blk + (log->l_logBBsize - head_blk);
     914             : }
     915             : 
     916             : /*
     917             :  * Verify the log tail. This is particularly important when torn or incomplete
     918             :  * writes have been detected near the front of the log and the head has been
     919             :  * walked back accordingly.
     920             :  *
     921             :  * We also have to handle the case where the tail was pinned and the head
     922             :  * blocked behind the tail right before a crash. If the tail had been pushed
     923             :  * immediately prior to the crash and the subsequent checkpoint was only
     924             :  * partially written, it's possible it overwrote the last referenced tail in the
     925             :  * log with garbage. This is not a coherency problem because the tail must have
     926             :  * been pushed before it can be overwritten, but appears as log corruption to
     927             :  * recovery because we have no way to know the tail was updated if the
     928             :  * subsequent checkpoint didn't write successfully.
     929             :  *
     930             :  * Therefore, CRC check the log from tail to head. If a failure occurs and the
     931             :  * offending record is within max iclog bufs from the head, walk the tail
     932             :  * forward and retry until a valid tail is found or corruption is detected out
     933             :  * of the range of a possible overwrite.
     934             :  */
     935             : STATIC int
     936       11285 : xlog_verify_tail(
     937             :         struct xlog             *log,
     938             :         xfs_daddr_t             head_blk,
     939             :         xfs_daddr_t             *tail_blk,
     940             :         int                     hsize)
     941             : {
     942       11285 :         struct xlog_rec_header  *thead;
     943       11285 :         char                    *buffer;
     944       11285 :         xfs_daddr_t             first_bad;
     945       11285 :         int                     error = 0;
     946       11285 :         bool                    wrapped;
     947       11285 :         xfs_daddr_t             tmp_tail;
     948       11285 :         xfs_daddr_t             orig_tail = *tail_blk;
     949             : 
     950       11285 :         buffer = xlog_alloc_buffer(log, 1);
     951       11285 :         if (!buffer)
     952             :                 return -ENOMEM;
     953             : 
     954             :         /*
     955             :          * Make sure the tail points to a record (returns positive count on
     956             :          * success).
     957             :          */
     958       11285 :         error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer,
     959             :                         &tmp_tail, &thead, &wrapped);
     960       11285 :         if (error < 0)
     961           0 :                 goto out;
     962       11285 :         if (*tail_blk != tmp_tail)
     963           0 :                 *tail_blk = tmp_tail;
     964             : 
     965             :         /*
     966             :          * Run a CRC check from the tail to the head. We can't just check
     967             :          * MAX_ICLOGS records past the tail because the tail may point to stale
     968             :          * blocks cleared during the search for the head/tail. These blocks are
     969             :          * overwritten with zero-length records and thus record count is not a
     970             :          * reliable indicator of the iclog state before a crash.
     971             :          */
     972       11285 :         first_bad = 0;
     973       11285 :         error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
     974             :                                       XLOG_RECOVER_CRCPASS, &first_bad);
     975       11285 :         while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
     976           0 :                 int     tail_distance;
     977             : 
     978             :                 /*
     979             :                  * Is corruption within range of the head? If so, retry from
     980             :                  * the next record. Otherwise return an error.
     981             :                  */
     982           0 :                 tail_distance = xlog_tail_distance(log, head_blk, first_bad);
     983           0 :                 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
     984             :                         break;
     985             : 
     986             :                 /* skip to the next record; returns positive count on success */
     987           0 :                 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2,
     988             :                                 buffer, &tmp_tail, &thead, &wrapped);
     989           0 :                 if (error < 0)
     990           0 :                         goto out;
     991             : 
     992           0 :                 *tail_blk = tmp_tail;
     993           0 :                 first_bad = 0;
     994           0 :                 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
     995             :                                               XLOG_RECOVER_CRCPASS, &first_bad);
     996             :         }
     997             : 
     998       11285 :         if (!error && *tail_blk != orig_tail)
     999           0 :                 xfs_warn(log->l_mp,
    1000             :                 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
    1001             :                          orig_tail, *tail_blk);
    1002       11285 : out:
    1003       11285 :         kmem_free(buffer);
    1004       11285 :         return error;
    1005             : }
    1006             : 
    1007             : /*
    1008             :  * Detect and trim torn writes from the head of the log.
    1009             :  *
    1010             :  * Storage without sector atomicity guarantees can result in torn writes in the
    1011             :  * log in the event of a crash. Our only means to detect this scenario is via
    1012             :  * CRC verification. While we can't always be certain that CRC verification
    1013             :  * failure is due to a torn write vs. an unrelated corruption, we do know that
    1014             :  * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
    1015             :  * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
    1016             :  * the log and treat failures in this range as torn writes as a matter of
    1017             :  * policy. In the event of CRC failure, the head is walked back to the last good
    1018             :  * record in the log and the tail is updated from that record and verified.
    1019             :  */
    1020             : STATIC int
    1021       11285 : xlog_verify_head(
    1022             :         struct xlog             *log,
    1023             :         xfs_daddr_t             *head_blk,      /* in/out: unverified head */
    1024             :         xfs_daddr_t             *tail_blk,      /* out: tail block */
    1025             :         char                    *buffer,
    1026             :         xfs_daddr_t             *rhead_blk,     /* start blk of last record */
    1027             :         struct xlog_rec_header  **rhead,        /* ptr to last record */
    1028             :         bool                    *wrapped)       /* last rec. wraps phys. log */
    1029             : {
    1030       11285 :         struct xlog_rec_header  *tmp_rhead;
    1031       11285 :         char                    *tmp_buffer;
    1032       11285 :         xfs_daddr_t             first_bad;
    1033       11285 :         xfs_daddr_t             tmp_rhead_blk;
    1034       11285 :         int                     found;
    1035       11285 :         int                     error;
    1036       11285 :         bool                    tmp_wrapped;
    1037             : 
    1038             :         /*
    1039             :          * Check the head of the log for torn writes. Search backwards from the
    1040             :          * head until we hit the tail or the maximum number of log record I/Os
    1041             :          * that could have been in flight at one time. Use a temporary buffer so
    1042             :          * we don't trash the rhead/buffer pointers from the caller.
    1043             :          */
    1044       11285 :         tmp_buffer = xlog_alloc_buffer(log, 1);
    1045       11285 :         if (!tmp_buffer)
    1046             :                 return -ENOMEM;
    1047       11285 :         error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
    1048             :                                       XLOG_MAX_ICLOGS, tmp_buffer,
    1049             :                                       &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped);
    1050       11285 :         kmem_free(tmp_buffer);
    1051       11285 :         if (error < 0)
    1052             :                 return error;
    1053             : 
    1054             :         /*
    1055             :          * Now run a CRC verification pass over the records starting at the
    1056             :          * block found above to the current head. If a CRC failure occurs, the
    1057             :          * log block of the first bad record is saved in first_bad.
    1058             :          */
    1059       11285 :         error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
    1060             :                                       XLOG_RECOVER_CRCPASS, &first_bad);
    1061       11285 :         if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
    1062             :                 /*
    1063             :                  * We've hit a potential torn write. Reset the error and warn
    1064             :                  * about it.
    1065             :                  */
    1066          11 :                 error = 0;
    1067          11 :                 xfs_warn(log->l_mp,
    1068             : "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
    1069             :                          first_bad, *head_blk);
    1070             : 
    1071             :                 /*
    1072             :                  * Get the header block and buffer pointer for the last good
    1073             :                  * record before the bad record.
    1074             :                  *
    1075             :                  * Note that xlog_find_tail() clears the blocks at the new head
    1076             :                  * (i.e., the records with invalid CRC) if the cycle number
    1077             :                  * matches the current cycle.
    1078             :                  */
    1079          11 :                 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1,
    1080             :                                 buffer, rhead_blk, rhead, wrapped);
    1081          11 :                 if (found < 0)
    1082             :                         return found;
    1083          11 :                 if (found == 0)         /* XXX: right thing to do here? */
    1084             :                         return -EIO;
    1085             : 
    1086             :                 /*
    1087             :                  * Reset the head block to the starting block of the first bad
    1088             :                  * log record and set the tail block based on the last good
    1089             :                  * record.
    1090             :                  *
    1091             :                  * Bail out if the updated head/tail match as this indicates
    1092             :                  * possible corruption outside of the acceptable
    1093             :                  * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
    1094             :                  */
    1095          11 :                 *head_blk = first_bad;
    1096          11 :                 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
    1097          11 :                 if (*head_blk == *tail_blk) {
    1098           0 :                         ASSERT(0);
    1099           0 :                         return 0;
    1100             :                 }
    1101             :         }
    1102       11274 :         if (error)
    1103             :                 return error;
    1104             : 
    1105       11285 :         return xlog_verify_tail(log, *head_blk, tail_blk,
    1106       11285 :                                 be32_to_cpu((*rhead)->h_size));
    1107             : }
    1108             : 
    1109             : /*
    1110             :  * We need to make sure we handle log wrapping properly, so we can't use the
    1111             :  * calculated logbno directly. Make sure it wraps to the correct bno inside the
    1112             :  * log.
    1113             :  *
    1114             :  * The log is limited to 32 bit sizes, so we use the appropriate modulus
    1115             :  * operation here and cast it back to a 64 bit daddr on return.
    1116             :  */
    1117             : static inline xfs_daddr_t
    1118             : xlog_wrap_logbno(
    1119             :         struct xlog             *log,
    1120             :         xfs_daddr_t             bno)
    1121             : {
    1122      288921 :         int                     mod;
    1123             : 
    1124      288921 :         div_s64_rem(bno, log->l_logBBsize, &mod);
    1125      288921 :         return mod;
    1126             : }
    1127             : 
    1128             : /*
    1129             :  * Check whether the head of the log points to an unmount record. In other
    1130             :  * words, determine whether the log is clean. If so, update the in-core state
    1131             :  * appropriately.
    1132             :  */
    1133             : static int
    1134       24112 : xlog_check_unmount_rec(
    1135             :         struct xlog             *log,
    1136             :         xfs_daddr_t             *head_blk,
    1137             :         xfs_daddr_t             *tail_blk,
    1138             :         struct xlog_rec_header  *rhead,
    1139             :         xfs_daddr_t             rhead_blk,
    1140             :         char                    *buffer,
    1141             :         bool                    *clean)
    1142             : {
    1143       24112 :         struct xlog_op_header   *op_head;
    1144       24112 :         xfs_daddr_t             umount_data_blk;
    1145       24112 :         xfs_daddr_t             after_umount_blk;
    1146       24112 :         int                     hblks;
    1147       24112 :         int                     error;
    1148       24112 :         char                    *offset;
    1149             : 
    1150       24112 :         *clean = false;
    1151             : 
    1152             :         /*
    1153             :          * Look for unmount record. If we find it, then we know there was a
    1154             :          * clean unmount. Since 'i' could be the last block in the physical
    1155             :          * log, we convert to a log block before comparing to the head_blk.
    1156             :          *
    1157             :          * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
    1158             :          * below. We won't want to clear the unmount record if there is one, so
    1159             :          * we pass the lsn of the unmount record rather than the block after it.
    1160             :          */
    1161       24112 :         hblks = xlog_logrec_hblks(log, rhead);
    1162       48224 :         after_umount_blk = xlog_wrap_logbno(log,
    1163       24112 :                         rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
    1164             : 
    1165       48224 :         if (*head_blk == after_umount_blk &&
    1166       24112 :             be32_to_cpu(rhead->h_num_logops) == 1) {
    1167       12820 :                 umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
    1168       12820 :                 error = xlog_bread(log, umount_data_blk, 1, buffer, &offset);
    1169       12820 :                 if (error)
    1170             :                         return error;
    1171             : 
    1172       12820 :                 op_head = (struct xlog_op_header *)offset;
    1173       12820 :                 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
    1174             :                         /*
    1175             :                          * Set tail and last sync so that newly written log
    1176             :                          * records will point recovery to after the current
    1177             :                          * unmount record.
    1178             :                          */
    1179       12816 :                         xlog_assign_atomic_lsn(&log->l_tail_lsn,
    1180       12816 :                                         log->l_curr_cycle, after_umount_blk);
    1181       12816 :                         xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
    1182             :                                         log->l_curr_cycle, after_umount_blk);
    1183       12816 :                         *tail_blk = after_umount_blk;
    1184             : 
    1185       12816 :                         *clean = true;
    1186             :                 }
    1187             :         }
    1188             : 
    1189             :         return 0;
    1190             : }
    1191             : 
    1192             : static void
    1193       24112 : xlog_set_state(
    1194             :         struct xlog             *log,
    1195             :         xfs_daddr_t             head_blk,
    1196             :         struct xlog_rec_header  *rhead,
    1197             :         xfs_daddr_t             rhead_blk,
    1198             :         bool                    bump_cycle)
    1199             : {
    1200             :         /*
    1201             :          * Reset log values according to the state of the log when we
    1202             :          * crashed.  In the case where head_blk == 0, we bump curr_cycle
    1203             :          * one because the next write starts a new cycle rather than
    1204             :          * continuing the cycle of the last good log record.  At this
    1205             :          * point we have guaranteed that all partial log records have been
    1206             :          * accounted for.  Therefore, we know that the last good log record
    1207             :          * written was complete and ended exactly on the end boundary
    1208             :          * of the physical log.
    1209             :          */
    1210       24112 :         log->l_prev_block = rhead_blk;
    1211       24112 :         log->l_curr_block = (int)head_blk;
    1212       24112 :         log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
    1213       24112 :         if (bump_cycle)
    1214          41 :                 log->l_curr_cycle++;
    1215       24112 :         atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
    1216       24112 :         atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
    1217       24112 :         xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
    1218             :                                         BBTOB(log->l_curr_block));
    1219       24112 :         xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
    1220             :                                         BBTOB(log->l_curr_block));
    1221       24112 : }
    1222             : 
    1223             : /*
    1224             :  * Find the sync block number or the tail of the log.
    1225             :  *
    1226             :  * This will be the block number of the last record to have its
    1227             :  * associated buffers synced to disk.  Every log record header has
    1228             :  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
    1229             :  * to get a sync block number.  The only concern is to figure out which
    1230             :  * log record header to believe.
    1231             :  *
    1232             :  * The following algorithm uses the log record header with the largest
    1233             :  * lsn.  The entire log record does not need to be valid.  We only care
    1234             :  * that the header is valid.
    1235             :  *
    1236             :  * We could speed up search by using current head_blk buffer, but it is not
    1237             :  * available.
