Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0 */
2 : /*
3 : * linux/cgroup-defs.h - basic definitions for cgroup
4 : *
5 : * This file provides basic type and interface. Include this file directly
6 : * only if necessary to avoid cyclic dependencies.
7 : */
8 : #ifndef _LINUX_CGROUP_DEFS_H
9 : #define _LINUX_CGROUP_DEFS_H
10 :
11 : #include <linux/limits.h>
12 : #include <linux/list.h>
13 : #include <linux/idr.h>
14 : #include <linux/wait.h>
15 : #include <linux/mutex.h>
16 : #include <linux/rcupdate.h>
17 : #include <linux/refcount.h>
18 : #include <linux/percpu-refcount.h>
19 : #include <linux/percpu-rwsem.h>
20 : #include <linux/u64_stats_sync.h>
21 : #include <linux/workqueue.h>
22 : #include <linux/bpf-cgroup-defs.h>
23 : #include <linux/psi_types.h>
24 :
25 : #ifdef CONFIG_CGROUPS
26 :
27 : struct cgroup;
28 : struct cgroup_root;
29 : struct cgroup_subsys;
30 : struct cgroup_taskset;
31 : struct kernfs_node;
32 : struct kernfs_ops;
33 : struct kernfs_open_file;
34 : struct seq_file;
35 : struct poll_table_struct;
36 :
37 : #define MAX_CGROUP_TYPE_NAMELEN 32
38 : #define MAX_CGROUP_ROOT_NAMELEN 64
39 : #define MAX_CFTYPE_NAME 64
40 :
41 : /* define the enumeration of all cgroup subsystems */
42 : #define SUBSYS(_x) _x ## _cgrp_id,
43 : enum cgroup_subsys_id {
44 : #include <linux/cgroup_subsys.h>
45 : CGROUP_SUBSYS_COUNT,
46 : };
47 : #undef SUBSYS
48 :
49 : /* bits in struct cgroup_subsys_state flags field */
50 : enum {
51 : CSS_NO_REF = (1 << 0), /* no reference counting for this css */
52 : CSS_ONLINE = (1 << 1), /* between ->css_online() and ->css_offline() */
53 : CSS_RELEASED = (1 << 2), /* refcnt reached zero, released */
54 : CSS_VISIBLE = (1 << 3), /* css is visible to userland */
55 : CSS_DYING = (1 << 4), /* css is dying */
56 : };
57 :
58 : /* bits in struct cgroup flags field */
59 : enum {
60 : /* Control Group requires release notifications to userspace */
61 : CGRP_NOTIFY_ON_RELEASE,
62 : /*
63 : * Clone the parent's configuration when creating a new child
64 : * cpuset cgroup. For historical reasons, this option can be
65 : * specified at mount time and thus is implemented here.
66 : */
67 : CGRP_CPUSET_CLONE_CHILDREN,
68 :
69 : /* Control group has to be frozen. */
70 : CGRP_FREEZE,
71 :
72 : /* Cgroup is frozen. */
73 : CGRP_FROZEN,
74 :
75 : /* Control group has to be killed. */
76 : CGRP_KILL,
77 : };
78 :
79 : /* cgroup_root->flags */
80 : enum {
81 : CGRP_ROOT_NOPREFIX = (1 << 1), /* mounted subsystems have no named prefix */
82 : CGRP_ROOT_XATTR = (1 << 2), /* supports extended attributes */
83 :
84 : /*
85 : * Consider namespaces as delegation boundaries. If this flag is
86 : * set, controller specific interface files in a namespace root
87 : * aren't writeable from inside the namespace.
88 : */
89 : CGRP_ROOT_NS_DELEGATE = (1 << 3),
90 :
91 : /*
92 : * Reduce latencies on dynamic cgroup modifications such as task
93 : * migrations and controller on/offs by disabling percpu operation on
94 : * cgroup_threadgroup_rwsem. This makes hot path operations such as
95 : * forks and exits into the slow path and more expensive.
