LCOV - code coverage report
Current view: top level - include/linux - rcupdate.h (source / functions) Hit Total Coverage
Test: fstests of 6.5.0-rc3-acha @ Mon Jul 31 20:08:06 PDT 2023 Lines: 20 20 100.0 %
Date: 2023-07-31 20:08:07 Functions: 1 1 100.0 %

          Line data    Source code
       1             : /* SPDX-License-Identifier: GPL-2.0+ */
       2             : /*
       3             :  * Read-Copy Update mechanism for mutual exclusion
       4             :  *
       5             :  * Copyright IBM Corporation, 2001
       6             :  *
       7             :  * Author: Dipankar Sarma <dipankar@in.ibm.com>
       8             :  *
       9             :  * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
      10             :  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
      11             :  * Papers:
      12             :  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
      13             :  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
      14             :  *
      15             :  * For detailed explanation of Read-Copy Update mechanism see -
      16             :  *              http://lse.sourceforge.net/locking/rcupdate.html
      17             :  *
      18             :  */
      19             : 
      20             : #ifndef __LINUX_RCUPDATE_H
      21             : #define __LINUX_RCUPDATE_H
      22             : 
      23             : #include <linux/types.h>
      24             : #include <linux/compiler.h>
      25             : #include <linux/atomic.h>
      26             : #include <linux/irqflags.h>
      27             : #include <linux/preempt.h>
      28             : #include <linux/bottom_half.h>
      29             : #include <linux/lockdep.h>
      30             : #include <linux/cleanup.h>
      31             : #include <asm/processor.h>
      32             : #include <linux/cpumask.h>
      33             : #include <linux/context_tracking_irq.h>
      34             : 
      35             : #define ULONG_CMP_GE(a, b)      (ULONG_MAX / 2 >= (a) - (b))
      36             : #define ULONG_CMP_LT(a, b)      (ULONG_MAX / 2 < (a) - (b))
      37             : #define ulong2long(a)           (*(long *)(&(a)))
      38             : #define USHORT_CMP_GE(a, b)     (USHRT_MAX / 2 >= (unsigned short)((a) - (b)))
      39             : #define USHORT_CMP_LT(a, b)     (USHRT_MAX / 2 < (unsigned short)((a) - (b)))
      40             : 
      41             : /* Exported common interfaces */
      42             : void call_rcu(struct rcu_head *head, rcu_callback_t func);
      43             : void rcu_barrier_tasks(void);
      44             : void rcu_barrier_tasks_rude(void);
      45             : void synchronize_rcu(void);
      46             : 
      47             : struct rcu_gp_oldstate;
      48             : unsigned long get_completed_synchronize_rcu(void);
      49             : void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp);
      50             : 
      51             : // Maximum number of unsigned long values corresponding to
      52             : // not-yet-completed RCU grace periods.
      53             : #define NUM_ACTIVE_RCU_POLL_OLDSTATE 2
      54             : 
      55             : /**
      56             :  * same_state_synchronize_rcu - Are two old-state values identical?
      57             :  * @oldstate1: First old-state value.
      58             :  * @oldstate2: Second old-state value.
      59             :  *
      60             :  * The two old-state values must have been obtained from either
      61             :  * get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or
      62             :  * get_completed_synchronize_rcu().  Returns @true if the two values are
      63             :  * identical and @false otherwise.  This allows structures whose lifetimes
      64             :  * are tracked by old-state values to push these values to a list header,
      65             :  * allowing those structures to be slightly smaller.