    1238             :  */
    1239             : STATIC int
    1240       24105 : xlog_find_tail(
    1241             :         struct xlog             *log,
    1242             :         xfs_daddr_t             *head_blk,
    1243             :         xfs_daddr_t             *tail_blk)
    1244             : {
    1245       24105 :         xlog_rec_header_t       *rhead;
    1246       24105 :         char                    *offset = NULL;
    1247       24105 :         char                    *buffer;
    1248       24105 :         int                     error;
    1249       24105 :         xfs_daddr_t             rhead_blk;
    1250       24105 :         xfs_lsn_t               tail_lsn;
    1251       24105 :         bool                    wrapped = false;
    1252       24105 :         bool                    clean = false;
    1253             : 
    1254             :         /*
    1255             :          * Find previous log record
    1256             :          */
    1257       24105 :         if ((error = xlog_find_head(log, head_blk)))
    1258             :                 return error;
    1259       24101 :         ASSERT(*head_blk < INT_MAX);
    1260             : 
    1261       24101 :         buffer = xlog_alloc_buffer(log, 1);
    1262       24101 :         if (!buffer)
    1263             :                 return -ENOMEM;
    1264       24101 :         if (*head_blk == 0) {                           /* special case */
    1265          36 :                 error = xlog_bread(log, 0, 1, buffer, &offset);
    1266          36 :                 if (error)
    1267           0 :                         goto done;
    1268             : 
    1269          36 :                 if (xlog_get_cycle(offset) == 0) {
    1270           0 :                         *tail_blk = 0;
    1271             :                         /* leave all other log inited values alone */
    1272           0 :                         goto done;
    1273             :                 }
    1274             :         }
    1275             : 
    1276             :         /*
    1277             :          * Search backwards through the log looking for the log record header
    1278             :          * block. This wraps all the way back around to the head so something is
    1279             :          * seriously wrong if we can't find it.
    1280             :          */
    1281       24101 :         error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer,
    1282             :                                       &rhead_blk, &rhead, &wrapped);
    1283       24101 :         if (error < 0)
    1284           0 :                 goto done;
    1285       24101 :         if (!error) {
    1286           0 :                 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
    1287           0 :                 error = -EFSCORRUPTED;
    1288           0 :                 goto done;
    1289             :         }
    1290       24101 :         *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
    1291             : 
    1292             :         /*
    1293             :          * Set the log state based on the current head record.
    1294             :          */
    1295       24101 :         xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
    1296       24101 :         tail_lsn = atomic64_read(&log->l_tail_lsn);
    1297             : 
    1298             :         /*
    1299             :          * Look for an unmount record at the head of the log. This sets the log
    1300             :          * state to determine whether recovery is necessary.
    1301             :          */
    1302       24101 :         error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
    1303             :                                        rhead_blk, buffer, &clean);
    1304       24101 :         if (error)
    1305           0 :                 goto done;
    1306             : 
    1307             :         /*
    1308             :          * Verify the log head if the log is not clean (e.g., we have anything
    1309             :          * but an unmount record at the head). This uses CRC verification to
    1310             :          * detect and trim torn writes. If discovered, CRC failures are
    1311             :          * considered torn writes and the log head is trimmed accordingly.
    1312             :          *
    1313             :          * Note that we can only run CRC verification when the log is dirty
    1314             :          * because there's no guarantee that the log data behind an unmount
    1315             :          * record is compatible with the current architecture.
    1316             :          */
    1317       24101 :         if (!clean) {
    1318       11285 :                 xfs_daddr_t     orig_head = *head_blk;
    1319             : 
    1320       11285 :                 error = xlog_verify_head(log, head_blk, tail_blk, buffer,
    1321             :                                          &rhead_blk, &rhead, &wrapped);
    1322       11285 :                 if (error)
    1323           0 :                         goto done;
    1324             : 
    1325             :                 /* update in-core state again if the head changed */
    1326       11285 :                 if (*head_blk != orig_head) {
    1327          11 :                         xlog_set_state(log, *head_blk, rhead, rhead_blk,
    1328             :                                        wrapped);
    1329          11 :                         tail_lsn = atomic64_read(&log->l_tail_lsn);
    1330          11 :                         error = xlog_check_unmount_rec(log, head_blk, tail_blk,
    1331             :                                                        rhead, rhead_blk, buffer,
    1332             :                                                        &clean);
    1333          11 :                         if (error)
    1334           0 :                                 goto done;
    1335             :                 }
    1336             :         }
    1337             : 
    1338             :         /*
    1339             :          * Note that the unmount was clean. If the unmount was not clean, we
    1340             :          * need to know this to rebuild the superblock counters from the perag
    1341             :          * headers if we have a filesystem using non-persistent counters.
    1342             :          */
    1343       24101 :         if (clean)
    1344       12816 :                 set_bit(XFS_OPSTATE_CLEAN, &log->l_mp->m_opstate);
    1345             : 
    1346             :         /*
    1347             :          * Make sure that there are no blocks in front of the head
    1348             :          * with the same cycle number as the head.  This can happen
    1349             :          * because we allow multiple outstanding log writes concurrently,
    1350             :          * and the later writes might make it out before earlier ones.
    1351             :          *
    1352             :          * We use the lsn from before modifying it so that we'll never
    1353             :          * overwrite the unmount record after a clean unmount.
    1354             :          *
    1355             :          * Do this only if we are going to recover the filesystem
    1356             :          *
    1357             :          * NOTE: This used to say "if (!readonly)"
    1358             :          * However on Linux, we can & do recover a read-only filesystem.
    1359             :          * We only skip recovery if NORECOVERY is specified on mount,
    1360             :          * in which case we would not be here.
    1361             :          *
    1362             :          * But... if the -device- itself is readonly, just skip this.
    1363             :          * We can't recover this device anyway, so it won't matter.
    1364             :          */
    1365       24101 :         if (!xfs_readonly_buftarg(log->l_targ))
    1366       24097 :                 error = xlog_clear_stale_blocks(log, tail_lsn);
    1367             : 
    1368           4 : done:
    1369       24101 :         kmem_free(buffer);
    1370             : 
    1371       24101 :         if (error)
    1372           0 :                 xfs_warn(log->l_mp, "failed to locate log tail");
    1373             :         return error;
    1374             : }
    1375             : 
    1376             : /*
    1377             :  * Is the log zeroed at all?
    1378             :  *
    1379             :  * The last binary search should be changed to perform an X block read
    1380             :  * once X becomes small enough.  You can then search linearly through
    1381             :  * the X blocks.  This will cut down on the number of reads we need to do.
    1382             :  *
    1383             :  * If the log is partially zeroed, this routine will pass back the blkno
    1384             :  * of the first block with cycle number 0.  It won't have a complete LR
    1385             :  * preceding it.
    1386             :  *
    1387             :  * Return:
    1388             :  *      0  => the log is completely written to
    1389             :  *      1 => use *blk_no as the first block of the log
    1390             :  *      <0 => error has occurred
    1391             :  */
    1392             : STATIC int
    1393       24105 : xlog_find_zeroed(
    1394             :         struct xlog     *log,
    1395             :         xfs_daddr_t     *blk_no)
    1396             : {
    1397       24105 :         char            *buffer;
    1398       24105 :         char            *offset;
    1399       24105 :         uint            first_cycle, last_cycle;
    1400       24105 :         xfs_daddr_t     new_blk, last_blk, start_blk;
    1401       24105 :         xfs_daddr_t     num_scan_bblks;
    1402       24105 :         int             error, log_bbnum = log->l_logBBsize;
    1403             : 
    1404       24105 :         *blk_no = 0;
    1405             : 
    1406             :         /* check totally zeroed log */
    1407       24105 :         buffer = xlog_alloc_buffer(log, 1);
    1408       24105 :         if (!buffer)
    1409             :                 return -ENOMEM;
    1410       24105 :         error = xlog_bread(log, 0, 1, buffer, &offset);
    1411       24105 :         if (error)
    1412           0 :                 goto out_free_buffer;
    1413             : 
    1414       24105 :         first_cycle = xlog_get_cycle(offset);
    1415       24105 :         if (first_cycle == 0) {         /* completely zeroed log */
    1416           0 :                 *blk_no = 0;
    1417           0 :                 kmem_free(buffer);
    1418           0 :                 return 1;
    1419             :         }
    1420             : 
    1421             :         /* check partially zeroed log */
    1422       24105 :         error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset);
    1423       24105 :         if (error)
    1424           0 :                 goto out_free_buffer;
    1425             : 
    1426       24105 :         last_cycle = xlog_get_cycle(offset);
    1427       24105 :         if (last_cycle != 0) {          /* log completely written to */
    1428       15888 :                 kmem_free(buffer);
    1429       15888 :                 return 0;
    1430             :         }
    1431             : 
    1432             :         /* we have a partially zeroed log */
    1433        8217 :         last_blk = log_bbnum-1;
    1434        8217 :         error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0);
    1435        8217 :         if (error)
    1436           0 :                 goto out_free_buffer;
    1437             : 
    1438             :         /*
    1439             :          * Validate the answer.  Because there is no way to guarantee that
    1440             :          * the entire log is made up of log records which are the same size,
    1441             :          * we scan over the defined maximum blocks.  At this point, the maximum
    1442             :          * is not chosen to mean anything special.   XXXmiken
    1443             :          */
    1444        8217 :         num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
    1445        8217 :         ASSERT(num_scan_bblks <= INT_MAX);
    1446             : 
    1447        8217 :         if (last_blk < num_scan_bblks)
    1448             :                 num_scan_bblks = last_blk;
    1449        8217 :         start_blk = last_blk - num_scan_bblks;
    1450             : 
    1451             :         /*
    1452             :          * We search for any instances of cycle number 0 that occur before
    1453             :          * our current estimate of the head.  What we're trying to detect is
    1454             :          *        1 ... | 0 | 1 | 0...
    1455             :          *                       ^ binary search ends here
    1456             :          */
    1457        8217 :         if ((error = xlog_find_verify_cycle(log, start_blk,
    1458             :                                          (int)num_scan_bblks, 0, &new_blk)))
    1459           0 :                 goto out_free_buffer;
    1460        8217 :         if (new_blk != -1)
    1461           3 :                 last_blk = new_blk;
    1462             : 
    1463             :         /*
    1464             :          * Potentially backup over partial log record write.  We don't need
    1465             :          * to search the end of the log because we know it is zero.
    1466             :          */
    1467        8217 :         error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
    1468        8217 :         if (error == 1)
    1469             :                 error = -EIO;
    1470        8217 :         if (error)
    1471           0 :                 goto out_free_buffer;
    1472             : 
    1473        8217 :         *blk_no = last_blk;
    1474        8217 : out_free_buffer:
    1475        8217 :         kmem_free(buffer);
    1476        8217 :         if (error)
    1477           0 :                 return error;
    1478             :         return 1;
    1479             : }
    1480             : 
    1481             : /*
    1482             :  * These are simple subroutines used by xlog_clear_stale_blocks() below
    1483             :  * to initialize a buffer full of empty log record headers and write
    1484             :  * them into the log.
    1485             :  */
    1486             : STATIC void
    1487    98678112 : xlog_add_record(
    1488             :         struct xlog             *log,
    1489             :         char                    *buf,
    1490             :         int                     cycle,
    1491             :         int                     block,
    1492             :         int                     tail_cycle,
    1493             :         int                     tail_block)
    1494             : {
    1495    98678112 :         xlog_rec_header_t       *recp = (xlog_rec_header_t *)buf;
    1496             : 
    1497    98678112 :         memset(buf, 0, BBSIZE);
    1498    98678112 :         recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
    1499    98678112 :         recp->h_cycle = cpu_to_be32(cycle);
    1500    98678112 :         recp->h_version = cpu_to_be32(
    1501             :                         xfs_has_logv2(log->l_mp) ? 2 : 1);
    1502    98678112 :         recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
    1503    98678112 :         recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
    1504    98678112 :         recp->h_fmt = cpu_to_be32(XLOG_FMT);
    1505   197356224 :         memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
    1506    98678112 : }
    1507             : 
    1508             : STATIC int
    1509       24584 : xlog_write_log_records(
    1510             :         struct xlog     *log,
    1511             :         int             cycle,
    1512             :         int             start_block,
    1513             :         int             blocks,
    1514             :         int             tail_cycle,
    1515             :         int             tail_block)
    1516             : {
    1517       24584 :         char            *offset;
    1518       24584 :         char            *buffer;
    1519       24584 :         int             balign, ealign;
    1520       24584 :         int             sectbb = log->l_sectBBsize;
    1521       24584 :         int             end_block = start_block + blocks;
    1522       24584 :         int             bufblks;
    1523       24584 :         int             error = 0;
    1524       24584 :         int             i, j = 0;
    1525             : 
    1526             :         /*
    1527             :          * Greedily allocate a buffer big enough to handle the full
    1528             :          * range of basic blocks to be written.  If that fails, try
    1529             :          * a smaller size.  We need to be able to write at least a
    1530             :          * log sector, or we're out of luck.
    1531             :          */
    1532       24584 :         bufblks = 1 << ffs(blocks);
    1533       24590 :         while (bufblks > log->l_logBBsize)
    1534           6 :                 bufblks >>= 1;
    1535       24584 :         while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
    1536           0 :                 bufblks >>= 1;
    1537           0 :                 if (bufblks < sectbb)
    1538             :                         return -ENOMEM;
    1539             :         }
    1540             : 
    1541             :         /* We may need to do a read at the start to fill in part of
    1542             :          * the buffer in the starting sector not covered by the first
    1543             :          * write below.
    1544             :          */
    1545       24584 :         balign = round_down(start_block, sectbb);
    1546       24584 :         if (balign != start_block) {
    1547           0 :                 error = xlog_bread_noalign(log, start_block, 1, buffer);
    1548           0 :                 if (error)
    1549           0 :                         goto out_free_buffer;
    1550             : 
    1551           0 :                 j = start_block - balign;
    1552             :         }
    1553             : 
    1554      127888 :         for (i = start_block; i < end_block; i += bufblks) {
    1555      103304 :                 int             bcount, endcount;
    1556             : 
    1557      103304 :                 bcount = min(bufblks, end_block - start_block);
    1558      103304 :                 endcount = bcount - j;
    1559             : 
    1560             :                 /* We may need to do a read at the end to fill in part of
    1561             :                  * the buffer in the final sector not covered by the write.
    1562             :                  * If this is the same sector as the above read, skip it.
    1563             :                  */
    1564      103304 :                 ealign = round_down(end_block, sectbb);
    1565      103304 :                 if (j == 0 && (start_block + endcount > ealign)) {
    1566           0 :                         error = xlog_bread_noalign(log, ealign, sectbb,
    1567           0 :                                         buffer + BBTOB(ealign - start_block));
    1568           0 :                         if (error)
    1569             :                                 break;
    1570             : 
    1571             :                 }
    1572             : 
    1573      103304 :                 offset = buffer + xlog_align(log, start_block);
    1574    98781416 :                 for (; j < endcount; j++) {
    1575    98678112 :                         xlog_add_record(log, offset, cycle, i+j,
    1576             :                                         tail_cycle, tail_block);
    1577    98678112 :                         offset += BBSIZE;
    1578             :                 }
    1579      103304 :                 error = xlog_bwrite(log, start_block, endcount, buffer);
    1580      103304 :                 if (error)
    1581             :                         break;
    1582      103304 :                 start_block += endcount;
    1583      103304 :                 j = 0;
    1584             :         }
    1585             : 
    1586       24584 : out_free_buffer:
    1587       24584 :         kmem_free(buffer);
    1588       24584 :         return error;
    1589             : }
    1590             : 
    1591             : /*
    1592             :  * This routine is called to blow away any incomplete log writes out
    1593             :  * in front of the log head.  We do this so that we won't become confused
    1594             :  * if we come up, write only a little bit more, and then crash again.