96 : *
97 : * The static usage pattern of creating a cgroup, enabling controllers,
98 : * and then seeding it with CLONE_INTO_CGROUP doesn't require write
99 : * locking cgroup_threadgroup_rwsem and thus doesn't benefit from
100 : * favordynmod.
101 : */
102 : CGRP_ROOT_FAVOR_DYNMODS = (1 << 4),
103 :
104 : /*
105 : * Enable cpuset controller in v1 cgroup to use v2 behavior.
106 : */
107 : CGRP_ROOT_CPUSET_V2_MODE = (1 << 16),
108 :
109 : /*
110 : * Enable legacy local memory.events.
111 : */
112 : CGRP_ROOT_MEMORY_LOCAL_EVENTS = (1 << 17),
113 :
114 : /*
115 : * Enable recursive subtree protection
116 : */
117 : CGRP_ROOT_MEMORY_RECURSIVE_PROT = (1 << 18),
118 : };
119 :
120 : /* cftype->flags */
121 : enum {
122 : CFTYPE_ONLY_ON_ROOT = (1 << 0), /* only create on root cgrp */
123 : CFTYPE_NOT_ON_ROOT = (1 << 1), /* don't create on root cgrp */
124 : CFTYPE_NS_DELEGATABLE = (1 << 2), /* writeable beyond delegation boundaries */
125 :
126 : CFTYPE_NO_PREFIX = (1 << 3), /* (DON'T USE FOR NEW FILES) no subsys prefix */
127 : CFTYPE_WORLD_WRITABLE = (1 << 4), /* (DON'T USE FOR NEW FILES) S_IWUGO */
128 : CFTYPE_DEBUG = (1 << 5), /* create when cgroup_debug */
129 :
130 : /* internal flags, do not use outside cgroup core proper */
131 : __CFTYPE_ONLY_ON_DFL = (1 << 16), /* only on default hierarchy */
132 : __CFTYPE_NOT_ON_DFL = (1 << 17), /* not on default hierarchy */
133 : __CFTYPE_ADDED = (1 << 18),
134 : };
135 :
136 : /*
137 : * cgroup_file is the handle for a file instance created in a cgroup which
138 : * is used, for example, to generate file changed notifications. This can
139 : * be obtained by setting cftype->file_offset.
140 : */
141 : struct cgroup_file {
142 : /* do not access any fields from outside cgroup core */
143 : struct kernfs_node *kn;
144 : unsigned long notified_at;
145 : struct timer_list notify_timer;
146 : };
147 :
148 : /*
149 : * Per-subsystem/per-cgroup state maintained by the system. This is the
150 : * fundamental structural building block that controllers deal with.
151 : *
152 : * Fields marked with "PI:" are public and immutable and may be accessed
153 : * directly without synchronization.
154 : */
155 : struct cgroup_subsys_state {
156 : /* PI: the cgroup that this css is attached to */
157 : struct cgroup *cgroup;
158 :
159 : /* PI: the cgroup subsystem that this css is attached to */
160 : struct cgroup_subsys *ss;
161 :
162 : /* reference count - access via css_[try]get() and css_put() */
163 : struct percpu_ref refcnt;
164 :
165 : /* siblings list anchored at the parent's ->children */
166 : struct list_head sibling;
167 : struct list_head children;
168 :
169 : /* flush target list anchored at cgrp->rstat_css_list */
170 : struct list_head rstat_css_node;
171 :
172 : /*
173 : * PI: Subsys-unique ID. 0 is unused and root is always 1. The
174 : * matching css can be looked up using css_from_id().
175 : */
176 : int id;
177 :
178 : unsigned int flags;
179 :
180 : /*
181 : * Monotonically increasing unique serial number which defines a
182 : * uniform order among all csses. It's guaranteed that all
183 : * ->children lists are in the ascending order of ->serial_nr and
184 : * used to allow interrupting and resuming iterations.
185 : */
186 : u64 serial_nr;
187 :
188 : /*
189 : * Incremented by online self and children. Used to guarantee that
190 : * parents are not offlined before their children.