      66             :  */
      67             : static inline bool same_state_synchronize_rcu(unsigned long oldstate1, unsigned long oldstate2)
      68             : {
      69             :         return oldstate1 == oldstate2;
      70             : }
      71             : 
      72             : #ifdef CONFIG_PREEMPT_RCU
      73             : 
      74             : void __rcu_read_lock(void);
      75             : void __rcu_read_unlock(void);
      76             : 
      77             : /*
      78             :  * Defined as a macro as it is a very low level header included from
      79             :  * areas that don't even know about current.  This gives the rcu_read_lock()
      80             :  * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
      81             :  * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
      82             :  */
      83             : #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
      84             : 
      85             : #else /* #ifdef CONFIG_PREEMPT_RCU */
      86             : 
      87             : #ifdef CONFIG_TINY_RCU
      88             : #define rcu_read_unlock_strict() do { } while (0)
      89             : #else
      90             : void rcu_read_unlock_strict(void);
      91             : #endif
      92             : 
      93             : static inline void __rcu_read_lock(void)
      94             : {
      95             :         preempt_disable();
      96             : }
      97             : 
      98             : static inline void __rcu_read_unlock(void)
      99             : {
     100             :         preempt_enable();
     101             :         if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
     102             :                 rcu_read_unlock_strict();
     103             : }
     104             : 
     105             : static inline int rcu_preempt_depth(void)
     106             : {
     107             :         return 0;
     108             : }
     109             : 
     110             : #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
     111             : 
     112             : #ifdef CONFIG_RCU_LAZY
     113             : void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func);
     114             : #else
     115             : static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
     116             : {
     117             :         call_rcu(head, func);
     118             : }
     119             : #endif
     120             : 
     121             : /* Internal to kernel */
     122             : void rcu_init(void);
     123             : extern int rcu_scheduler_active;
     124             : void rcu_sched_clock_irq(int user);
     125             : void rcu_report_dead(unsigned int cpu);
     126             : void rcutree_migrate_callbacks(int cpu);
     127             : 
     128             : #ifdef CONFIG_TASKS_RCU_GENERIC
     129             : void rcu_init_tasks_generic(void);
     130             : #else
     131             : static inline void rcu_init_tasks_generic(void) { }
     132             : #endif
     133             : 
     134             : #ifdef CONFIG_RCU_STALL_COMMON
     135             : void rcu_sysrq_start(void);
     136             : void rcu_sysrq_end(void);
     137             : #else /* #ifdef CONFIG_RCU_STALL_COMMON */
     138             : static inline void rcu_sysrq_start(void) { }
     139             : static inline void rcu_sysrq_end(void) { }
     140             : #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
     141             : 
     142             : #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
     143             : void rcu_irq_work_resched(void);
     144             : #else
     145             : static inline void rcu_irq_work_resched(void) { }
     146             : #endif
     147             : 
     148             : #ifdef CONFIG_RCU_NOCB_CPU
     149             : void rcu_init_nohz(void);
     150             : int rcu_nocb_cpu_offload(int cpu);
     151             : int rcu_nocb_cpu_deoffload(int cpu);
     152             : void rcu_nocb_flush_deferred_wakeup(void);
     153             : #else /* #ifdef CONFIG_RCU_NOCB_CPU */
     154             : static inline void rcu_init_nohz(void) { }
     155             : static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
     156             : static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
     157             : static inline void rcu_nocb_flush_deferred_wakeup(void) { }
     158             : #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
     159             : 
     160             : /*
     161             :  * Note a quasi-voluntary context switch for RCU-tasks's benefit.
     162             :  * This is a macro rather than an inline function to avoid #include hell.
     163             :  */
     164             : #ifdef CONFIG_TASKS_RCU_GENERIC
     165             : 
     166             : # ifdef CONFIG_TASKS_RCU
     167             : # define rcu_tasks_classic_qs(t, preempt)                               \
     168             :         do {                                                            \
     169             :                 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \
     170             :                         WRITE_ONCE((t)->rcu_tasks_holdout, false);   \
     171             :         } while (0)
     172             : void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
     173             : void synchronize_rcu_tasks(void);
     174             : # else
     175             : # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
     176             : # define call_rcu_tasks call_rcu
     177             : # define synchronize_rcu_tasks synchronize_rcu
     178             : # endif
     179             : 
     180             : # ifdef CONFIG_TASKS_TRACE_RCU
     181             : // Bits for ->trc_reader_special.b.need_qs field.
     182             : #define TRC_NEED_QS             0x1  // Task needs a quiescent state.