    1595             :  * If we leave the partial log records out there, this situation could
    1596             :  * cause us to think those partial writes are valid blocks since they
    1597             :  * have the current cycle number.  We get rid of them by overwriting them
    1598             :  * with empty log records with the old cycle number rather than the
    1599             :  * current one.
    1600             :  *
    1601             :  * The tail lsn is passed in rather than taken from
    1602             :  * the log so that we will not write over the unmount record after a
    1603             :  * clean unmount in a 512 block log.  Doing so would leave the log without
    1604             :  * any valid log records in it until a new one was written.  If we crashed
    1605             :  * during that time we would not be able to recover.
    1606             :  */
    1607             : STATIC int
    1608       24097 : xlog_clear_stale_blocks(
    1609             :         struct xlog     *log,
    1610             :         xfs_lsn_t       tail_lsn)
    1611             : {
    1612       24097 :         int             tail_cycle, head_cycle;
    1613       24097 :         int             tail_block, head_block;
    1614       24097 :         int             tail_distance, max_distance;
    1615       24097 :         int             distance;
    1616       24097 :         int             error;
    1617             : 
    1618       24097 :         tail_cycle = CYCLE_LSN(tail_lsn);
    1619       24097 :         tail_block = BLOCK_LSN(tail_lsn);
    1620       24097 :         head_cycle = log->l_curr_cycle;
    1621       24097 :         head_block = log->l_curr_block;
    1622             : 
    1623             :         /*
    1624             :          * Figure out the distance between the new head of the log
    1625             :          * and the tail.  We want to write over any blocks beyond the
    1626             :          * head that we may have written just before the crash, but
    1627             :          * we don't want to overwrite the tail of the log.
    1628             :          */
    1629       24097 :         if (head_cycle == tail_cycle) {
    1630             :                 /*
    1631             :                  * The tail is behind the head in the physical log,
    1632             :                  * so the distance from the head to the tail is the
    1633             :                  * distance from the head to the end of the log plus
    1634             :                  * the distance from the beginning of the log to the
    1635             :                  * tail.
    1636             :                  */
    1637       23522 :                 if (XFS_IS_CORRUPT(log->l_mp,
    1638             :                                    head_block < tail_block ||
    1639             :                                    head_block >= log->l_logBBsize))
    1640           0 :                         return -EFSCORRUPTED;
    1641       23522 :                 tail_distance = tail_block + (log->l_logBBsize - head_block);
    1642             :         } else {
    1643             :                 /*
    1644             :                  * The head is behind the tail in the physical log,
    1645             :                  * so the distance from the head to the tail is just
    1646             :                  * the tail block minus the head block.
    1647             :                  */
    1648         575 :                 if (XFS_IS_CORRUPT(log->l_mp,
    1649             :                                    head_block >= tail_block ||
    1650             :                                    head_cycle != tail_cycle + 1))
    1651           0 :                         return -EFSCORRUPTED;
    1652         575 :                 tail_distance = tail_block - head_block;
    1653             :         }
    1654             : 
    1655             :         /*
    1656             :          * If the head is right up against the tail, we can't clear
    1657             :          * anything.
    1658             :          */
    1659       24097 :         if (tail_distance <= 0) {
    1660           0 :                 ASSERT(tail_distance == 0);
    1661           0 :                 return 0;
    1662             :         }
    1663             : 
    1664       24097 :         max_distance = XLOG_TOTAL_REC_SHIFT(log);
    1665             :         /*
    1666             :          * Take the smaller of the maximum amount of outstanding I/O
    1667             :          * we could have and the distance to the tail to clear out.
    1668             :          * We take the smaller so that we don't overwrite the tail and
    1669             :          * we don't waste all day writing from the head to the tail
    1670             :          * for no reason.
    1671             :          */
    1672       24097 :         max_distance = min(max_distance, tail_distance);
    1673             : 
    1674       24097 :         if ((head_block + max_distance) <= log->l_logBBsize) {
    1675             :                 /*
    1676             :                  * We can stomp all the blocks we need to without
    1677             :                  * wrapping around the end of the log.  Just do it
    1678             :                  * in a single write.  Use the cycle number of the
    1679             :                  * current cycle minus one so that the log will look like:
    1680             :                  *     n ... | n - 1 ...
    1681             :                  */
    1682       23610 :                 error = xlog_write_log_records(log, (head_cycle - 1),
    1683             :                                 head_block, max_distance, tail_cycle,
    1684             :                                 tail_block);
    1685       23610 :                 if (error)
    1686           0 :                         return error;
    1687             :         } else {
    1688             :                 /*
    1689             :                  * We need to wrap around the end of the physical log in
    1690             :                  * order to clear all the blocks.  Do it in two separate
    1691             :                  * I/Os.  The first write should be from the head to the
    1692             :                  * end of the physical log, and it should use the current
    1693             :                  * cycle number minus one just like above.
    1694             :                  */
    1695         487 :                 distance = log->l_logBBsize - head_block;
    1696         487 :                 error = xlog_write_log_records(log, (head_cycle - 1),
    1697             :                                 head_block, distance, tail_cycle,
    1698             :                                 tail_block);
    1699             : 
    1700         487 :                 if (error)
    1701             :                         return error;
    1702             : 
    1703             :                 /*
    1704             :                  * Now write the blocks at the start of the physical log.
    1705             :                  * This writes the remainder of the blocks we want to clear.
    1706             :                  * It uses the current cycle number since we're now on the
    1707             :                  * same cycle as the head so that we get:
    1708             :                  *    n ... n ... | n - 1 ...
    1709             :                  *    ^^^^^ blocks we're writing
    1710             :                  */
    1711         487 :                 distance = max_distance - (log->l_logBBsize - head_block);
    1712         487 :                 error = xlog_write_log_records(log, head_cycle, 0, distance,
    1713             :                                 tail_cycle, tail_block);
    1714         487 :                 if (error)
    1715           0 :                         return error;
    1716             :         }
    1717             : 
    1718             :         return 0;
    1719             : }
    1720             : 
    1721             : /*
    1722             :  * Release the recovered intent item in the AIL that matches the given intent
    1723             :  * type and intent id.
    1724             :  */
    1725             : void
    1726      145214 : xlog_recover_release_intent(
    1727             :         struct xlog             *log,
    1728             :         unsigned short          intent_type,
    1729             :         uint64_t                intent_id)
    1730             : {
    1731      145214 :         struct xfs_ail_cursor   cur;
    1732      145214 :         struct xfs_log_item     *lip;
    1733      145214 :         struct xfs_ail          *ailp = log->l_ailp;
    1734             : 
    1735      145214 :         spin_lock(&ailp->ail_lock);
    1736      172206 :         for (lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); lip != NULL;
    1737       26992 :              lip = xfs_trans_ail_cursor_next(ailp, &cur)) {
    1738      171787 :                 if (lip->li_type != intent_type)
    1739       20771 :                         continue;
    1740      151016 :                 if (!lip->li_ops->iop_match(lip, intent_id))
    1741        6221 :                         continue;
    1742             : 
    1743      144795 :                 spin_unlock(&ailp->ail_lock);
    1744      144795 :                 lip->li_ops->iop_release(lip);
    1745      144795 :                 spin_lock(&ailp->ail_lock);
    1746             :                 break;
    1747             :         }
    1748             : 
    1749      145214 :         xfs_trans_ail_cursor_done(&cur);
    1750      145214 :         spin_unlock(&ailp->ail_lock);
    1751      145214 : }
    1752             : 
    1753             : int
    1754         425 : xlog_recover_iget(
    1755             :         struct xfs_mount        *mp,
    1756             :         xfs_ino_t               ino,
    1757             :         struct xfs_inode        **ipp)
    1758             : {
    1759         425 :         int                     error;
    1760             : 
    1761         425 :         error = xfs_iget(mp, NULL, ino, 0, 0, ipp);
    1762         425 :         if (error)
    1763             :                 return error;
    1764             : 
    1765         425 :         error = xfs_qm_dqattach(*ipp);
    1766         425 :         if (error) {
    1767           0 :                 xfs_irele(*ipp);
    1768           0 :                 return error;
    1769             :         }
    1770             : 
    1771         425 :         if (VFS_I(*ipp)->i_nlink == 0)
    1772          27 :                 xfs_iflags_set(*ipp, XFS_IRECOVERY);
    1773             : 
    1774             :         return 0;
    1775             : }
    1776             : 
    1777             : /******************************************************************************
    1778             :  *
    1779             :  *              Log recover routines
    1780             :  *
    1781             :  ******************************************************************************
    1782             :  */
    1783             : static const struct xlog_recover_item_ops *xlog_recover_item_ops[] = {
    1784             :         &xlog_buf_item_ops,
    1785             :         &xlog_inode_item_ops,
    1786             :         &xlog_dquot_item_ops,
    1787             :         &xlog_quotaoff_item_ops,
    1788             :         &xlog_icreate_item_ops,
    1789             :         &xlog_efi_item_ops,
    1790             :         &xlog_efd_item_ops,
    1791             :         &xlog_rui_item_ops,
    1792             :         &xlog_rud_item_ops,
    1793             :         &xlog_cui_item_ops,
    1794             :         &xlog_cud_item_ops,
    1795             :         &xlog_bui_item_ops,
    1796             :         &xlog_bud_item_ops,
    1797             :         &xlog_attri_item_ops,
    1798             :         &xlog_attrd_item_ops,
    1799             :         &xlog_sxi_item_ops,
    1800             :         &xlog_sxd_item_ops,
    1801             : };
    1802             : 
    1803             : static const struct xlog_recover_item_ops *
    1804    51446224 : xlog_find_item_ops(
    1805             :         struct xlog_recover_item                *item)
    1806             : {
    1807    51446224 :         unsigned int                            i;
    1808             : 
    1809    90601788 :         for (i = 0; i < ARRAY_SIZE(xlog_recover_item_ops); i++)
    1810    90601788 :                 if (ITEM_TYPE(item) == xlog_recover_item_ops[i]->item_type)
    1811    51446224 :                         return xlog_recover_item_ops[i];
    1812             : 
    1813             :         return NULL;
    1814             : }
    1815             : 
    1816             : /*
    1817             :  * Sort the log items in the transaction.
    1818             :  *
    1819             :  * The ordering constraints are defined by the inode allocation and unlink
    1820             :  * behaviour. The rules are:
    1821             :  *
    1822             :  *      1. Every item is only logged once in a given transaction. Hence it
    1823             :  *         represents the last logged state of the item. Hence ordering is
    1824             :  *         dependent on the order in which operations need to be performed so
    1825             :  *         required initial conditions are always met.
    1826             :  *
    1827             :  *      2. Cancelled buffers are recorded in pass 1 in a separate table and
    1828             :  *         there's nothing to replay from them so we can simply cull them
    1829             :  *         from the transaction. However, we can't do that until after we've
    1830             :  *         replayed all the other items because they may be dependent on the
    1831             :  *         cancelled buffer and replaying the cancelled buffer can remove it
    1832             :  *         form the cancelled buffer table. Hence they have tobe done last.
    1833             :  *
    1834             :  *      3. Inode allocation buffers must be replayed before inode items that
    1835             :  *         read the buffer and replay changes into it. For filesystems using the
    1836             :  *         ICREATE transactions, this means XFS_LI_ICREATE objects need to get
    1837             :  *         treated the same as inode allocation buffers as they create and
    1838             :  *         initialise the buffers directly.
    1839             :  *
    1840             :  *      4. Inode unlink buffers must be replayed after inode items are replayed.
    1841             :  *         This ensures that inodes are completely flushed to the inode buffer
    1842             :  *         in a "free" state before we remove the unlinked inode list pointer.
    1843             :  *
    1844             :  * Hence the ordering needs to be inode allocation buffers first, inode items
    1845             :  * second, inode unlink buffers third and cancelled buffers last.
    1846             :  *
    1847             :  * But there's a problem with that - we can't tell an inode allocation buffer
    1848             :  * apart from a regular buffer, so we can't separate them. We can, however,
    1849             :  * tell an inode unlink buffer from the others, and so we can separate them out
    1850             :  * from all the other buffers and move them to last.
    1851             :  *
    1852             :  * Hence, 4 lists, in order from head to tail:
    1853             :  *      - buffer_list for all buffers except cancelled/inode unlink buffers
    1854             :  *      - item_list for all non-buffer items
    1855             :  *      - inode_buffer_list for inode unlink buffers
    1856             :  *      - cancel_list for the cancelled buffers
    1857             :  *
    1858             :  * Note that we add objects to the tail of the lists so that first-to-last
    1859             :  * ordering is preserved within the lists. Adding objects to the head of the
    1860             :  * list means when we traverse from the head we walk them in last-to-first
    1861             :  * order. For cancelled buffers and inode unlink buffers this doesn't matter,
    1862             :  * but for all other items there may be specific ordering that we need to
    1863             :  * preserve.
    1864             :  */
    1865             : STATIC int
    1866      763682 : xlog_recover_reorder_trans(
    1867             :         struct xlog             *log,
    1868             :         struct xlog_recover     *trans,
    1869             :         int                     pass)
    1870             : {
    1871      763682 :         struct xlog_recover_item *item, *n;
    1872      763682 :         int                     error = 0;
    1873      763682 :         LIST_HEAD(sort_list);
    1874      763682 :         LIST_HEAD(cancel_list);
    1875      763682 :         LIST_HEAD(buffer_list);
    1876      763682 :         LIST_HEAD(inode_buffer_list);
    1877      763682 :         LIST_HEAD(item_list);
    1878             : 
    1879      763682 :         list_splice_init(&trans->r_itemq, &sort_list);
    1880    52209906 :         list_for_each_entry_safe(item, n, &sort_list, ri_list) {
    1881    51446224 :                 enum xlog_recover_reorder       fate = XLOG_REORDER_ITEM_LIST;
    1882             : 
    1883    51446224 :                 item->ri_ops = xlog_find_item_ops(item);
    1884    51446224 :                 if (!item->ri_ops) {
    1885           0 :                         xfs_warn(log->l_mp,
    1886             :                                 "%s: unrecognized type of log operation (%d)",
    1887             :                                 __func__, ITEM_TYPE(item));
    1888           0 :                         ASSERT(0);
    1889             :                         /*
    1890             :                          * return the remaining items back to the transaction
    1891             :                          * item list so they can be freed in caller.