191 : */
192 : atomic_t online_cnt;
193 :
194 : /* percpu_ref killing and RCU release */
195 : struct work_struct destroy_work;
196 : struct rcu_work destroy_rwork;
197 :
198 : /*
199 : * PI: the parent css. Placed here for cache proximity to following
200 : * fields of the containing structure.
201 : */
202 : struct cgroup_subsys_state *parent;
203 : };
204 :
205 : /*
206 : * A css_set is a structure holding pointers to a set of
207 : * cgroup_subsys_state objects. This saves space in the task struct
208 : * object and speeds up fork()/exit(), since a single inc/dec and a
209 : * list_add()/del() can bump the reference count on the entire cgroup
210 : * set for a task.
211 : */
212 : struct css_set {
213 : /*
214 : * Set of subsystem states, one for each subsystem. This array is
215 : * immutable after creation apart from the init_css_set during
216 : * subsystem registration (at boot time).
217 : */
218 : struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];
219 :
220 : /* reference count */
221 : refcount_t refcount;
222 :
223 : /*
224 : * For a domain cgroup, the following points to self. If threaded,
225 : * to the matching cset of the nearest domain ancestor. The
226 : * dom_cset provides access to the domain cgroup and its csses to
227 : * which domain level resource consumptions should be charged.
228 : */
229 : struct css_set *dom_cset;
230 :
231 : /* the default cgroup associated with this css_set */
232 : struct cgroup *dfl_cgrp;
233 :
234 : /* internal task count, protected by css_set_lock */
235 : int nr_tasks;
236 :
237 : /*
238 : * Lists running through all tasks using this cgroup group.
239 : * mg_tasks lists tasks which belong to this cset but are in the
240 : * process of being migrated out or in. Protected by
241 : * css_set_rwsem, but, during migration, once tasks are moved to
242 : * mg_tasks, it can be read safely while holding cgroup_mutex.
243 : */
244 : struct list_head tasks;
245 : struct list_head mg_tasks;
246 : struct list_head dying_tasks;
247 :
248 : /* all css_task_iters currently walking this cset */
249 : struct list_head task_iters;
250 :
251 : /*
252 : * On the default hierarchy, ->subsys[ssid] may point to a css
253 : * attached to an ancestor instead of the cgroup this css_set is
254 : * associated with. The following node is anchored at
255 : * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to
256 : * iterate through all css's attached to a given cgroup.
257 : */
258 : struct list_head e_cset_node[CGROUP_SUBSYS_COUNT];
259 :
260 : /* all threaded csets whose ->dom_cset points to this cset */
261 : struct list_head threaded_csets;
262 : struct list_head threaded_csets_node;
263 :
264 : /*
265 : * List running through all cgroup groups in the same hash
266 : * slot. Protected by css_set_lock
267 : */
268 : struct hlist_node hlist;
269 :
270 : /*
271 : * List of cgrp_cset_links pointing at cgroups referenced from this
272 : * css_set. Protected by css_set_lock.
273 : */
274 : struct list_head cgrp_links;
275 :
276 : /*
277 : * List of csets participating in the on-going migration either as
278 : * source or destination. Protected by cgroup_mutex.
279 : */
280 : struct list_head mg_src_preload_node;
281 : struct list_head mg_dst_preload_node;
282 : struct list_head mg_node;
283 :
284 : /*
285 : * If this cset is acting as the source of migration the following
286 : * two fields are set. mg_src_cgrp and mg_dst_cgrp are
287 : * respectively the source and destination cgroups of the on-going
288 : * migration. mg_dst_cset is the destination cset the target tasks
289 : * on this cset should be migrated to. Protected by cgroup_mutex.
290 : */
291 : struct cgroup *mg_src_cgrp;
292 : struct cgroup *mg_dst_cgrp;
293 : struct css_set *mg_dst_cset;
294 :
295 : /* dead and being drained, ignore for migration */
296 : bool dead;
297 :
298 : /* For RCU-protected deletion */
299 : struct rcu_head rcu_head;
300 : };
301 :
302 : struct cgroup_base_stat {
303 : struct task_cputime cputime;
304 :
305 : #ifdef CONFIG_SCHED_CORE
306 : u64 forceidle_sum;
307 : #endif
308 : };
309 :
310 : /*
311 : * rstat - cgroup scalable recursive statistics. Accounting is done
312 : * per-cpu in cgroup_rstat_cpu which is then lazily propagated up the
313 : * hierarchy on reads.