     183             : #define TRC_NEED_QS_CHECKED     0x2  // Task has been checked for needing quiescent state.
     184             : 
     185             : u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new);
     186             : void rcu_tasks_trace_qs_blkd(struct task_struct *t);
     187             : 
     188             : # define rcu_tasks_trace_qs(t)                                                  \
     189             :         do {                                                                    \
     190             :                 int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting);    \
     191             :                                                                                 \
     192             :                 if (likely(!READ_ONCE((t)->trc_reader_special.b.need_qs)) && \
     193             :                     likely(!___rttq_nesting)) {                                 \
     194             :                         rcu_trc_cmpxchg_need_qs((t), 0, TRC_NEED_QS_CHECKED);   \
     195             :                 } else if (___rttq_nesting && ___rttq_nesting != INT_MIN &&     \
     196             :                            !READ_ONCE((t)->trc_reader_special.b.blocked)) {  \
     197             :                         rcu_tasks_trace_qs_blkd(t);                             \
     198             :                 }                                                               \
     199             :         } while (0)
     200             : # else
     201             : # define rcu_tasks_trace_qs(t) do { } while (0)
     202             : # endif
     203             : 
     204             : #define rcu_tasks_qs(t, preempt)                                        \
     205             : do {                                                                    \
     206             :         rcu_tasks_classic_qs((t), (preempt));                           \
     207             :         rcu_tasks_trace_qs(t);                                          \
     208             : } while (0)
     209             : 
     210             : # ifdef CONFIG_TASKS_RUDE_RCU
     211             : void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
     212             : void synchronize_rcu_tasks_rude(void);
     213             : # endif
     214             : 
     215             : #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
     216             : void exit_tasks_rcu_start(void);
     217             : void exit_tasks_rcu_stop(void);
     218             : void exit_tasks_rcu_finish(void);
     219             : #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
     220             : #define rcu_tasks_classic_qs(t, preempt) do { } while (0)
     221             : #define rcu_tasks_qs(t, preempt) do { } while (0)
     222             : #define rcu_note_voluntary_context_switch(t) do { } while (0)
     223             : #define call_rcu_tasks call_rcu
     224             : #define synchronize_rcu_tasks synchronize_rcu
     225             : static inline void exit_tasks_rcu_start(void) { }
     226             : static inline void exit_tasks_rcu_stop(void) { }
     227             : static inline void exit_tasks_rcu_finish(void) { }
     228             : #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
     229             : 
     230             : /**
     231             :  * rcu_trace_implies_rcu_gp - does an RCU Tasks Trace grace period imply an RCU grace period?
     232             :  *
     233             :  * As an accident of implementation, an RCU Tasks Trace grace period also
     234             :  * acts as an RCU grace period.  However, this could change at any time.
     235             :  * Code relying on this accident must call this function to verify that
     236             :  * this accident is still happening.
     237             :  *
     238             :  * You have been warned!
     239             :  */
     240             : static inline bool rcu_trace_implies_rcu_gp(void) { return true; }
     241             : 
     242             : /**
     243             :  * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
     244             :  *
     245             :  * This macro resembles cond_resched(), except that it is defined to
     246             :  * report potential quiescent states to RCU-tasks even if the cond_resched()
     247             :  * machinery were to be shut off, as some advocate for PREEMPTION kernels.
     248             :  */
     249             : #define cond_resched_tasks_rcu_qs() \
     250             : do { \
     251             :         rcu_tasks_qs(current, false); \
     252             :         cond_resched(); \
     253             : } while (0)
     254             : 
     255             : /*
     256             :  * Infrastructure to implement the synchronize_() primitives in
     257             :  * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
     258             :  */
     259             : 
     260             : #if defined(CONFIG_TREE_RCU)
     261             : #include <linux/rcutree.h>
     262             : #elif defined(CONFIG_TINY_RCU)
     263             : #include <linux/rcutiny.h>
     264             : #else
     265             : #error "Unknown RCU implementation specified to kernel configuration"
     266             : #endif
     267             : 
     268             : /*
     269             :  * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
     270             :  * are needed for dynamic initialization and destruction of rcu_head
     271             :  * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
     272             :  * dynamic initialization and destruction of statically allocated rcu_head
     273             :  * structures.  However, rcu_head structures allocated dynamically in the
     274             :  * heap don't need any initialization.