    1892             :                          */
    1893           0 :                         if (!list_empty(&sort_list))
    1894           0 :                                 list_splice_init(&sort_list, &trans->r_itemq);
    1895             :                         error = -EFSCORRUPTED;
    1896             :                         break;
    1897             :                 }
    1898             : 
    1899    51446224 :                 if (item->ri_ops->reorder)
    1900    27484906 :                         fate = item->ri_ops->reorder(item);
    1901             : 
    1902    27484906 :                 switch (fate) {
    1903    26732836 :                 case XLOG_REORDER_BUFFER_LIST:
    1904    26732836 :                         list_move_tail(&item->ri_list, &buffer_list);
    1905    26732836 :                         break;
    1906      735012 :                 case XLOG_REORDER_CANCEL_LIST:
    1907      735012 :                         trace_xfs_log_recover_item_reorder_head(log,
    1908             :                                         trans, item, pass);
    1909      735012 :                         list_move(&item->ri_list, &cancel_list);
    1910      735012 :                         break;
    1911       17058 :                 case XLOG_REORDER_INODE_BUFFER_LIST:
    1912       17058 :                         list_move(&item->ri_list, &inode_buffer_list);
    1913       17058 :                         break;
    1914    23961318 :                 case XLOG_REORDER_ITEM_LIST:
    1915    23961318 :                         trace_xfs_log_recover_item_reorder_tail(log,
    1916             :                                                         trans, item, pass);
    1917    23961318 :                         list_move_tail(&item->ri_list, &item_list);
    1918    23961318 :                         break;
    1919             :                 }
    1920             :         }
    1921             : 
    1922      763682 :         ASSERT(list_empty(&sort_list));
    1923      763682 :         if (!list_empty(&buffer_list))
    1924      727072 :                 list_splice(&buffer_list, &trans->r_itemq);
    1925      763682 :         if (!list_empty(&item_list))
    1926      759836 :                 list_splice_tail(&item_list, &trans->r_itemq);
    1927      763682 :         if (!list_empty(&inode_buffer_list))
    1928        4862 :                 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
    1929      763682 :         if (!list_empty(&cancel_list))
    1930      141062 :                 list_splice_tail(&cancel_list, &trans->r_itemq);
    1931      763682 :         return error;
    1932             : }
    1933             : 
    1934             : void
    1935    25421891 : xlog_buf_readahead(
    1936             :         struct xlog             *log,
    1937             :         xfs_daddr_t             blkno,
    1938             :         uint                    len,
    1939             :         const struct xfs_buf_ops *ops)
    1940             : {
    1941    25421891 :         if (!xlog_is_buffer_cancelled(log, blkno, len))
    1942    24388300 :                 xfs_buf_readahead(log->l_mp->m_ddev_targp, blkno, len, ops);
    1943    25421891 : }
    1944             : 
    1945             : STATIC int
    1946      489570 : xlog_recover_items_pass2(
    1947             :         struct xlog                     *log,
    1948             :         struct xlog_recover             *trans,
    1949             :         struct list_head                *buffer_list,
    1950             :         struct list_head                *item_list)
    1951             : {
    1952      489570 :         struct xlog_recover_item        *item;
    1953      489570 :         int                             error = 0;
    1954             : 
    1955    26212682 :         list_for_each_entry(item, item_list, ri_list) {
    1956    25723112 :                 trace_xfs_log_recover_item_recover(log, trans, item,
    1957             :                                 XLOG_RECOVER_PASS2);
    1958             : 
    1959    25723112 :                 if (item->ri_ops->commit_pass2)
    1960    25723112 :                         error = item->ri_ops->commit_pass2(log, buffer_list,
    1961             :                                         item, trans->r_lsn);
    1962    25723112 :                 if (error)
    1963           0 :                         return error;
    1964             :         }
    1965             : 
    1966             :         return error;
    1967             : }
    1968             : 
    1969             : /*
    1970             :  * Perform the transaction.
    1971             :  *
    1972             :  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
    1973             :  * EFIs and EFDs get queued up by adding entries into the AIL for them.
    1974             :  */
    1975             : STATIC int
    1976      763682 : xlog_recover_commit_trans(
    1977             :         struct xlog             *log,
    1978             :         struct xlog_recover     *trans,
    1979             :         int                     pass,
    1980             :         struct list_head        *buffer_list)
    1981             : {
    1982      763682 :         int                             error = 0;
    1983      763682 :         int                             items_queued = 0;
    1984      763682 :         struct xlog_recover_item        *item;
    1985      763682 :         struct xlog_recover_item        *next;
    1986      763682 :         LIST_HEAD                       (ra_list);
    1987      763682 :         LIST_HEAD                       (done_list);
    1988             : 
    1989             :         #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
    1990             : 
    1991      763682 :         hlist_del_init(&trans->r_list);
    1992             : 
    1993      763682 :         error = xlog_recover_reorder_trans(log, trans, pass);
    1994      763682 :         if (error)
    1995             :                 return error;
    1996             : 
    1997    52209906 :         list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
    1998    51446224 :                 trace_xfs_log_recover_item_recover(log, trans, item, pass);
    1999             : 
    2000    51446224 :                 switch (pass) {
    2001    25723112 :                 case XLOG_RECOVER_PASS1:
    2002    25723112 :                         if (item->ri_ops->commit_pass1)
    2003    13735006 :                                 error = item->ri_ops->commit_pass1(log, item);
    2004             :                         break;
    2005    25723112 :                 case XLOG_RECOVER_PASS2:
    2006    25723112 :                         if (item->ri_ops->ra_pass2)
    2007    25421891 :                                 item->ri_ops->ra_pass2(log, item);
    2008    25723112 :                         list_move_tail(&item->ri_list, &ra_list);
    2009    25723112 :                         items_queued++;
    2010    25723112 :                         if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
    2011      109460 :                                 error = xlog_recover_items_pass2(log, trans,
    2012             :                                                 buffer_list, &ra_list);
    2013      109460 :                                 list_splice_tail_init(&ra_list, &done_list);
    2014             :                                 items_queued = 0;
    2015             :                         }
    2016             : 
    2017             :                         break;
    2018           0 :                 default:
    2019           0 :                         ASSERT(0);
    2020             :                 }
    2021             : 
    2022    51446224 :                 if (error)
    2023           0 :                         goto out;
    2024             :         }
    2025             : 
    2026      763682 : out:
    2027      763682 :         if (!list_empty(&ra_list)) {
    2028      380110 :                 if (!error)
    2029      380110 :                         error = xlog_recover_items_pass2(log, trans,
    2030             :                                         buffer_list, &ra_list);
    2031      380110 :                 list_splice_tail_init(&ra_list, &done_list);
    2032             :         }
    2033             : 
    2034      763682 :         if (!list_empty(&done_list))
    2035      381841 :                 list_splice_init(&done_list, &trans->r_itemq);
    2036             : 
    2037             :         return error;
    2038             : }
    2039             : 
    2040             : STATIC void
    2041    51559424 : xlog_recover_add_item(
    2042             :         struct list_head        *head)
    2043             : {
    2044    51559424 :         struct xlog_recover_item *item;
    2045             : 
    2046    51559424 :         item = kmem_zalloc(sizeof(struct xlog_recover_item), 0);
    2047    51559424 :         INIT_LIST_HEAD(&item->ri_list);
    2048    51559424 :         list_add_tail(&item->ri_list, head);
    2049    51559424 : }
    2050             : 
    2051             : STATIC int
    2052     1800744 : xlog_recover_add_to_cont_trans(
    2053             :         struct xlog             *log,
    2054             :         struct xlog_recover     *trans,
    2055             :         char                    *dp,
    2056             :         int                     len)
    2057             : {
    2058     1800744 :         struct xlog_recover_item *item;
    2059     1800744 :         char                    *ptr, *old_ptr;
    2060     1800744 :         int                     old_len;
    2061             : 
    2062             :         /*
    2063             :          * If the transaction is empty, the header was split across this and the
    2064             :          * previous record. Copy the rest of the header.
    2065             :          */
    2066     1800744 :         if (list_empty(&trans->r_itemq)) {
    2067           2 :                 ASSERT(len <= sizeof(struct xfs_trans_header));
    2068           2 :                 if (len > sizeof(struct xfs_trans_header)) {
    2069           0 :                         xfs_warn(log->l_mp, "%s: bad header length", __func__);
    2070           0 :                         return -EFSCORRUPTED;
    2071             :                 }
    2072             : 
    2073           2 :                 xlog_recover_add_item(&trans->r_itemq);
    2074           2 :                 ptr = (char *)&trans->r_theader +
    2075           2 :                                 sizeof(struct xfs_trans_header) - len;
    2076           4 :                 memcpy(ptr, dp, len);
    2077           2 :                 return 0;
    2078             :         }
    2079             : 
    2080             :         /* take the tail entry */
    2081     1800742 :         item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
    2082             :                           ri_list);
    2083             : 
    2084     1800742 :         old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
    2085     1800742 :         old_len = item->ri_buf[item->ri_cnt-1].i_len;
    2086             : 
    2087     1800742 :         ptr = kvrealloc(old_ptr, old_len, len + old_len, GFP_KERNEL);
    2088     1800742 :         if (!ptr)
    2089             :                 return -ENOMEM;
    2090     3601484 :         memcpy(&ptr[old_len], dp, len);
    2091     1800742 :         item->ri_buf[item->ri_cnt-1].i_len += len;
    2092     1800742 :         item->ri_buf[item->ri_cnt-1].i_addr = ptr;
    2093     1800742 :         trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
    2094     1800742 :         return 0;
    2095             : }
    2096             : 
    2097             : /*
    2098             :  * The next region to add is the start of a new region.  It could be
    2099             :  * a whole region or it could be the first part of a new region.  Because
    2100             :  * of this, the assumption here is that the type and size fields of all
    2101             :  * format structures fit into the first 32 bits of the structure.
    2102             :  *
    2103             :  * This works because all regions must be 32 bit aligned.  Therefore, we
    2104             :  * either have both fields or we have neither field.  In the case we have
    2105             :  * neither field, the data part of the region is zero length.  We only have
    2106             :  * a log_op_header and can throw away the header since a new one will appear
    2107             :  * later.  If we have at least 4 bytes, then we can determine how many regions
    2108             :  * will appear in the current log item.
    2109             :  */
    2110             : STATIC int
    2111   130940826 : xlog_recover_add_to_trans(
    2112             :         struct xlog             *log,
    2113             :         struct xlog_recover     *trans,
    2114             :         char                    *dp,
    2115             :         int                     len)
    2116             : {
    2117   130940826 :         struct xfs_inode_log_format     *in_f;                  /* any will do */
    2118   130940826 :         struct xlog_recover_item *item;
    2119   130940826 :         char                    *ptr;
    2120             : 
    2121   130940826 :         if (!len)
    2122             :                 return 0;
    2123   130940826 :         if (list_empty(&trans->r_itemq)) {
    2124             :                 /* we need to catch log corruptions here */
    2125      764912 :                 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
    2126           0 :                         xfs_warn(log->l_mp, "%s: bad header magic number",
    2127             :                                 __func__);
    2128           0 :                         ASSERT(0);
    2129           0 :                         return -EFSCORRUPTED;
    2130             :                 }
    2131             : 
    2132      764912 :                 if (len > sizeof(struct xfs_trans_header)) {
    2133           0 :                         xfs_warn(log->l_mp, "%s: bad header length", __func__);
    2134           0 :                         ASSERT(0);
    2135           0 :                         return -EFSCORRUPTED;
    2136             :                 }
    2137             : 
    2138             :                 /*
    2139             :                  * The transaction header can be arbitrarily split across op
    2140             :                  * records. If we don't have the whole thing here, copy what we
    2141             :                  * do have and handle the rest in the next record.
    2142             :                  */
    2143      764912 :                 if (len == sizeof(struct xfs_trans_header))
    2144      764910 :                         xlog_recover_add_item(&trans->r_itemq);
    2145     1529824 :                 memcpy(&trans->r_theader, dp, len);
    2146      764912 :                 return 0;
    2147             :         }
    2148             : 
    2149   130175914 :         ptr = kmem_alloc(len, 0);
    2150   260351828 :         memcpy(ptr, dp, len);
    2151   130175914 :         in_f = (struct xfs_inode_log_format *)ptr;
    2152             : 
    2153             :         /* take the tail entry */
    2154   130175914 :         item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
    2155             :                           ri_list);
    2156   130175914 :         if (item->ri_total != 0 &&
    2157   129411002 :              item->ri_total == item->ri_cnt) {
    2158             :                 /* tail item is in use, get a new one */
    2159    50794512 :                 xlog_recover_add_item(&trans->r_itemq);
    2160    50794512 :                 item = list_entry(trans->r_itemq.prev,
    2161             :                                         struct xlog_recover_item, ri_list);
    2162             :         }
    2163             : 
    2164   130175914 :         if (item->ri_total == 0) {           /* first region to be added */
    2165    51559424 :                 if (in_f->ilf_size == 0 ||
    2166             :                     in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
    2167           0 :                         xfs_warn(log->l_mp,
    2168             :                 "bad number of regions (%d) in inode log format",
    2169             :                                   in_f->ilf_size);
    2170           0 :                         ASSERT(0);
    2171           0 :                         kmem_free(ptr);
    2172           0 :                         return -EFSCORRUPTED;
    2173             :                 }
    2174             : 
    2175    51559424 :                 item->ri_total = in_f->ilf_size;
    2176    51559424 :                 item->ri_buf =
    2177    51559424 :                         kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
    2178             :                                     0);
    2179             :         }
    2180             : 
    2181   130175914 :         if (item->ri_total <= item->ri_cnt) {
    2182           0 :                 xfs_warn(log->l_mp,
    2183             :         "log item region count (%d) overflowed size (%d)",
    2184             :                                 item->ri_cnt, item->ri_total);
    2185           0 :                 ASSERT(0);
    2186           0 :                 kmem_free(ptr);
    2187           0 :                 return -EFSCORRUPTED;
    2188             :         }
    2189             : 
    2190             :         /* Description region is ri_buf[0] */
    2191   130175914 :         item->ri_buf[item->ri_cnt].i_addr = ptr;
    2192   130175914 :         item->ri_buf[item->ri_cnt].i_len  = len;
    2193   130175914 :         item->ri_cnt++;
    2194   130175914 :         trace_xfs_log_recover_item_add(log, trans, item, 0);
    2195   130175914 :         return 0;
    2196             : }
    2197             : 
    2198             : /*
    2199             :  * Free up any resources allocated by the transaction
    2200             :  *
    2201             :  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
    2202             :  */
    2203             : STATIC void
    2204      764912 : xlog_recover_free_trans(
    2205             :         struct xlog_recover     *trans)
    2206             : {
    2207      764912 :         struct xlog_recover_item *item, *n;
    2208      764912 :         int                     i;
    2209             : 
    2210      764912 :         hlist_del_init(&trans->r_list);
    2211             : 
    2212    52324336 :         list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
    2213             :                 /* Free the regions in the item. */
    2214    51559424 :                 list_del(&item->ri_list);
    2215   181735338 :                 for (i = 0; i < item->ri_cnt; i++)
    2216   130175914 :                         kmem_free(item->ri_buf[i].i_addr);
    2217             :                 /* Free the item itself */
    2218    51559424 :                 kmem_free(item->ri_buf);
    2219    51559424 :                 kmem_free(item);
    2220             :         }
    2221             :         /* Free the transaction recover structure */
    2222      764912 :         kmem_free(trans);
    2223      764912 : }
    2224             : 
    2225             : /*
    2226             :  * On error or completion, trans is freed.