314 : *
315 : * When a stat gets updated, the cgroup_rstat_cpu and its ancestors are
316 : * linked into the updated tree. On the following read, propagation only
317 : * considers and consumes the updated tree. This makes reading O(the
318 : * number of descendants which have been active since last read) instead of
319 : * O(the total number of descendants).
320 : *
321 : * This is important because there can be a lot of (draining) cgroups which
322 : * aren't active and stat may be read frequently. The combination can
323 : * become very expensive. By propagating selectively, increasing reading
324 : * frequency decreases the cost of each read.
325 : *
326 : * This struct hosts both the fields which implement the above -
327 : * updated_children and updated_next - and the fields which track basic
328 : * resource statistics on top of it - bsync, bstat and last_bstat.
329 : */
330 : struct cgroup_rstat_cpu {
331 : /*
332 : * ->bsync protects ->bstat. These are the only fields which get
333 : * updated in the hot path.
334 : */
335 : struct u64_stats_sync bsync;
336 : struct cgroup_base_stat bstat;
337 :
338 : /*
339 : * Snapshots at the last reading. These are used to calculate the
340 : * deltas to propagate to the global counters.
341 : */
342 : struct cgroup_base_stat last_bstat;
343 :
344 : /*
345 : * Child cgroups with stat updates on this cpu since the last read
346 : * are linked on the parent's ->updated_children through
347 : * ->updated_next.
348 : *
349 : * In addition to being more compact, singly-linked list pointing
350 : * to the cgroup makes it unnecessary for each per-cpu struct to
351 : * point back to the associated cgroup.
352 : *
353 : * Protected by per-cpu cgroup_rstat_cpu_lock.
354 : */
355 : struct cgroup *updated_children; /* terminated by self cgroup */
356 : struct cgroup *updated_next; /* NULL iff not on the list */
357 : };
358 :
359 : struct cgroup_freezer_state {
360 : /* Should the cgroup and its descendants be frozen. */
361 : bool freeze;
362 :
363 : /* Should the cgroup actually be frozen? */
364 : int e_freeze;
365 :
366 : /* Fields below are protected by css_set_lock */
367 :
368 : /* Number of frozen descendant cgroups */
369 : int nr_frozen_descendants;
370 :
371 : /*
372 : * Number of tasks, which are counted as frozen:
373 : * frozen, SIGSTOPped, and PTRACEd.
374 : */
375 : int nr_frozen_tasks;
376 : };
377 :
378 : struct cgroup {
379 : /* self css with NULL ->ss, points back to this cgroup */
380 : struct cgroup_subsys_state self;
381 :
382 : unsigned long flags; /* "unsigned long" so bitops work */
383 :
384 : /*
385 : * The depth this cgroup is at. The root is at depth zero and each
386 : * step down the hierarchy increments the level. This along with
387 : * ancestors[] can determine whether a given cgroup is a
388 : * descendant of another without traversing the hierarchy.
389 : */
390 : int level;
391 :
392 : /* Maximum allowed descent tree depth */
393 : int max_depth;
394 :
395 : /*
396 : * Keep track of total numbers of visible and dying descent cgroups.
397 : * Dying cgroups are cgroups which were deleted by a user,
398 : * but are still existing because someone else is holding a reference.
399 : * max_descendants is a maximum allowed number of descent cgroups.
400 : *
401 : * nr_descendants and nr_dying_descendants are protected
402 : * by cgroup_mutex and css_set_lock. It's fine to read them holding
403 : * any of cgroup_mutex and css_set_lock; for writing both locks
404 : * should be held.