     275             :  */
     276             : #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
     277             : void init_rcu_head(struct rcu_head *head);
     278             : void destroy_rcu_head(struct rcu_head *head);
     279             : void init_rcu_head_on_stack(struct rcu_head *head);
     280             : void destroy_rcu_head_on_stack(struct rcu_head *head);
     281             : #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
     282             : static inline void init_rcu_head(struct rcu_head *head) { }
     283             : static inline void destroy_rcu_head(struct rcu_head *head) { }
     284             : static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
     285             : static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
     286             : #endif  /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
     287             : 
     288             : #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
     289             : bool rcu_lockdep_current_cpu_online(void);
     290             : #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
     291             : static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
     292             : #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
     293             : 
     294             : extern struct lockdep_map rcu_lock_map;
     295             : extern struct lockdep_map rcu_bh_lock_map;
     296             : extern struct lockdep_map rcu_sched_lock_map;
     297             : extern struct lockdep_map rcu_callback_map;
     298             : 
     299             : #ifdef CONFIG_DEBUG_LOCK_ALLOC
     300             : 
     301             : static inline void rcu_lock_acquire(struct lockdep_map *map)
     302             : {
     303             :         lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
     304             : }
     305             : 
     306             : static inline void rcu_lock_release(struct lockdep_map *map)
     307             : {
     308             :         lock_release(map, _THIS_IP_);
     309             : }
     310             : 
     311             : int debug_lockdep_rcu_enabled(void);
     312             : int rcu_read_lock_held(void);
     313             : int rcu_read_lock_bh_held(void);
     314             : int rcu_read_lock_sched_held(void);
     315             : int rcu_read_lock_any_held(void);
     316             : 
     317             : #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
     318             : 
     319             : # define rcu_lock_acquire(a)            do { } while (0)
     320             : # define rcu_lock_release(a)            do { } while (0)
     321             : 
     322             : static inline int rcu_read_lock_held(void)
     323             : {
     324             :         return 1;
     325             : }
     326             : 
     327             : static inline int rcu_read_lock_bh_held(void)
     328             : {
     329             :         return 1;
     330             : }
     331             : 
     332             : static inline int rcu_read_lock_sched_held(void)
     333             : {
     334             :         return !preemptible();
     335             : }
     336             : 
     337             : static inline int rcu_read_lock_any_held(void)
     338             : {
     339             :         return !preemptible();
     340             : }
     341             : 
     342             : static inline int debug_lockdep_rcu_enabled(void)
     343             : {
     344             :         return 0;
     345             : }
     346             : 
     347             : #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
     348             : 
     349             : #ifdef CONFIG_PROVE_RCU
     350             : 
     351             : /**
     352             :  * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
     353             :  * @c: condition to check
     354             :  * @s: informative message
     355             :  *
     356             :  * This checks debug_lockdep_rcu_enabled() before checking (c) to
     357             :  * prevent early boot splats due to lockdep not yet being initialized,
     358             :  * and rechecks it after checking (c) to prevent false-positive splats
     359             :  * due to races with lockdep being disabled.  See commit 3066820034b5dd
     360             :  * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail.