    2227             :  */
    2228             : STATIC int
    2229   133505252 : xlog_recovery_process_trans(
    2230             :         struct xlog             *log,
    2231             :         struct xlog_recover     *trans,
    2232             :         char                    *dp,
    2233             :         unsigned int            len,
    2234             :         unsigned int            flags,
    2235             :         int                     pass,
    2236             :         struct list_head        *buffer_list)
    2237             : {
    2238   133505252 :         int                     error = 0;
    2239   133505252 :         bool                    freeit = false;
    2240             : 
    2241             :         /* mask off ophdr transaction container flags */
    2242   133505252 :         flags &= ~XLOG_END_TRANS;
    2243   133505252 :         if (flags & XLOG_WAS_CONT_TRANS)
    2244     1800744 :                 flags &= ~XLOG_CONTINUE_TRANS;
    2245             : 
    2246             :         /*
    2247             :          * Callees must not free the trans structure. We'll decide if we need to
    2248             :          * free it or not based on the operation being done and it's result.
    2249             :          */
    2250   133505252 :         switch (flags) {
    2251             :         /* expected flag values */
    2252   130940826 :         case 0:
    2253             :         case XLOG_CONTINUE_TRANS:
    2254   130940826 :                 error = xlog_recover_add_to_trans(log, trans, dp, len);
    2255   130940826 :                 break;
    2256     1800744 :         case XLOG_WAS_CONT_TRANS:
    2257     1800744 :                 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
    2258     1800744 :                 break;
    2259      763682 :         case XLOG_COMMIT_TRANS:
    2260      763682 :                 error = xlog_recover_commit_trans(log, trans, pass,
    2261             :                                                   buffer_list);
    2262             :                 /* success or fail, we are now done with this transaction. */
    2263      763682 :                 freeit = true;
    2264      763682 :                 break;
    2265             : 
    2266             :         /* unexpected flag values */
    2267           0 :         case XLOG_UNMOUNT_TRANS:
    2268             :                 /* just skip trans */
    2269           0 :                 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
    2270           0 :                 freeit = true;
    2271           0 :                 break;
    2272           0 :         case XLOG_START_TRANS:
    2273             :         default:
    2274           0 :                 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
    2275           0 :                 ASSERT(0);
    2276           0 :                 error = -EFSCORRUPTED;
    2277           0 :                 break;
    2278             :         }
    2279   133505252 :         if (error || freeit)
    2280      763682 :                 xlog_recover_free_trans(trans);
    2281   133505252 :         return error;
    2282             : }
    2283             : 
    2284             : /*
    2285             :  * Lookup the transaction recovery structure associated with the ID in the
    2286             :  * current ophdr. If the transaction doesn't exist and the start flag is set in
    2287             :  * the ophdr, then allocate a new transaction for future ID matches to find.
    2288             :  * Either way, return what we found during the lookup - an existing transaction
    2289             :  * or nothing.
    2290             :  */
    2291             : STATIC struct xlog_recover *
    2292   134389642 : xlog_recover_ophdr_to_trans(
    2293             :         struct hlist_head       rhash[],
    2294             :         struct xlog_rec_header  *rhead,
    2295             :         struct xlog_op_header   *ohead)
    2296             : {
    2297   134389642 :         struct xlog_recover     *trans;
    2298   134389642 :         xlog_tid_t              tid;
    2299   134389642 :         struct hlist_head       *rhp;
    2300             : 
    2301   134389642 :         tid = be32_to_cpu(ohead->oh_tid);
    2302   134389642 :         rhp = &rhash[XLOG_RHASH(tid)];
    2303   268781064 :         hlist_for_each_entry(trans, rhp, r_list) {
    2304   133507032 :                 if (trans->r_log_tid == tid)
    2305   133505252 :                         return trans;
    2306             :         }
    2307             : 
    2308             :         /*
    2309             :          * skip over non-start transaction headers - we could be
    2310             :          * processing slack space before the next transaction starts
    2311             :          */
    2312      884390 :         if (!(ohead->oh_flags & XLOG_START_TRANS))
    2313             :                 return NULL;
    2314             : 
    2315      764912 :         ASSERT(be32_to_cpu(ohead->oh_len) == 0);
    2316             : 
    2317             :         /*
    2318             :          * This is a new transaction so allocate a new recovery container to
    2319             :          * hold the recovery ops that will follow.
    2320             :          */
    2321      764912 :         trans = kmem_zalloc(sizeof(struct xlog_recover), 0);
    2322      764912 :         trans->r_log_tid = tid;
    2323      764912 :         trans->r_lsn = be64_to_cpu(rhead->h_lsn);
    2324      764912 :         INIT_LIST_HEAD(&trans->r_itemq);
    2325      764912 :         INIT_HLIST_NODE(&trans->r_list);
    2326      764912 :         hlist_add_head(&trans->r_list, rhp);
    2327             : 
    2328             :         /*
    2329             :          * Nothing more to do for this ophdr. Items to be added to this new
    2330             :          * transaction will be in subsequent ophdr containers.
    2331             :          */
    2332      764912 :         return NULL;
    2333             : }
    2334             : 
    2335             : STATIC int
    2336   134389642 : xlog_recover_process_ophdr(
    2337             :         struct xlog             *log,
    2338             :         struct hlist_head       rhash[],
    2339             :         struct xlog_rec_header  *rhead,
    2340             :         struct xlog_op_header   *ohead,
    2341             :         char                    *dp,
    2342             :         char                    *end,
    2343             :         int                     pass,
    2344             :         struct list_head        *buffer_list)
    2345             : {
    2346   134389642 :         struct xlog_recover     *trans;
    2347   134389642 :         unsigned int            len;
    2348   134389642 :         int                     error;
    2349             : 
    2350             :         /* Do we understand who wrote this op? */
    2351   134389642 :         if (ohead->oh_clientid != XFS_TRANSACTION &&
    2352             :             ohead->oh_clientid != XFS_LOG) {
    2353           0 :                 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
    2354             :                         __func__, ohead->oh_clientid);
    2355           0 :                 ASSERT(0);
    2356           0 :                 return -EFSCORRUPTED;
    2357             :         }
    2358             : 
    2359             :         /*
    2360             :          * Check the ophdr contains all the data it is supposed to contain.
    2361             :          */
    2362   134389642 :         len = be32_to_cpu(ohead->oh_len);
    2363   134389642 :         if (dp + len > end) {
    2364           0 :                 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
    2365           0 :                 WARN_ON(1);
    2366           0 :                 return -EFSCORRUPTED;
    2367             :         }
    2368             : 
    2369   134389642 :         trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
    2370   134389642 :         if (!trans) {
    2371             :                 /* nothing to do, so skip over this ophdr */
    2372             :                 return 0;
    2373             :         }
    2374             : 
    2375             :         /*
    2376             :          * The recovered buffer queue is drained only once we know that all
    2377             :          * recovery items for the current LSN have been processed. This is
    2378             :          * required because:
    2379             :          *
    2380             :          * - Buffer write submission updates the metadata LSN of the buffer.
    2381             :          * - Log recovery skips items with a metadata LSN >= the current LSN of
    2382             :          *   the recovery item.
    2383             :          * - Separate recovery items against the same metadata buffer can share
    2384             :          *   a current LSN. I.e., consider that the LSN of a recovery item is
    2385             :          *   defined as the starting LSN of the first record in which its
    2386             :          *   transaction appears, that a record can hold multiple transactions,
    2387             :          *   and/or that a transaction can span multiple records.
    2388             :          *
    2389             :          * In other words, we are allowed to submit a buffer from log recovery
    2390             :          * once per current LSN. Otherwise, we may incorrectly skip recovery
    2391             :          * items and cause corruption.
    2392             :          *
    2393             :          * We don't know up front whether buffers are updated multiple times per
    2394             :          * LSN. Therefore, track the current LSN of each commit log record as it
    2395             :          * is processed and drain the queue when it changes. Use commit records
    2396             :          * because they are ordered correctly by the logging code.
    2397             :          */
    2398   133505252 :         if (log->l_recovery_lsn != trans->r_lsn &&
    2399   133397250 :             ohead->oh_flags & XLOG_COMMIT_TRANS) {
    2400      760390 :                 error = xfs_buf_delwri_submit(buffer_list);
    2401      760390 :                 if (error)
    2402             :                         return error;
    2403      760390 :                 log->l_recovery_lsn = trans->r_lsn;
    2404             :         }
    2405             : 
    2406   133505252 :         return xlog_recovery_process_trans(log, trans, dp, len,
    2407   133505252 :                                            ohead->oh_flags, pass, buffer_list);
    2408             : }
    2409             : 
    2410             : /*
    2411             :  * There are two valid states of the r_state field.  0 indicates that the
    2412             :  * transaction structure is in a normal state.  We have either seen the
    2413             :  * start of the transaction or the last operation we added was not a partial
    2414             :  * operation.  If the last operation we added to the transaction was a
    2415             :  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
    2416             :  *
    2417             :  * NOTE: skip LRs with 0 data length.
    2418             :  */
    2419             : STATIC int
    2420     2609736 : xlog_recover_process_data(
    2421             :         struct xlog             *log,
    2422             :         struct hlist_head       rhash[],
    2423             :         struct xlog_rec_header  *rhead,
    2424             :         char                    *dp,
    2425             :         int                     pass,
    2426             :         struct list_head        *buffer_list)
    2427             : {
    2428     2609736 :         struct xlog_op_header   *ohead;
    2429     2609736 :         char                    *end;
    2430     2609736 :         int                     num_logops;
    2431     2609736 :         int                     error;
    2432             : 
    2433     2609736 :         end = dp + be32_to_cpu(rhead->h_len);
    2434     2609736 :         num_logops = be32_to_cpu(rhead->h_num_logops);
    2435             : 
    2436             :         /* check the log format matches our own - else we can't recover */
    2437     2609736 :         if (xlog_header_check_recover(log->l_mp, rhead))
    2438             :                 return -EIO;
    2439             : 
    2440     2609736 :         trace_xfs_log_recover_record(log, rhead, pass);
    2441   136999378 :         while ((dp < end) && num_logops) {
    2442             : 
    2443   134389642 :                 ohead = (struct xlog_op_header *)dp;
    2444   134389642 :                 dp += sizeof(*ohead);
    2445   134389642 :                 ASSERT(dp <= end);
    2446             : 
    2447             :                 /* errors will abort recovery */
    2448   134389642 :                 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
    2449             :                                                    dp, end, pass, buffer_list);
    2450   134389642 :                 if (error)
    2451           0 :                         return error;
    2452             : 
    2453   134389642 :                 dp += be32_to_cpu(ohead->oh_len);
    2454   134389642 :                 num_logops--;
    2455             :         }
    2456             :         return 0;
    2457             : }
    2458             : 
    2459             : /* Take all the collected deferred ops and finish them in order. */
    2460             : static int
    2461       11281 : xlog_finish_defer_ops(
    2462             :         struct xfs_mount        *mp,
    2463             :         struct list_head        *capture_list)
    2464             : {
    2465       11281 :         struct xfs_defer_capture *dfc, *next;
    2466       11281 :         struct xfs_trans        *tp;
    2467       11281 :         int                     error = 0;
    2468             : 
    2469       11967 :         list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
    2470         686 :                 struct xfs_trans_res    resv;
    2471         686 :                 struct xfs_defer_resources dres;
    2472             : 
    2473             :                 /*
    2474             :                  * Create a new transaction reservation from the captured
    2475             :                  * information.  Set logcount to 1 to force the new transaction
    2476             :                  * to regrant every roll so that we can make forward progress
    2477             :                  * in recovery no matter how full the log might be.
    2478             :                  */
    2479         686 :                 resv.tr_logres = dfc->dfc_logres;
    2480         686 :                 resv.tr_logcount = 1;
    2481         686 :                 resv.tr_logflags = XFS_TRANS_PERM_LOG_RES;
    2482             : 
    2483         686 :                 error = xfs_trans_alloc(mp, &resv, dfc->dfc_blkres,
    2484             :                                 dfc->dfc_rtxres, XFS_TRANS_RESERVE, &tp);
    2485         686 :                 if (error) {
    2486           0 :                         xlog_force_shutdown(mp->m_log, SHUTDOWN_LOG_IO_ERROR);
    2487           0 :                         return error;
    2488             :                 }
    2489             : 
    2490             :                 /*
    2491             :                  * Transfer to this new transaction all the dfops we captured
    2492             :                  * from recovering a single intent item.
    2493             :                  */
    2494         686 :                 list_del_init(&dfc->dfc_list);
    2495         686 :                 xfs_defer_ops_continue(dfc, tp, &dres);
    2496         686 :                 error = xfs_trans_commit(tp);
    2497         686 :                 xfs_defer_resources_rele(&dres);
    2498         686 :                 if (error)
    2499           0 :                         return error;
    2500             :         }
    2501             : 
    2502       11281 :         ASSERT(list_empty(capture_list));
    2503             :         return 0;
    2504             : }
    2505             : 
    2506             : /* Release all the captured defer ops and capture structures in this list. */
    2507             : static void
    2508           2 : xlog_abort_defer_ops(
    2509             :         struct xfs_mount                *mp,
    2510             :         struct list_head                *capture_list)
    2511             : {
    2512           2 :         struct xfs_defer_capture        *dfc;
    2513           2 :         struct xfs_defer_capture        *next;
    2514             : 
    2515           2 :         list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
    2516           0 :                 list_del_init(&dfc->dfc_list);
    2517           0 :                 xfs_defer_ops_capture_free(mp, dfc);
    2518             :         }
    2519           2 : }
    2520             : 
    2521             : /*
    2522             :  * When this is called, all of the log intent items which did not have
    2523             :  * corresponding log done items should be in the AIL.  What we do now is update
    2524             :  * the data structures associated with each one.
    2525             :  *
    2526             :  * Since we process the log intent items in normal transactions, they will be
    2527             :  * removed at some point after the commit.  This prevents us from just walking
    2528             :  * down the list processing each one.  We'll use a flag in the intent item to
    2529             :  * skip those that we've already processed and use the AIL iteration mechanism's
    2530             :  * generation count to try to speed this up at least a bit.
    2531             :  *
    2532             :  * When we start, we know that the intents are the only things in the AIL. As we
    2533             :  * process them, however, other items are added to the AIL. Hence we know we
    2534             :  * have started recovery on all the pending intents when we find an non-intent
    2535             :  * item in the AIL.