405 : */
406 : int nr_descendants;
407 : int nr_dying_descendants;
408 : int max_descendants;
409 :
410 : /*
411 : * Each non-empty css_set associated with this cgroup contributes
412 : * one to nr_populated_csets. The counter is zero iff this cgroup
413 : * doesn't have any tasks.
414 : *
415 : * All children which have non-zero nr_populated_csets and/or
416 : * nr_populated_children of their own contribute one to either
417 : * nr_populated_domain_children or nr_populated_threaded_children
418 : * depending on their type. Each counter is zero iff all cgroups
419 : * of the type in the subtree proper don't have any tasks.
420 : */
421 : int nr_populated_csets;
422 : int nr_populated_domain_children;
423 : int nr_populated_threaded_children;
424 :
425 : int nr_threaded_children; /* # of live threaded child cgroups */
426 :
427 : struct kernfs_node *kn; /* cgroup kernfs entry */
428 : struct cgroup_file procs_file; /* handle for "cgroup.procs" */
429 : struct cgroup_file events_file; /* handle for "cgroup.events" */
430 :
431 : /* handles for "{cpu,memory,io,irq}.pressure" */
432 : struct cgroup_file psi_files[NR_PSI_RESOURCES];
433 :
434 : /*
435 : * The bitmask of subsystems enabled on the child cgroups.
436 : * ->subtree_control is the one configured through
437 : * "cgroup.subtree_control" while ->subtree_ss_mask is the effective
438 : * one which may have more subsystems enabled. Controller knobs
439 : * are made available iff it's enabled in ->subtree_control.
440 : */
441 : u16 subtree_control;
442 : u16 subtree_ss_mask;
443 : u16 old_subtree_control;
444 : u16 old_subtree_ss_mask;
445 :
446 : /* Private pointers for each registered subsystem */
447 : struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT];
448 :
449 : struct cgroup_root *root;
450 :
451 : /*
452 : * List of cgrp_cset_links pointing at css_sets with tasks in this
453 : * cgroup. Protected by css_set_lock.
454 : */
455 : struct list_head cset_links;
456 :
457 : /*
458 : * On the default hierarchy, a css_set for a cgroup with some
459 : * susbsys disabled will point to css's which are associated with
460 : * the closest ancestor which has the subsys enabled. The
461 : * following lists all css_sets which point to this cgroup's css
462 : * for the given subsystem.
463 : */
464 : struct list_head e_csets[CGROUP_SUBSYS_COUNT];
465 :
466 : /*
467 : * If !threaded, self. If threaded, it points to the nearest
468 : * domain ancestor. Inside a threaded subtree, cgroups are exempt
469 : * from process granularity and no-internal-task constraint.
470 : * Domain level resource consumptions which aren't tied to a
471 : * specific task are charged to the dom_cgrp.
472 : */
473 : struct cgroup *dom_cgrp;
474 : struct cgroup *old_dom_cgrp; /* used while enabling threaded */
475 :
476 : /* per-cpu recursive resource statistics */
477 : struct cgroup_rstat_cpu __percpu *rstat_cpu;
478 : struct list_head rstat_css_list;
479 :
480 : /* cgroup basic resource statistics */
481 : struct cgroup_base_stat last_bstat;
482 : struct cgroup_base_stat bstat;
483 : struct prev_cputime prev_cputime; /* for printing out cputime */
484 :
485 : /*
486 : * list of pidlists, up to two for each namespace (one for procs, one
487 : * for tasks); created on demand.
488 : */
489 : struct list_head pidlists;
490 : struct mutex pidlist_mutex;
491 :
492 : /* used to wait for offlining of csses */
493 : wait_queue_head_t offline_waitq;
494 :
495 : /* used to schedule release agent */
496 : struct work_struct release_agent_work;
497 :
498 : /* used to track pressure stalls */
499 : struct psi_group *psi;
500 :
501 : /* used to store eBPF programs */
502 : struct cgroup_bpf bpf;
503 :
504 : /* If there is block congestion on this cgroup. */
505 : atomic_t congestion_count;
506 :
507 : /* Used to store internal freezer state */
508 : struct cgroup_freezer_state freezer;
509 :
510 : #ifdef CONFIG_BPF_SYSCALL
511 : struct bpf_local_storage __rcu *bpf_cgrp_storage;
512 : #endif
513 :
514 : /* All ancestors including self */
515 : struct cgroup *ancestors[];
516 : };
517 :
518 : /*
519 : * A cgroup_root represents the root of a cgroup hierarchy, and may be
520 : * associated with a kernfs_root to form an active hierarchy. This is
521 : * internal to cgroup core. Don't access directly from controllers.