     361             :  */
     362             : #define RCU_LOCKDEP_WARN(c, s)                                          \
     363             :         do {                                                            \
     364             :                 static bool __section(".data.unlikely") __warned;     \
     365             :                 if (debug_lockdep_rcu_enabled() && (c) &&               \
     366             :                     debug_lockdep_rcu_enabled() && !__warned) {         \
     367             :                         __warned = true;                                \
     368             :                         lockdep_rcu_suspicious(__FILE__, __LINE__, s);  \
     369             :                 }                                                       \
     370             :         } while (0)
     371             : 
     372             : #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
     373             : static inline void rcu_preempt_sleep_check(void)
     374             : {
     375             :         RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
     376             :                          "Illegal context switch in RCU read-side critical section");
     377             : }
     378             : #else /* #ifdef CONFIG_PROVE_RCU */
     379             : static inline void rcu_preempt_sleep_check(void) { }
     380             : #endif /* #else #ifdef CONFIG_PROVE_RCU */
     381             : 
     382             : #define rcu_sleep_check()                                               \
     383             :         do {                                                            \
     384             :                 rcu_preempt_sleep_check();                              \
     385             :                 if (!IS_ENABLED(CONFIG_PREEMPT_RT))                     \
     386             :                     RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),        \
     387             :                                  "Illegal context switch in RCU-bh read-side critical section"); \
     388             :                 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
     389             :                                  "Illegal context switch in RCU-sched read-side critical section"); \
     390             :         } while (0)
     391             : 
     392             : #else /* #ifdef CONFIG_PROVE_RCU */
     393             : 
     394             : #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
     395             : #define rcu_sleep_check() do { } while (0)
     396             : 
     397             : #endif /* #else #ifdef CONFIG_PROVE_RCU */
     398             : 
     399             : /*
     400             :  * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
     401             :  * and rcu_assign_pointer().  Some of these could be folded into their
     402             :  * callers, but they are left separate in order to ease introduction of
     403             :  * multiple pointers markings to match different RCU implementations
     404             :  * (e.g., __srcu), should this make sense in the future.
     405             :  */
     406             : 
     407             : #ifdef __CHECKER__
     408             : #define rcu_check_sparse(p, space) \
     409             :         ((void)(((typeof(*p) space *)p) == p))
     410             : #else /* #ifdef __CHECKER__ */
     411             : #define rcu_check_sparse(p, space)
     412             : #endif /* #else #ifdef __CHECKER__ */
     413             : 
     414             : #define __unrcu_pointer(p, local)                                       \
     415             : ({                                                                      \
     416             :         typeof(*p) *local = (typeof(*p) *__force)(p);                   \
     417             :         rcu_check_sparse(p, __rcu);                                     \
     418             :         ((typeof(*p) __force __kernel *)(local));                       \
     419             : })
     420             : /**
     421             :  * unrcu_pointer - mark a pointer as not being RCU protected
     422             :  * @p: pointer needing to lose its __rcu property
     423             :  *
     424             :  * Converts @p from an __rcu pointer to a __kernel pointer.
     425             :  * This allows an __rcu pointer to be used with xchg() and friends.
     426             :  */
     427             : #define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu))
     428             : 
     429             : #define __rcu_access_pointer(p, local, space) \
     430             : ({ \
     431             :         typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
     432             :         rcu_check_sparse(p, space); \
     433             :         ((typeof(*p) __force __kernel *)(local)); \
     434             : })
     435             : #define __rcu_dereference_check(p, local, c, space) \
     436             : ({ \
     437             :         /* Dependency order vs. p above. */ \
     438             :         typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
     439             :         RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
     440             :         rcu_check_sparse(p, space); \
     441             :         ((typeof(*p) __force __kernel *)(local)); \
     442             : })
     443             : #define __rcu_dereference_protected(p, local, c, space) \
     444             : ({ \
     445             :         RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
     446             :         rcu_check_sparse(p, space); \
     447             :         ((typeof(*p) __force __kernel *)(p)); \
     448             : })
     449             : #define __rcu_dereference_raw(p, local) \
     450             : ({ \
     451             :         /* Dependency order vs. p above. */ \
     452             :         typeof(p) local = READ_ONCE(p); \
     453             :         ((typeof(*p) __force __kernel *)(local)); \
     454             : })
     455             : #define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu))
     456             : 
     457             : /**
     458             :  * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
     459             :  * @v: The value to statically initialize with.
     460             :  */
     461             : #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
     462             : 
     463             : /**
     464             :  * rcu_assign_pointer() - assign to RCU-protected pointer
     465             :  * @p: pointer to assign to
     466             :  * @v: value to assign (publish)
     467             :  *
     468             :  * Assigns the specified value to the specified RCU-protected
     469             :  * pointer, ensuring that any concurrent RCU readers will see
     470             :  * any prior initialization.