    2536             :  */
    2537             : STATIC int
    2538       11283 : xlog_recover_process_intents(
    2539             :         struct xlog             *log)
    2540             : {
    2541       11283 :         LIST_HEAD(capture_list);
    2542       11283 :         struct xfs_ail_cursor   cur;
    2543       11283 :         struct xfs_log_item     *lip;
    2544       11283 :         struct xfs_ail          *ailp;
    2545       11283 :         int                     error = 0;
    2546             : #if defined(DEBUG) || defined(XFS_WARN)
    2547       11283 :         xfs_lsn_t               last_lsn;
    2548             : #endif
    2549             : 
    2550       11283 :         ailp = log->l_ailp;
    2551       11283 :         spin_lock(&ailp->ail_lock);
    2552             : #if defined(DEBUG) || defined(XFS_WARN)
    2553       11283 :         last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
    2554             : #endif
    2555       11283 :         for (lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
    2556       15046 :              lip != NULL;
    2557        3763 :              lip = xfs_trans_ail_cursor_next(ailp, &cur)) {
    2558        3765 :                 const struct xfs_item_ops       *ops;
    2559             : 
    2560        3765 :                 if (!xlog_item_is_intent(lip))
    2561             :                         break;
    2562             : 
    2563             :                 /*
    2564             :                  * We should never see a redo item with a LSN higher than
    2565             :                  * the last transaction we found in the log at the start
    2566             :                  * of recovery.
    2567             :                  */
    2568        7530 :                 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
    2569             : 
    2570             :                 /*
    2571             :                  * NOTE: If your intent processing routine can create more
    2572             :                  * deferred ops, you /must/ attach them to the capture list in
    2573             :                  * the recover routine or else those subsequent intents will be
    2574             :                  * replayed in the wrong order!
    2575             :                  *
    2576             :                  * The recovery function can free the log item, so we must not
    2577             :                  * access lip after it returns.
    2578             :                  */
    2579        3765 :                 spin_unlock(&ailp->ail_lock);
    2580        3765 :                 ops = lip->li_ops;
    2581        3765 :                 error = ops->iop_recover(lip, &capture_list);
    2582        3765 :                 spin_lock(&ailp->ail_lock);
    2583        3765 :                 if (error) {
    2584           2 :                         trace_xlog_intent_recovery_failed(log->l_mp, error,
    2585           2 :                                         ops->iop_recover);
    2586           2 :                         break;
    2587             :                 }
    2588             :         }
    2589             : 
    2590       11283 :         xfs_trans_ail_cursor_done(&cur);
    2591       11283 :         spin_unlock(&ailp->ail_lock);
    2592       11283 :         if (error)
    2593           2 :                 goto err;
    2594             : 
    2595       11281 :         error = xlog_finish_defer_ops(log->l_mp, &capture_list);
    2596       11281 :         if (error)
    2597           0 :                 goto err;
    2598             : 
    2599             :         return 0;
    2600           2 : err:
    2601           2 :         xlog_abort_defer_ops(log->l_mp, &capture_list);
    2602           2 :         return error;
    2603             : }
    2604             : 
    2605             : /*
    2606             :  * A cancel occurs when the mount has failed and we're bailing out.  Release all
    2607             :  * pending log intent items that we haven't started recovery on so they don't
    2608             :  * pin the AIL.
    2609             :  */
    2610             : STATIC void
    2611           2 : xlog_recover_cancel_intents(
    2612             :         struct xlog             *log)
    2613             : {
    2614           2 :         struct xfs_log_item     *lip;
    2615           2 :         struct xfs_ail_cursor   cur;
    2616           2 :         struct xfs_ail          *ailp;
    2617             : 
    2618           2 :         ailp = log->l_ailp;
    2619           2 :         spin_lock(&ailp->ail_lock);
    2620           2 :         lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
    2621           2 :         while (lip != NULL) {
    2622           0 :                 if (!xlog_item_is_intent(lip))
    2623             :                         break;
    2624             : 
    2625           0 :                 spin_unlock(&ailp->ail_lock);
    2626           0 :                 lip->li_ops->iop_release(lip);
    2627           0 :                 spin_lock(&ailp->ail_lock);
    2628           0 :                 lip = xfs_trans_ail_cursor_next(ailp, &cur);
    2629             :         }
    2630             : 
    2631           2 :         xfs_trans_ail_cursor_done(&cur);
    2632           2 :         spin_unlock(&ailp->ail_lock);
    2633           2 : }
    2634             : 
    2635             : /*
    2636             :  * This routine performs a transaction to null out a bad inode pointer
    2637             :  * in an agi unlinked inode hash bucket.
    2638             :  */
    2639             : STATIC void
    2640           4 : xlog_recover_clear_agi_bucket(
    2641             :         struct xfs_perag        *pag,
    2642             :         int                     bucket)
    2643             : {
    2644           4 :         struct xfs_mount        *mp = pag->pag_mount;
    2645           4 :         struct xfs_trans        *tp;
    2646           4 :         struct xfs_agi          *agi;
    2647           4 :         struct xfs_buf          *agibp;
    2648           4 :         int                     offset;
    2649           4 :         int                     error;
    2650             : 
    2651           4 :         error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
    2652           4 :         if (error)
    2653           4 :                 goto out_error;
    2654             : 
    2655           0 :         error = xfs_read_agi(pag, tp, &agibp);
    2656           0 :         if (error)
    2657           0 :                 goto out_abort;
    2658             : 
    2659           0 :         agi = agibp->b_addr;
    2660           0 :         agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
    2661           0 :         offset = offsetof(xfs_agi_t, agi_unlinked) +
    2662             :                  (sizeof(xfs_agino_t) * bucket);
    2663           0 :         xfs_trans_log_buf(tp, agibp, offset,
    2664             :                           (offset + sizeof(xfs_agino_t) - 1));
    2665             : 
    2666           0 :         error = xfs_trans_commit(tp);
    2667           0 :         if (error)
    2668           0 :                 goto out_error;
    2669             :         return;
    2670             : 
    2671             : out_abort:
    2672           0 :         xfs_trans_cancel(tp);
    2673           4 : out_error:
    2674           4 :         xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__,
    2675             :                         pag->pag_agno);
    2676           4 :         return;
    2677             : }
    2678             : 
    2679             : static int
    2680     2886016 : xlog_recover_iunlink_bucket(
    2681             :         struct xfs_perag        *pag,
    2682             :         struct xfs_agi          *agi,
    2683             :         int                     bucket)
    2684             : {
    2685     2886016 :         struct xfs_mount        *mp = pag->pag_mount;
    2686     2886016 :         struct xfs_inode        *prev_ip = NULL;
    2687     2886016 :         struct xfs_inode        *ip;
    2688     2886016 :         xfs_agino_t             prev_agino, agino;
    2689     2886016 :         int                     error = 0;
    2690             : 
    2691     2886016 :         agino = be32_to_cpu(agi->agi_unlinked[bucket]);
    2692     3052453 :         while (agino != NULLAGINO) {
    2693      166437 :                 error = xfs_iget(mp, NULL,
    2694      166437 :                                 XFS_AGINO_TO_INO(mp, pag->pag_agno, agino),
    2695             :                                 0, 0, &ip);
    2696      166437 :                 if (error)
    2697             :                         break;
    2698             : 
    2699      166437 :                 ASSERT(VFS_I(ip)->i_nlink == 0);
    2700      166437 :                 ASSERT(VFS_I(ip)->i_mode != 0);
    2701      166437 :                 xfs_iflags_clear(ip, XFS_IRECOVERY);
    2702      166437 :                 agino = ip->i_next_unlinked;
    2703             : 
    2704      166437 :                 if (prev_ip) {
    2705      161106 :                         ip->i_prev_unlinked = prev_agino;
    2706      161106 :                         xfs_irele(prev_ip);
    2707             : 
    2708             :                         /*
    2709             :                          * Ensure the inode is removed from the unlinked list
    2710             :                          * before we continue so that it won't race with
    2711             :                          * building the in-memory list here. This could be
    2712             :                          * serialised with the agibp lock, but that just
    2713             :                          * serialises via lockstepping and it's much simpler
    2714             :                          * just to flush the inodegc queue and wait for it to
    2715             :                          * complete.
    2716             :                          */
    2717      161106 :                         error = xfs_inodegc_flush(mp);
    2718      161106 :                         if (error)
    2719             :                                 break;
    2720             :                 }
    2721             : 
    2722      166437 :                 prev_agino = agino;
    2723      166437 :                 prev_ip = ip;
    2724             :         }
    2725             : 
    2726     2886016 :         if (prev_ip) {
    2727        5331 :                 int     error2;
    2728             : 
    2729        5331 :                 ip->i_prev_unlinked = prev_agino;
    2730        5331 :                 xfs_irele(prev_ip);
    2731             : 
    2732        5331 :                 error2 = xfs_inodegc_flush(mp);
    2733        5331 :                 if (error2 && !error)
    2734           4 :                         return error2;
    2735             :         }
    2736             :         return error;
    2737             : }
    2738             : 
    2739             : /*
    2740             :  * Recover AGI unlinked lists
    2741             :  *
    2742             :  * This is called during recovery to process any inodes which we unlinked but
    2743             :  * not freed when the system crashed.  These inodes will be on the lists in the
    2744             :  * AGI blocks. What we do here is scan all the AGIs and fully truncate and free
    2745             :  * any inodes found on the lists. Each inode is removed from the lists when it
    2746             :  * has been fully truncated and is freed. The freeing of the inode and its
    2747             :  * removal from the list must be atomic.
    2748             :  *
    2749             :  * If everything we touch in the agi processing loop is already in memory, this
    2750             :  * loop can hold the cpu for a long time. It runs without lock contention,
    2751             :  * memory allocation contention, the need wait for IO, etc, and so will run
    2752             :  * until we either run out of inodes to process, run low on memory or we run out
    2753             :  * of log space.
    2754             :  *
    2755             :  * This behaviour is bad for latency on single CPU and non-preemptible kernels,
    2756             :  * and can prevent other filesystem work (such as CIL pushes) from running. This
    2757             :  * can lead to deadlocks if the recovery process runs out of log reservation
    2758             :  * space. Hence we need to yield the CPU when there is other kernel work
    2759             :  * scheduled on this CPU to ensure other scheduled work can run without undue
    2760             :  * latency.
    2761             :  */
    2762             : static void
    2763       45106 : xlog_recover_iunlink_ag(
    2764             :         struct xfs_perag        *pag)
    2765             : {
    2766       45106 :         struct xfs_agi          *agi;
    2767       45106 :         struct xfs_buf          *agibp;
    2768       45106 :         int                     bucket;
    2769       45106 :         int                     error;
    2770             : 
    2771       45106 :         error = xfs_read_agi(pag, NULL, &agibp);
    2772       45106 :         if (error) {
    2773             :                 /*
    2774             :                  * AGI is b0rked. Don't process it.
    2775             :                  *
    2776             :                  * We should probably mark the filesystem as corrupt after we've
    2777             :                  * recovered all the ag's we can....
    2778             :                  */
    2779          12 :                 return;
    2780             :         }
    2781             : 
    2782             :         /*
    2783             :          * Unlock the buffer so that it can be acquired in the normal course of
    2784             :          * the transaction to truncate and free each inode.  Because we are not
    2785             :          * racing with anyone else here for the AGI buffer, we don't even need
    2786             :          * to hold it locked to read the initial unlinked bucket entries out of
    2787             :          * the buffer. We keep buffer reference though, so that it stays pinned
    2788             :          * in memory while we need the buffer.
    2789             :          */
    2790       45094 :         agi = agibp->b_addr;
    2791       45094 :         xfs_buf_unlock(agibp);
    2792             : 
    2793     2976204 :         for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
    2794     2886016 :                 error = xlog_recover_iunlink_bucket(pag, agi, bucket);
    2795     2886016 :                 if (error) {
    2796             :                         /*
    2797             :                          * Bucket is unrecoverable, so only a repair scan can
    2798             :                          * free the remaining unlinked inodes. Just empty the
    2799             :                          * bucket and remaining inodes on it unreferenced and
    2800             :                          * unfreeable.
    2801             :                          */
    2802           4 :                         xlog_recover_clear_agi_bucket(pag, bucket);
    2803             :                 }
    2804             :         }
    2805             : 
    2806       45094 :         xfs_buf_rele(agibp);
    2807             : }
    2808             : 
    2809             : static void
    2810       11281 : xlog_recover_process_iunlinks(
    2811             :         struct xlog     *log)
    2812             : {
    2813       11281 :         struct xfs_perag        *pag;
    2814       11281 :         xfs_agnumber_t          agno;
    2815             : 
    2816       56387 :         for_each_perag(log->l_mp, agno, pag)
    2817       45106 :                 xlog_recover_iunlink_ag(pag);
    2818       11281 : }
    2819             : 
    2820             : STATIC void
    2821     2609736 : xlog_unpack_data(
    2822             :         struct xlog_rec_header  *rhead,
    2823             :         char                    *dp,
    2824             :         struct xlog             *log)
    2825             : {
    2826     2609736 :         int                     i, j, k;
    2827             : 
    2828   143985740 :         for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
    2829   141376004 :                   i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
    2830   141376004 :                 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
    2831   141376004 :                 dp += BBSIZE;
    2832             :         }
    2833             : 
    2834     2609736 :         if (xfs_has_logv2(log->l_mp)) {
    2835             :                 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
    2836     2915952 :                 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
    2837      306216 :                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
    2838      306216 :                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
    2839      306216 :                         *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
    2840      306216 :                         dp += BBSIZE;
    2841             :                 }
    2842             :         }
    2843     2609736 : }
    2844             : 
    2845             : /*
    2846             :  * CRC check, unpack and process a log record.
    2847             :  */
    2848             : STATIC int
    2849     3985667 : xlog_recover_process(
    2850             :         struct xlog             *log,
    2851             :         struct hlist_head       rhash[],
    2852             :         struct xlog_rec_header  *rhead,
    2853             :         char                    *dp,
    2854             :         int                     pass,
    2855             :         struct list_head        *buffer_list)
    2856             : {
    2857     3985667 :         __le32                  old_crc = rhead->h_crc;
    2858     3985667 :         __le32                  crc;
    2859             : 
    2860     3985667 :         crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
    2861             : 
    2862             :         /*
    2863             :          * Nothing else to do if this is a CRC verification pass. Just return
    2864             :          * if this a record with a non-zero crc. Unfortunately, mkfs always
    2865             :          * sets old_crc to 0 so we must consider this valid even on v5 supers.
    2866             :          * Otherwise, return EFSBADCRC on failure so the callers up the stack
    2867             :          * know precisely what failed.
    2868             :          */
    2869     3985667 :         if (pass == XLOG_RECOVER_CRCPASS) {
    2870     1375931 :                 if (old_crc && crc != old_crc)
    2871             :                         return -EFSBADCRC;
    2872     1375920 :                 return 0;
    2873             :         }
    2874             : 
    2875             :         /*
    2876             :          * We're in the normal recovery path. Issue a warning if and only if the
    2877             :          * CRC in the header is non-zero. This is an advisory warning and the
    2878             :          * zero CRC check prevents warnings from being emitted when upgrading
    2879             :          * the kernel from one that does not add CRCs by default.