522 : */
523 : struct cgroup_root {
524 : struct kernfs_root *kf_root;
525 :
526 : /* The bitmask of subsystems attached to this hierarchy */
527 : unsigned int subsys_mask;
528 :
529 : /* Unique id for this hierarchy. */
530 : int hierarchy_id;
531 :
532 : /*
533 : * The root cgroup. The containing cgroup_root will be destroyed on its
534 : * release. cgrp->ancestors[0] will be used overflowing into the
535 : * following field. cgrp_ancestor_storage must immediately follow.
536 : */
537 : struct cgroup cgrp;
538 :
539 : /* must follow cgrp for cgrp->ancestors[0], see above */
540 : struct cgroup *cgrp_ancestor_storage;
541 :
542 : /* Number of cgroups in the hierarchy, used only for /proc/cgroups */
543 : atomic_t nr_cgrps;
544 :
545 : /* A list running through the active hierarchies */
546 : struct list_head root_list;
547 :
548 : /* Hierarchy-specific flags */
549 : unsigned int flags;
550 :
551 : /* The path to use for release notifications. */
552 : char release_agent_path[PATH_MAX];
553 :
554 : /* The name for this hierarchy - may be empty */
555 : char name[MAX_CGROUP_ROOT_NAMELEN];
556 : };
557 :
558 : /*
559 : * struct cftype: handler definitions for cgroup control files
560 : *
561 : * When reading/writing to a file:
562 : * - the cgroup to use is file->f_path.dentry->d_parent->d_fsdata
563 : * - the 'cftype' of the file is file->f_path.dentry->d_fsdata
564 : */
565 : struct cftype {
566 : /*
567 : * By convention, the name should begin with the name of the
568 : * subsystem, followed by a period. Zero length string indicates
569 : * end of cftype array.
570 : */
571 : char name[MAX_CFTYPE_NAME];
572 : unsigned long private;
573 :
574 : /*
575 : * The maximum length of string, excluding trailing nul, that can
576 : * be passed to write. If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed.
577 : */
578 : size_t max_write_len;
579 :
580 : /* CFTYPE_* flags */
581 : unsigned int flags;
582 :
583 : /*
584 : * If non-zero, should contain the offset from the start of css to
585 : * a struct cgroup_file field. cgroup will record the handle of
586 : * the created file into it. The recorded handle can be used as
587 : * long as the containing css remains accessible.
588 : */
589 : unsigned int file_offset;
590 :
591 : /*
592 : * Fields used for internal bookkeeping. Initialized automatically
593 : * during registration.
594 : */
595 : struct cgroup_subsys *ss; /* NULL for cgroup core files */
596 : struct list_head node; /* anchored at ss->cfts */
597 : struct kernfs_ops *kf_ops;
598 :
599 : int (*open)(struct kernfs_open_file *of);
600 : void (*release)(struct kernfs_open_file *of);
601 :
602 : /*
603 : * read_u64() is a shortcut for the common case of returning a
604 : * single integer. Use it in place of read()
605 : */
606 : u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft);
607 : /*
608 : * read_s64() is a signed version of read_u64()
609 : */
610 : s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft);
611 :
612 : /* generic seq_file read interface */
613 : int (*seq_show)(struct seq_file *sf, void *v);
614 :
615 : /* optional ops, implement all or none */
616 : void *(*seq_start)(struct seq_file *sf, loff_t *ppos);
617 : void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos);
618 : void (*seq_stop)(struct seq_file *sf, void *v);
619 :
620 : /*
621 : * write_u64() is a shortcut for the common case of accepting
622 : * a single integer (as parsed by simple_strtoull) from
623 : * userspace. Use in place of write(); return 0 or error.