     471             :  *
     472             :  * Inserts memory barriers on architectures that require them
     473             :  * (which is most of them), and also prevents the compiler from
     474             :  * reordering the code that initializes the structure after the pointer
     475             :  * assignment.  More importantly, this call documents which pointers
     476             :  * will be dereferenced by RCU read-side code.
     477             :  *
     478             :  * In some special cases, you may use RCU_INIT_POINTER() instead
     479             :  * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
     480             :  * to the fact that it does not constrain either the CPU or the compiler.
     481             :  * That said, using RCU_INIT_POINTER() when you should have used
     482             :  * rcu_assign_pointer() is a very bad thing that results in
     483             :  * impossible-to-diagnose memory corruption.  So please be careful.
     484             :  * See the RCU_INIT_POINTER() comment header for details.
     485             :  *
     486             :  * Note that rcu_assign_pointer() evaluates each of its arguments only
     487             :  * once, appearances notwithstanding.  One of the "extra" evaluations
     488             :  * is in typeof() and the other visible only to sparse (__CHECKER__),
     489             :  * neither of which actually execute the argument.  As with most cpp
     490             :  * macros, this execute-arguments-only-once property is important, so
     491             :  * please be careful when making changes to rcu_assign_pointer() and the
     492             :  * other macros that it invokes.
     493             :  */
     494             : #define rcu_assign_pointer(p, v)                                              \
     495             : do {                                                                          \
     496             :         uintptr_t _r_a_p__v = (uintptr_t)(v);                                 \
     497             :         rcu_check_sparse(p, __rcu);                                           \
     498             :                                                                               \
     499             :         if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)        \
     500             :                 WRITE_ONCE((p), (typeof(p))(_r_a_p__v));                      \
     501             :         else                                                                  \
     502             :                 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
     503             : } while (0)
     504             : 
     505             : /**
     506             :  * rcu_replace_pointer() - replace an RCU pointer, returning its old value
     507             :  * @rcu_ptr: RCU pointer, whose old value is returned
     508             :  * @ptr: regular pointer
     509             :  * @c: the lockdep conditions under which the dereference will take place
     510             :  *
     511             :  * Perform a replacement, where @rcu_ptr is an RCU-annotated
     512             :  * pointer and @c is the lockdep argument that is passed to the
     513             :  * rcu_dereference_protected() call used to read that pointer.  The old
     514             :  * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
     515             :  */
     516             : #define rcu_replace_pointer(rcu_ptr, ptr, c)                            \
     517             : ({                                                                      \
     518             :         typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));  \
     519             :         rcu_assign_pointer((rcu_ptr), (ptr));                           \
     520             :         __tmp;                                                          \
     521             : })
     522             : 
     523             : /**
     524             :  * rcu_access_pointer() - fetch RCU pointer with no dereferencing
     525             :  * @p: The pointer to read
     526             :  *
     527             :  * Return the value of the specified RCU-protected pointer, but omit the
     528             :  * lockdep checks for being in an RCU read-side critical section.  This is
     529             :  * useful when the value of this pointer is accessed, but the pointer is
     530             :  * not dereferenced, for example, when testing an RCU-protected pointer
     531             :  * against NULL.  Although rcu_access_pointer() may also be used in cases
     532             :  * where update-side locks prevent the value of the pointer from changing,
     533             :  * you should instead use rcu_dereference_protected() for this use case.
     534             :  * Within an RCU read-side critical section, there is little reason to
     535             :  * use rcu_access_pointer().
     536             :  *
     537             :  * It is usually best to test the rcu_access_pointer() return value
     538             :  * directly in order to avoid accidental dereferences being introduced
     539             :  * by later inattentive changes.  In other words, assigning the
     540             :  * rcu_access_pointer() return value to a local variable results in an
     541             :  * accident waiting to happen.