    2880             :          */
    2881     2609736 :         if (crc != old_crc) {
    2882           0 :                 if (old_crc || xfs_has_crc(log->l_mp)) {
    2883           0 :                         xfs_alert(log->l_mp,
    2884             :                 "log record CRC mismatch: found 0x%x, expected 0x%x.",
    2885             :                                         le32_to_cpu(old_crc),
    2886             :                                         le32_to_cpu(crc));
    2887           0 :                         xfs_hex_dump(dp, 32);
    2888             :                 }
    2889             : 
    2890             :                 /*
    2891             :                  * If the filesystem is CRC enabled, this mismatch becomes a
    2892             :                  * fatal log corruption failure.
    2893             :                  */
    2894           0 :                 if (xfs_has_crc(log->l_mp)) {
    2895           0 :                         XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
    2896           0 :                         return -EFSCORRUPTED;
    2897             :                 }
    2898             :         }
    2899             : 
    2900     2609736 :         xlog_unpack_data(rhead, dp, log);
    2901             : 
    2902     2609736 :         return xlog_recover_process_data(log, rhash, rhead, dp, pass,
    2903             :                                          buffer_list);
    2904             : }
    2905             : 
    2906             : STATIC int
    2907     4030803 : xlog_valid_rec_header(
    2908             :         struct xlog             *log,
    2909             :         struct xlog_rec_header  *rhead,
    2910             :         xfs_daddr_t             blkno,
    2911             :         int                     bufsize)
    2912             : {
    2913     4030803 :         int                     hlen;
    2914             : 
    2915     4030803 :         if (XFS_IS_CORRUPT(log->l_mp,
    2916             :                            rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)))
    2917           0 :                 return -EFSCORRUPTED;
    2918     4030803 :         if (XFS_IS_CORRUPT(log->l_mp,
    2919             :                            (!rhead->h_version ||
    2920             :                            (be32_to_cpu(rhead->h_version) &
    2921             :                             (~XLOG_VERSION_OKBITS))))) {
    2922           0 :                 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
    2923             :                         __func__, be32_to_cpu(rhead->h_version));
    2924           0 :                 return -EFSCORRUPTED;
    2925             :         }
    2926             : 
    2927             :         /*
    2928             :          * LR body must have data (or it wouldn't have been written)
    2929             :          * and h_len must not be greater than LR buffer size.
    2930             :          */
    2931     4030803 :         hlen = be32_to_cpu(rhead->h_len);
    2932     4030803 :         if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > bufsize))
    2933           0 :                 return -EFSCORRUPTED;
    2934             : 
    2935     4030803 :         if (XFS_IS_CORRUPT(log->l_mp,
    2936             :                            blkno > log->l_logBBsize || blkno > INT_MAX))
    2937           0 :                 return -EFSCORRUPTED;
    2938             :         return 0;
    2939             : }
    2940             : 
    2941             : /*
    2942             :  * Read the log from tail to head and process the log records found.
    2943             :  * Handle the two cases where the tail and head are in the same cycle
    2944             :  * and where the active portion of the log wraps around the end of
    2945             :  * the physical log separately.  The pass parameter is passed through
    2946             :  * to the routines called to process the data and is not looked at
    2947             :  * here.
    2948             :  */
    2949             : STATIC int
    2950       45136 : xlog_do_recovery_pass(
    2951             :         struct xlog             *log,
    2952             :         xfs_daddr_t             head_blk,
    2953             :         xfs_daddr_t             tail_blk,
    2954             :         int                     pass,
    2955             :         xfs_daddr_t             *first_bad)     /* out: first bad log rec */
    2956             : {
    2957       45136 :         xlog_rec_header_t       *rhead;
    2958       45136 :         xfs_daddr_t             blk_no, rblk_no;
    2959       45136 :         xfs_daddr_t             rhead_blk;
    2960       45136 :         char                    *offset;
    2961       45136 :         char                    *hbp, *dbp;
    2962       45136 :         int                     error = 0, h_size, h_len;
    2963       45136 :         int                     error2 = 0;
    2964       45136 :         int                     bblks, split_bblks;
    2965       45136 :         int                     hblks, split_hblks, wrapped_hblks;
    2966       45136 :         int                     i;
    2967       45136 :         struct hlist_head       rhash[XLOG_RHASH_SIZE];
    2968       45136 :         LIST_HEAD               (buffer_list);
    2969             : 
    2970       45136 :         ASSERT(head_blk != tail_blk);
    2971             :         blk_no = rhead_blk = tail_blk;
    2972             : 
    2973      767312 :         for (i = 0; i < XLOG_RHASH_SIZE; i++)
    2974      722176 :                 INIT_HLIST_HEAD(&rhash[i]);
    2975             : 
    2976             :         /*
    2977             :          * Read the header of the tail block and get the iclog buffer size from
    2978             :          * h_size.  Use this to tell how many sectors make up the log header.
    2979             :          */
    2980       45136 :         if (xfs_has_logv2(log->l_mp)) {
    2981             :                 /*
    2982             :                  * When using variable length iclogs, read first sector of
    2983             :                  * iclog header and extract the header size from it.  Get a
    2984             :                  * new hbp that is the correct size.
    2985             :                  */
    2986       45136 :                 hbp = xlog_alloc_buffer(log, 1);
    2987       45136 :                 if (!hbp)
    2988             :                         return -ENOMEM;
    2989             : 
    2990       45136 :                 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
    2991       45136 :                 if (error)
    2992           0 :                         goto bread_err1;
    2993             : 
    2994       45136 :                 rhead = (xlog_rec_header_t *)offset;
    2995             : 
    2996             :                 /*
    2997             :                  * xfsprogs has a bug where record length is based on lsunit but
    2998             :                  * h_size (iclog size) is hardcoded to 32k. Now that we
    2999             :                  * unconditionally CRC verify the unmount record, this means the
    3000             :                  * log buffer can be too small for the record and cause an
    3001             :                  * overrun.
    3002             :                  *
    3003             :                  * Detect this condition here. Use lsunit for the buffer size as
    3004             :                  * long as this looks like the mkfs case. Otherwise, return an
    3005             :                  * error to avoid a buffer overrun.
    3006             :                  */
    3007       45136 :                 h_size = be32_to_cpu(rhead->h_size);
    3008       45136 :                 h_len = be32_to_cpu(rhead->h_len);
    3009       45136 :                 if (h_len > h_size && h_len <= log->l_mp->m_logbsize &&
    3010           0 :                     rhead->h_num_logops == cpu_to_be32(1)) {
    3011           0 :                         xfs_warn(log->l_mp,
    3012             :                 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
    3013             :                                  h_size, log->l_mp->m_logbsize);
    3014           0 :                         h_size = log->l_mp->m_logbsize;
    3015             :                 }
    3016             : 
    3017       45136 :                 error = xlog_valid_rec_header(log, rhead, tail_blk, h_size);
    3018       45136 :                 if (error)
    3019           0 :                         goto bread_err1;
    3020             : 
    3021       45136 :                 hblks = xlog_logrec_hblks(log, rhead);
    3022       45136 :                 if (hblks != 1) {
    3023         168 :                         kmem_free(hbp);
    3024         168 :                         hbp = xlog_alloc_buffer(log, hblks);
    3025             :                 }
    3026             :         } else {
    3027           0 :                 ASSERT(log->l_sectBBsize == 1);
    3028           0 :                 hblks = 1;
    3029           0 :                 hbp = xlog_alloc_buffer(log, 1);
    3030           0 :                 h_size = XLOG_BIG_RECORD_BSIZE;
    3031             :         }
    3032             : 
    3033       45136 :         if (!hbp)
    3034             :                 return -ENOMEM;
    3035       45136 :         dbp = xlog_alloc_buffer(log, BTOBB(h_size));
    3036       45136 :         if (!dbp) {
    3037           0 :                 kmem_free(hbp);
    3038           0 :                 return -ENOMEM;
    3039             :         }
    3040             : 
    3041       45136 :         memset(rhash, 0, sizeof(rhash));
    3042       45136 :         if (tail_blk > head_blk) {
    3043             :                 /*
    3044             :                  * Perform recovery around the end of the physical log.
    3045             :                  * When the head is not on the same cycle number as the tail,
    3046             :                  * we can't do a sequential recovery.
    3047             :                  */
    3048      255003 :                 while (blk_no < log->l_logBBsize) {
    3049             :                         /*
    3050             :                          * Check for header wrapping around physical end-of-log
    3051             :                          */
    3052      253368 :                         offset = hbp;
    3053      253368 :                         split_hblks = 0;
    3054      253368 :                         wrapped_hblks = 0;
    3055      253368 :                         if (blk_no + hblks <= log->l_logBBsize) {
    3056             :                                 /* Read header in one read */
    3057      253368 :                                 error = xlog_bread(log, blk_no, hblks, hbp,
    3058             :                                                    &offset);
    3059      253368 :                                 if (error)
    3060           0 :                                         goto bread_err2;
    3061             :                         } else {
    3062             :                                 /* This LR is split across physical log end */
    3063           0 :                                 if (blk_no != log->l_logBBsize) {
    3064             :                                         /* some data before physical log end */
    3065           0 :                                         ASSERT(blk_no <= INT_MAX);
    3066           0 :                                         split_hblks = log->l_logBBsize - (int)blk_no;
    3067           0 :                                         ASSERT(split_hblks > 0);
    3068           0 :                                         error = xlog_bread(log, blk_no,
    3069             :                                                            split_hblks, hbp,
    3070             :                                                            &offset);
    3071           0 :                                         if (error)
    3072           0 :                                                 goto bread_err2;
    3073             :                                 }
    3074             : 
    3075             :                                 /*
    3076             :                                  * Note: this black magic still works with
    3077             :                                  * large sector sizes (non-512) only because:
    3078             :                                  * - we increased the buffer size originally
    3079             :                                  *   by 1 sector giving us enough extra space
    3080             :                                  *   for the second read;
    3081             :                                  * - the log start is guaranteed to be sector
    3082             :                                  *   aligned;
    3083             :                                  * - we read the log end (LR header start)
    3084             :                                  *   _first_, then the log start (LR header end)
    3085             :                                  *   - order is important.
    3086             :                                  */
    3087           0 :                                 wrapped_hblks = hblks - split_hblks;
    3088           0 :                                 error = xlog_bread_noalign(log, 0,
    3089             :                                                 wrapped_hblks,
    3090           0 :                                                 offset + BBTOB(split_hblks));
    3091           0 :                                 if (error)
    3092           0 :                                         goto bread_err2;
    3093             :                         }
    3094      253368 :                         rhead = (xlog_rec_header_t *)offset;
    3095      253368 :                         error = xlog_valid_rec_header(log, rhead,
    3096             :                                         split_hblks ? blk_no : 0, h_size);
    3097      253368 :                         if (error)
    3098           0 :                                 goto bread_err2;
    3099             : 
    3100      253368 :                         bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
    3101      253368 :                         blk_no += hblks;
    3102             : 
    3103             :                         /*
    3104             :                          * Read the log record data in multiple reads if it
    3105             :                          * wraps around the end of the log. Note that if the
    3106             :                          * header already wrapped, blk_no could point past the
    3107             :                          * end of the log. The record data is contiguous in
    3108             :                          * that case.
    3109             :                          */
    3110      253368 :                         if (blk_no + bblks <= log->l_logBBsize ||
    3111             :                             blk_no >= log->l_logBBsize) {
    3112      251989 :                                 rblk_no = xlog_wrap_logbno(log, blk_no);
    3113      251989 :                                 error = xlog_bread(log, rblk_no, bblks, dbp,
    3114             :                                                    &offset);
    3115      251989 :                                 if (error)
    3116           0 :                                         goto bread_err2;
    3117             :                         } else {
    3118             :                                 /* This log record is split across the
    3119             :                                  * physical end of log */
    3120        1379 :                                 offset = dbp;
    3121        1379 :                                 split_bblks = 0;
    3122        1379 :                                 if (blk_no != log->l_logBBsize) {
    3123             :                                         /* some data is before the physical
    3124             :                                          * end of log */
    3125        1379 :                                         ASSERT(!wrapped_hblks);
    3126        1379 :                                         ASSERT(blk_no <= INT_MAX);
    3127        1379 :                                         split_bblks =
    3128        1379 :                                                 log->l_logBBsize - (int)blk_no;
    3129        1379 :                                         ASSERT(split_bblks > 0);
    3130        1379 :                                         error = xlog_bread(log, blk_no,
    3131             :                                                         split_bblks, dbp,
    3132             :                                                         &offset);
    3133        1379 :                                         if (error)
    3134           0 :                                                 goto bread_err2;
    3135             :                                 }
    3136             : 
    3137             :                                 /*
    3138             :                                  * Note: this black magic still works with
    3139             :                                  * large sector sizes (non-512) only because:
    3140             :                                  * - we increased the buffer size originally
    3141             :                                  *   by 1 sector giving us enough extra space
    3142             :                                  *   for the second read;
    3143             :                                  * - the log start is guaranteed to be sector
    3144             :                                  *   aligned;
    3145             :                                  * - we read the log end (LR header start)
    3146             :                                  *   _first_, then the log start (LR header end)
    3147             :                                  *   - order is important.
    3148             :                                  */
    3149        1379 :                                 error = xlog_bread_noalign(log, 0,
    3150             :                                                 bblks - split_bblks,
    3151        1379 :                                                 offset + BBTOB(split_bblks));
    3152        1379 :                                 if (error)
    3153           0 :                                         goto bread_err2;
    3154             :                         }
    3155             : 
    3156      253368 :                         error = xlog_recover_process(log, rhash, rhead, offset,
    3157             :                                                      pass, &buffer_list);
    3158      253368 :                         if (error)
    3159           0 :                                 goto bread_err2;
    3160             : 
    3161             :                         blk_no += bblks;
    3162             :                         rhead_blk = blk_no;
    3163             :                 }
    3164             : 
    3165        1635 :                 ASSERT(blk_no >= log->l_logBBsize);
    3166        1635 :                 blk_no -= log->l_logBBsize;
    3167        1635 :                 rhead_blk = blk_no;
    3168             :         }
    3169             : 
    3170             :         /* read first part of physical log */
    3171     3777424 :         while (blk_no < head_blk) {
    3172     3732299 :                 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
    3173     3732299 :                 if (error)
    3174           0 :                         goto bread_err2;
    3175             : 
    3176     3732299 :                 rhead = (xlog_rec_header_t *)offset;
    3177     3732299 :                 error = xlog_valid_rec_header(log, rhead, blk_no, h_size);
    3178     3732299 :                 if (error)
    3179           0 :                         goto bread_err2;
    3180             : 
    3181             :                 /* blocks in data section */
    3182     3732299 :                 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
    3183     3732299 :                 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
    3184             :                                    &offset);
    3185     3732299 :                 if (error)
    3186           0 :                         goto bread_err2;
    3187             : 
    3188     3732299 :                 error = xlog_recover_process(log, rhash, rhead, offset, pass,
    3189             :                                              &buffer_list);
    3190     3732299 :                 if (error)
    3191          11 :                         goto bread_err2;
    3192             : 
    3193     3732288 :                 blk_no += bblks + hblks;
    3194     3732288 :                 rhead_blk = blk_no;
    3195             :         }
    3196             : 
    3197       45125 :  bread_err2:
    3198       45136 :         kmem_free(dbp);
    3199       45136 :  bread_err1:
    3200       45136 :         kmem_free(hbp);
    3201             : 
    3202             :         /*
    3203             :          * Submit buffers that have been added from the last record processed,
    3204             :          * regardless of error status.