624 : */
625 : int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft,
626 : u64 val);
627 : /*
628 : * write_s64() is a signed version of write_u64()
629 : */
630 : int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft,
631 : s64 val);
632 :
633 : /*
634 : * write() is the generic write callback which maps directly to
635 : * kernfs write operation and overrides all other operations.
636 : * Maximum write size is determined by ->max_write_len. Use
637 : * of_css/cft() to access the associated css and cft.
638 : */
639 : ssize_t (*write)(struct kernfs_open_file *of,
640 : char *buf, size_t nbytes, loff_t off);
641 :
642 : __poll_t (*poll)(struct kernfs_open_file *of,
643 : struct poll_table_struct *pt);
644 :
645 : #ifdef CONFIG_DEBUG_LOCK_ALLOC
646 : struct lock_class_key lockdep_key;
647 : #endif
648 : };
649 :
650 : /*
651 : * Control Group subsystem type.
652 : * See Documentation/admin-guide/cgroup-v1/cgroups.rst for details
653 : */
654 : struct cgroup_subsys {
655 : struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css);
656 : int (*css_online)(struct cgroup_subsys_state *css);
657 : void (*css_offline)(struct cgroup_subsys_state *css);
658 : void (*css_released)(struct cgroup_subsys_state *css);
659 : void (*css_free)(struct cgroup_subsys_state *css);
660 : void (*css_reset)(struct cgroup_subsys_state *css);
661 : void (*css_rstat_flush)(struct cgroup_subsys_state *css, int cpu);
662 : int (*css_extra_stat_show)(struct seq_file *seq,
663 : struct cgroup_subsys_state *css);
664 :
665 : int (*can_attach)(struct cgroup_taskset *tset);
666 : void (*cancel_attach)(struct cgroup_taskset *tset);
667 : void (*attach)(struct cgroup_taskset *tset);
668 : void (*post_attach)(void);
669 : int (*can_fork)(struct task_struct *task,
670 : struct css_set *cset);
671 : void (*cancel_fork)(struct task_struct *task, struct css_set *cset);
672 : void (*fork)(struct task_struct *task);
673 : void (*exit)(struct task_struct *task);
674 : void (*release)(struct task_struct *task);
675 : void (*bind)(struct cgroup_subsys_state *root_css);
676 :
677 : bool early_init:1;
678 :
679 : /*
680 : * If %true, the controller, on the default hierarchy, doesn't show
681 : * up in "cgroup.controllers" or "cgroup.subtree_control", is
682 : * implicitly enabled on all cgroups on the default hierarchy, and
683 : * bypasses the "no internal process" constraint. This is for
684 : * utility type controllers which is transparent to userland.
685 : *
686 : * An implicit controller can be stolen from the default hierarchy
687 : * anytime and thus must be okay with offline csses from previous
688 : * hierarchies coexisting with csses for the current one.
689 : */
690 : bool implicit_on_dfl:1;
691 :
692 : /*
693 : * If %true, the controller, supports threaded mode on the default
694 : * hierarchy. In a threaded subtree, both process granularity and
695 : * no-internal-process constraint are ignored and a threaded
696 : * controllers should be able to handle that.
697 : *
698 : * Note that as an implicit controller is automatically enabled on
699 : * all cgroups on the default hierarchy, it should also be
700 : * threaded. implicit && !threaded is not supported.
701 : */
702 : bool threaded:1;
703 :
704 : /* the following two fields are initialized automatically during boot */
705 : int id;
706 : const char *name;
707 :
708 : /* optional, initialized automatically during boot if not set */
709 : const char *legacy_name;
710 :
711 : /* link to parent, protected by cgroup_lock() */
712 : struct cgroup_root *root;
713 :
714 : /* idr for css->id */
715 : struct idr css_idr;
716 :
717 : /*
718 : * List of cftypes. Each entry is the first entry of an array
719 : * terminated by zero length name.