     542             :  *
     543             :  * It is also permissible to use rcu_access_pointer() when read-side
     544             :  * access to the pointer was removed at least one grace period ago, as is
     545             :  * the case in the context of the RCU callback that is freeing up the data,
     546             :  * or after a synchronize_rcu() returns.  This can be useful when tearing
     547             :  * down multi-linked structures after a grace period has elapsed.  However,
     548             :  * rcu_dereference_protected() is normally preferred for this use case.
     549             :  */
     550             : #define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu)
     551             : 
     552             : /**
     553             :  * rcu_dereference_check() - rcu_dereference with debug checking
     554             :  * @p: The pointer to read, prior to dereferencing
     555             :  * @c: The conditions under which the dereference will take place
     556             :  *
     557             :  * Do an rcu_dereference(), but check that the conditions under which the
     558             :  * dereference will take place are correct.  Typically the conditions
     559             :  * indicate the various locking conditions that should be held at that
     560             :  * point.  The check should return true if the conditions are satisfied.
     561             :  * An implicit check for being in an RCU read-side critical section
     562             :  * (rcu_read_lock()) is included.
     563             :  *
     564             :  * For example:
     565             :  *
     566             :  *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
     567             :  *
     568             :  * could be used to indicate to lockdep that foo->bar may only be dereferenced
     569             :  * if either rcu_read_lock() is held, or that the lock required to replace
     570             :  * the bar struct at foo->bar is held.
     571             :  *
     572             :  * Note that the list of conditions may also include indications of when a lock
     573             :  * need not be held, for example during initialisation or destruction of the
     574             :  * target struct:
     575             :  *
     576             :  *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
     577             :  *                                            atomic_read(&foo->usage) == 0);
     578             :  *
     579             :  * Inserts memory barriers on architectures that require them
     580             :  * (currently only the Alpha), prevents the compiler from refetching
     581             :  * (and from merging fetches), and, more importantly, documents exactly
     582             :  * which pointers are protected by RCU and checks that the pointer is
     583             :  * annotated as __rcu.
     584             :  */
     585             : #define rcu_dereference_check(p, c) \
     586             :         __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
     587             :                                 (c) || rcu_read_lock_held(), __rcu)
     588             : 
     589             : /**
     590             :  * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
     591             :  * @p: The pointer to read, prior to dereferencing
     592             :  * @c: The conditions under which the dereference will take place
     593             :  *
     594             :  * This is the RCU-bh counterpart to rcu_dereference_check().  However,
     595             :  * please note that starting in v5.0 kernels, vanilla RCU grace periods
     596             :  * wait for local_bh_disable() regions of code in addition to regions of
     597             :  * code demarked by rcu_read_lock() and rcu_read_unlock().  This means
     598             :  * that synchronize_rcu(), call_rcu, and friends all take not only
     599             :  * rcu_read_lock() but also rcu_read_lock_bh() into account.
     600             :  */
     601             : #define rcu_dereference_bh_check(p, c) \
     602             :         __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
     603             :                                 (c) || rcu_read_lock_bh_held(), __rcu)
     604             : 
     605             : /**
     606             :  * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
     607             :  * @p: The pointer to read, prior to dereferencing
     608             :  * @c: The conditions under which the dereference will take place
     609             :  *
     610             :  * This is the RCU-sched counterpart to rcu_dereference_check().
     611             :  * However, please note that starting in v5.0 kernels, vanilla RCU grace
     612             :  * periods wait for preempt_disable() regions of code in addition to
     613             :  * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
     614             :  * This means that synchronize_rcu(), call_rcu, and friends all take not
     615             :  * only rcu_read_lock() but also rcu_read_lock_sched() into account.
     616             :  */
     617             : #define rcu_dereference_sched_check(p, c) \
     618             :         __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
     619             :                                 (c) || rcu_read_lock_sched_held(), \
     620             :                                 __rcu)
     621             : 
     622             : /*
     623             :  * The tracing infrastructure traces RCU (we want that), but unfortunately
     624             :  * some of the RCU checks causes tracing to lock up the system.