    3205             :          */
    3206       45136 :         if (!list_empty(&buffer_list))
    3207       10480 :                 error2 = xfs_buf_delwri_submit(&buffer_list);
    3208             : 
    3209       45136 :         if (error && first_bad)
    3210          11 :                 *first_bad = rhead_blk;
    3211             : 
    3212             :         /*
    3213             :          * Transactions are freed at commit time but transactions without commit
    3214             :          * records on disk are never committed. Free any that may be left in the
    3215             :          * hash table.
    3216             :          */
    3217      767312 :         for (i = 0; i < XLOG_RHASH_SIZE; i++) {
    3218      722176 :                 struct hlist_node       *tmp;
    3219      722176 :                 struct xlog_recover     *trans;
    3220             : 
    3221     1445582 :                 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
    3222        1230 :                         xlog_recover_free_trans(trans);
    3223             :         }
    3224             : 
    3225       45136 :         return error ? error : error2;
    3226             : }
    3227             : 
    3228             : /*
    3229             :  * Do the recovery of the log.  We actually do this in two phases.
    3230             :  * The two passes are necessary in order to implement the function
    3231             :  * of cancelling a record written into the log.  The first pass
    3232             :  * determines those things which have been cancelled, and the
    3233             :  * second pass replays log items normally except for those which
    3234             :  * have been cancelled.  The handling of the replay and cancellations
    3235             :  * takes place in the log item type specific routines.
    3236             :  *
    3237             :  * The table of items which have cancel records in the log is allocated
    3238             :  * and freed at this level, since only here do we know when all of
    3239             :  * the log recovery has been completed.
    3240             :  */
    3241             : STATIC int
    3242       11283 : xlog_do_log_recovery(
    3243             :         struct xlog     *log,
    3244             :         xfs_daddr_t     head_blk,
    3245             :         xfs_daddr_t     tail_blk)
    3246             : {
    3247       11283 :         int             error;
    3248             : 
    3249       11283 :         ASSERT(head_blk != tail_blk);
    3250             : 
    3251             :         /*
    3252             :          * First do a pass to find all of the cancelled buf log items.
    3253             :          * Store them in the buf_cancel_table for use in the second pass.
    3254             :          */
    3255       11283 :         error = xlog_alloc_buf_cancel_table(log);
    3256       11283 :         if (error)
    3257             :                 return error;
    3258             : 
    3259       11283 :         error = xlog_do_recovery_pass(log, head_blk, tail_blk,
    3260             :                                       XLOG_RECOVER_PASS1, NULL);
    3261       11283 :         if (error != 0)
    3262           0 :                 goto out_cancel;
    3263             : 
    3264             :         /*
    3265             :          * Then do a second pass to actually recover the items in the log.
    3266             :          * When it is complete free the table of buf cancel items.
    3267             :          */
    3268       11283 :         error = xlog_do_recovery_pass(log, head_blk, tail_blk,
    3269             :                                       XLOG_RECOVER_PASS2, NULL);
    3270       11283 :         if (!error)
    3271       11283 :                 xlog_check_buf_cancel_table(log);
    3272           0 : out_cancel:
    3273       11283 :         xlog_free_buf_cancel_table(log);
    3274       11283 :         return error;
    3275             : }
    3276             : 
    3277             : /*
    3278             :  * Do the actual recovery
    3279             :  */
    3280             : STATIC int
    3281       11283 : xlog_do_recover(
    3282             :         struct xlog             *log,
    3283             :         xfs_daddr_t             head_blk,
    3284             :         xfs_daddr_t             tail_blk)
    3285             : {
    3286       11283 :         struct xfs_mount        *mp = log->l_mp;
    3287       11283 :         struct xfs_buf          *bp = mp->m_sb_bp;
    3288       11283 :         struct xfs_sb           *sbp = &mp->m_sb;
    3289       11283 :         int                     error;
    3290             : 
    3291       11283 :         trace_xfs_log_recover(log, head_blk, tail_blk);
    3292             : 
    3293             :         /*
    3294             :          * First replay the images in the log.
    3295             :          */
    3296       11283 :         error = xlog_do_log_recovery(log, head_blk, tail_blk);
    3297       11283 :         if (error)
    3298             :                 return error;
    3299             : 
    3300       22566 :         if (xlog_is_shutdown(log))
    3301             :                 return -EIO;
    3302             : 
    3303             :         /*
    3304             :          * We now update the tail_lsn since much of the recovery has completed
    3305             :          * and there may be space available to use.  If there were no extent
    3306             :          * or iunlinks, we can free up the entire log and set the tail_lsn to
    3307             :          * be the last_sync_lsn.  This was set in xlog_find_tail to be the
    3308             :          * lsn of the last known good LR on disk.  If there are extent frees
    3309             :          * or iunlinks they will have some entries in the AIL; so we look at
    3310             :          * the AIL to determine how to set the tail_lsn.
    3311             :          */
    3312       11283 :         xlog_assign_tail_lsn(mp);
    3313             : 
    3314             :         /*
    3315             :          * Now that we've finished replaying all buffer and inode updates,
    3316             :          * re-read the superblock and reverify it.
    3317             :          */
    3318       11283 :         xfs_buf_lock(bp);
    3319       11283 :         xfs_buf_hold(bp);
    3320       11283 :         error = _xfs_buf_read(bp, XBF_READ);
    3321       11283 :         if (error) {
    3322           0 :                 if (!xlog_is_shutdown(log)) {
    3323           0 :                         xfs_buf_ioerror_alert(bp, __this_address);
    3324           0 :                         ASSERT(0);
    3325             :                 }
    3326           0 :                 xfs_buf_relse(bp);
    3327           0 :                 return error;
    3328             :         }
    3329             : 
    3330             :         /* Convert superblock from on-disk format */
    3331       11283 :         xfs_sb_from_disk(sbp, bp->b_addr);
    3332       11283 :         xfs_buf_relse(bp);
    3333             : 
    3334             :         /* re-initialise in-core superblock and geometry structures */
    3335       11283 :         mp->m_features |= xfs_sb_version_to_features(sbp);
    3336       11283 :         xfs_reinit_percpu_counters(mp);
    3337       11283 :         error = xfs_initialize_perag(mp, sbp->sb_agcount, sbp->sb_dblocks,
    3338             :                         &mp->m_maxagi);
    3339       11283 :         if (error) {
    3340           0 :                 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
    3341           0 :                 return error;
    3342             :         }
    3343       11283 :         mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
    3344             : 
    3345             :         /* Normal transactions can now occur */
    3346       11283 :         clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
    3347             :         return 0;
    3348             : }
    3349             : 
    3350             : /*
    3351             :  * Perform recovery and re-initialize some log variables in xlog_find_tail.
    3352             :  *
    3353             :  * Return error or zero.
    3354             :  */
    3355             : int
    3356       24105 : xlog_recover(
    3357             :         struct xlog     *log)
    3358             : {
    3359       24105 :         xfs_daddr_t     head_blk, tail_blk;
    3360       24105 :         int             error;
    3361             : 
    3362             :         /* find the tail of the log */
    3363       24105 :         error = xlog_find_tail(log, &head_blk, &tail_blk);
    3364       24105 :         if (error)
    3365             :                 return error;
    3366             : 
    3367             :         /*
    3368             :          * The superblock was read before the log was available and thus the LSN
    3369             :          * could not be verified. Check the superblock LSN against the current
    3370             :          * LSN now that it's known.
    3371             :          */
    3372       48160 :         if (xfs_has_crc(log->l_mp) &&
    3373       24059 :             !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
    3374             :                 return -EINVAL;
    3375             : 
    3376       24099 :         if (tail_blk != head_blk) {
    3377             :                 /* There used to be a comment here:
    3378             :                  *
    3379             :                  * disallow recovery on read-only mounts.  note -- mount
    3380             :                  * checks for ENOSPC and turns it into an intelligent
    3381             :                  * error message.
    3382             :                  * ...but this is no longer true.  Now, unless you specify
    3383             :                  * NORECOVERY (in which case this function would never be
    3384             :                  * called), we just go ahead and recover.  We do this all
    3385             :                  * under the vfs layer, so we can get away with it unless
    3386             :                  * the device itself is read-only, in which case we fail.
    3387             :                  */
    3388       11285 :                 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
    3389             :                         return error;
    3390             :                 }
    3391             : 
    3392             :                 /*
    3393             :                  * Version 5 superblock log feature mask validation. We know the
    3394             :                  * log is dirty so check if there are any unknown log features
    3395             :                  * in what we need to recover. If there are unknown features
    3396             :                  * (e.g. unsupported transactions, then simply reject the
    3397             :                  * attempt at recovery before touching anything.
    3398             :                  */
    3399       11283 :                 if (xfs_sb_is_v5(&log->l_mp->m_sb) &&
    3400             :                     xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
    3401             :                                         XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
    3402           0 :                         xfs_warn(log->l_mp,
    3403             : "Superblock has unknown incompatible log features (0x%x) enabled.",
    3404             :                                 (log->l_mp->m_sb.sb_features_log_incompat &
    3405             :                                         XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
    3406           0 :                         xfs_warn(log->l_mp,
    3407             : "The log can not be fully and/or safely recovered by this kernel.");
    3408           0 :                         xfs_warn(log->l_mp,
    3409             : "Please recover the log on a kernel that supports the unknown features.");
    3410           0 :                         return -EINVAL;
    3411             :                 }
    3412             : 
    3413             :                 /*
    3414             :                  * Delay log recovery if the debug hook is set. This is debug
    3415             :                  * instrumentation to coordinate simulation of I/O failures with
    3416             :                  * log recovery.
    3417             :                  */
    3418       11283 :                 if (xfs_globals.log_recovery_delay) {
    3419           4 :                         xfs_notice(log->l_mp,
    3420             :                                 "Delaying log recovery for %d seconds.",
    3421             :                                 xfs_globals.log_recovery_delay);
    3422           4 :                         msleep(xfs_globals.log_recovery_delay * 1000);
    3423             :                 }
    3424             : 
    3425       11283 :                 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
    3426             :                                 log->l_mp->m_logname ? log->l_mp->m_logname
    3427             :                                                      : "internal");
    3428             : 
    3429       11283 :                 error = xlog_do_recover(log, head_blk, tail_blk);
    3430       11283 :                 set_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
    3431             :         }
    3432             :         return error;
    3433             : }
    3434             : 
    3435             : /*
    3436             :  * In the first part of recovery we replay inodes and buffers and build up the
    3437             :  * list of intents which need to be processed. Here we process the intents and
    3438             :  * clean up the on disk unlinked inode lists. This is separated from the first
    3439             :  * part of recovery so that the root and real-time bitmap inodes can be read in
    3440             :  * from disk in between the two stages.  This is necessary so that we can free
    3441             :  * space in the real-time portion of the file system.
    3442             :  */
    3443             : int
    3444       11283 : xlog_recover_finish(
    3445             :         struct xlog     *log)
    3446             : {
    3447       11283 :         int     error;
    3448             : 
    3449       11283 :         error = xlog_recover_process_intents(log);
    3450       11283 :         if (error) {
    3451             :                 /*
    3452             :                  * Cancel all the unprocessed intent items now so that we don't
    3453             :                  * leave them pinned in the AIL.  This can cause the AIL to
    3454             :                  * livelock on the pinned item if anyone tries to push the AIL
    3455             :                  * (inode reclaim does this) before we get around to
    3456             :                  * xfs_log_mount_cancel.
    3457             :                  */
    3458           2 :                 xlog_recover_cancel_intents(log);
    3459           2 :                 xfs_alert(log->l_mp, "Failed to recover intents");
    3460           2 :                 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
    3461           2 :                 return error;
    3462             :         }
    3463             : 
    3464             :         /*
    3465             :          * Sync the log to get all the intents out of the AIL.  This isn't
    3466             :          * absolutely necessary, but it helps in case the unlink transactions
    3467             :          * would have problems pushing the intents out of the way.
    3468             :          */
    3469       11281 :         xfs_log_force(log->l_mp, XFS_LOG_SYNC);
    3470             : 
    3471             :         /*
    3472             :          * Now that we've recovered the log and all the intents, we can clear
    3473             :          * the log incompat feature bits in the superblock because there's no
    3474             :          * longer anything to protect.  We rely on the AIL push to write out the
    3475             :          * updated superblock after everything else.
    3476             :          */
    3477       11281 :         if (xfs_clear_incompat_log_features(log->l_mp,
    3478             :                                 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
    3479        9132 :                 error = xfs_sync_sb(log->l_mp, false);
    3480        9132 :                 if (error < 0) {
    3481           0 :                         xfs_alert(log->l_mp,
    3482             :         "Failed to clear log incompat features on recovery");
    3483           0 :                         return error;
    3484             :                 }
    3485             :         }
    3486             : 
    3487       11281 :         xlog_recover_process_iunlinks(log);
    3488             : 
    3489             :         /*
    3490             :          * Recover any CoW staging blocks that are still referenced by the
    3491             :          * ondisk refcount metadata.  During mount there cannot be any live
    3492             :          * staging extents as we have not permitted any user modifications.
    3493             :          * Therefore, it is safe to free them all right now, even on a
    3494             :          * read-only mount.
    3495             :          */
    3496       11281 :         error = xfs_reflink_recover_cow(log->l_mp);
    3497       11281 :         if (error) {
    3498           8 :                 xfs_alert(log->l_mp,
    3499             :         "Failed to recover leftover CoW staging extents, err %d.",
    3500             :                                 error);
    3501             :                 /*
    3502             :                  * If we get an error here, make sure the log is shut down
    3503             :                  * but return zero so that any log items committed since the
    3504             :                  * end of intents processing can be pushed through the CIL
    3505             :                  * and AIL.
    3506             :                  */
    3507           8 :                 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
    3508             :         }
    3509             : 
    3510             :         return 0;
    3511             : }
    3512             : 
    3513             : void
    3514          40 : xlog_recover_cancel(
    3515             :         struct xlog     *log)
    3516             : {
    3517          80 :         if (xlog_recovery_needed(log))
    3518           0 :                 xlog_recover_cancel_intents(log);
    3519          40 : }
    3520             : 

Generated by: LCOV version 1.14