720 : */
721 : struct list_head cfts;
722 :
723 : /*
724 : * Base cftypes which are automatically registered. The two can
725 : * point to the same array.
726 : */
727 : struct cftype *dfl_cftypes; /* for the default hierarchy */
728 : struct cftype *legacy_cftypes; /* for the legacy hierarchies */
729 :
730 : /*
731 : * A subsystem may depend on other subsystems. When such subsystem
732 : * is enabled on a cgroup, the depended-upon subsystems are enabled
733 : * together if available. Subsystems enabled due to dependency are
734 : * not visible to userland until explicitly enabled. The following
735 : * specifies the mask of subsystems that this one depends on.
736 : */
737 : unsigned int depends_on;
738 : };
739 :
740 : extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
741 :
742 : /**
743 : * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups
744 : * @tsk: target task
745 : *
746 : * Allows cgroup operations to synchronize against threadgroup changes
747 : * using a percpu_rw_semaphore.
748 : */
749 : static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
750 : {
751 0 : percpu_down_read(&cgroup_threadgroup_rwsem);
752 : }
753 :
754 : /**
755 : * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups
756 : * @tsk: target task
757 : *
758 : * Counterpart of cgroup_threadcgroup_change_begin().
759 : */
760 : static inline void cgroup_threadgroup_change_end(struct task_struct *tsk)
761 : {
762 0 : percpu_up_read(&cgroup_threadgroup_rwsem);
763 : }
764 :
765 : #else /* CONFIG_CGROUPS */
766 :
767 : #define CGROUP_SUBSYS_COUNT 0
768 :
769 : static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
770 : {
771 : might_sleep();
772 : }
773 :
774 : static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {}
775 :
776 : #endif /* CONFIG_CGROUPS */
777 :
778 : #ifdef CONFIG_SOCK_CGROUP_DATA
779 :
780 : /*
781 : * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains
782 : * per-socket cgroup information except for memcg association.
783 : *
784 : * On legacy hierarchies, net_prio and net_cls controllers directly
785 : * set attributes on each sock which can then be tested by the network
786 : * layer. On the default hierarchy, each sock is associated with the
787 : * cgroup it was created in and the networking layer can match the
788 : * cgroup directly.
789 : */
790 : struct sock_cgroup_data {
791 : struct cgroup *cgroup; /* v2 */
792 : #ifdef CONFIG_CGROUP_NET_CLASSID
793 : u32 classid; /* v1 */
794 : #endif
795 : #ifdef CONFIG_CGROUP_NET_PRIO
796 : u16 prioidx; /* v1 */
797 : #endif
798 : };
799 :
800 : static inline u16 sock_cgroup_prioidx(const struct sock_cgroup_data *skcd)
801 : {
802 : #ifdef CONFIG_CGROUP_NET_PRIO
803 : return READ_ONCE(skcd->prioidx);
804 : #else
805 : return 1;
806 : #endif
807 : }
808 :
809 : static inline u32 sock_cgroup_classid(const struct sock_cgroup_data *skcd)
810 : {
811 : #ifdef CONFIG_CGROUP_NET_CLASSID
812 : return READ_ONCE(skcd->classid);
813 : #else
814 : return 0;
815 : #endif
816 : }
817 :
818 : static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd,
819 : u16 prioidx)
820 : {
821 : #ifdef CONFIG_CGROUP_NET_PRIO
822 : WRITE_ONCE(skcd->prioidx, prioidx);
823 : #endif
824 : }
825 :
826 : static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd,
827 : u32 classid)
828 : {
829 : #ifdef CONFIG_CGROUP_NET_CLASSID
830 : WRITE_ONCE(skcd->classid, classid);
831 : #endif
832 : }
833 :
834 : #else /* CONFIG_SOCK_CGROUP_DATA */
835 :
836 : struct sock_cgroup_data {
837 : };
838 :
839 : #endif /* CONFIG_SOCK_CGROUP_DATA */
840 :
841 : #endif /* _LINUX_CGROUP_DEFS_H */
|