     625             :  *
     626             :  * The no-tracing version of rcu_dereference_raw() must not call
     627             :  * rcu_read_lock_held().
     628             :  */
     629             : #define rcu_dereference_raw_check(p) \
     630             :         __rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu)
     631             : 
     632             : /**
     633             :  * rcu_dereference_protected() - fetch RCU pointer when updates prevented
     634             :  * @p: The pointer to read, prior to dereferencing
     635             :  * @c: The conditions under which the dereference will take place
     636             :  *
     637             :  * Return the value of the specified RCU-protected pointer, but omit
     638             :  * the READ_ONCE().  This is useful in cases where update-side locks
     639             :  * prevent the value of the pointer from changing.  Please note that this
     640             :  * primitive does *not* prevent the compiler from repeating this reference
     641             :  * or combining it with other references, so it should not be used without
     642             :  * protection of appropriate locks.
     643             :  *
     644             :  * This function is only for update-side use.  Using this function
     645             :  * when protected only by rcu_read_lock() will result in infrequent
     646             :  * but very ugly failures.
     647             :  */
     648             : #define rcu_dereference_protected(p, c) \
     649             :         __rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu)
     650             : 
     651             : 
     652             : /**
     653             :  * rcu_dereference() - fetch RCU-protected pointer for dereferencing
     654             :  * @p: The pointer to read, prior to dereferencing
     655             :  *
     656             :  * This is a simple wrapper around rcu_dereference_check().
     657             :  */
     658             : #define rcu_dereference(p) rcu_dereference_check(p, 0)
     659             : 
     660             : /**
     661             :  * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
     662             :  * @p: The pointer to read, prior to dereferencing
     663             :  *
     664             :  * Makes rcu_dereference_check() do the dirty work.
     665             :  */
     666             : #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
     667             : 
     668             : /**
     669             :  * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
     670             :  * @p: The pointer to read, prior to dereferencing
     671             :  *
     672             :  * Makes rcu_dereference_check() do the dirty work.
     673             :  */
     674             : #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
     675             : 
     676             : /**
     677             :  * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
     678             :  * @p: The pointer to hand off
     679             :  *
     680             :  * This is simply an identity function, but it documents where a pointer
     681             :  * is handed off from RCU to some other synchronization mechanism, for
     682             :  * example, reference counting or locking.  In C11, it would map to
     683             :  * kill_dependency().  It could be used as follows::
     684             :  *
     685             :  *      rcu_read_lock();
     686             :  *      p = rcu_dereference(gp);
     687             :  *      long_lived = is_long_lived(p);
     688             :  *      if (long_lived) {
     689             :  *              if (!atomic_inc_not_zero(p->refcnt))
     690             :  *                      long_lived = false;
     691             :  *              else
     692             :  *                      p = rcu_pointer_handoff(p);
     693             :  *      }
     694             :  *      rcu_read_unlock();
     695             :  */
     696             : #define rcu_pointer_handoff(p) (p)
     697             : 
     698             : /**
     699             :  * rcu_read_lock() - mark the beginning of an RCU read-side critical section
     700             :  *
     701             :  * When synchronize_rcu() is invoked on one CPU while other CPUs
     702             :  * are within RCU read-side critical sections, then the
     703             :  * synchronize_rcu() is guaranteed to block until after all the other
     704             :  * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
     705             :  * on one CPU while other CPUs are within RCU read-side critical
     706             :  * sections, invocation of the corresponding RCU callback is deferred
     707             :  * until after the all the other CPUs exit their critical sections.
     708             :  *
     709             :  * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also
     710             :  * wait for regions of code with preemption disabled, including regions of
     711             :  * code with interrupts or softirqs disabled.  In pre-v5.0 kernels, which
     712             :  * define synchronize_sched(), only code enclosed within rcu_read_lock()
     713             :  * and rcu_read_unlock() are guaranteed to be waited for.
     714             :  *
     715             :  * Note, however, that RCU callbacks are permitted to run concurrently
     716             :  * with new RCU read-side critical sections.  One way that this can happen
     717             :  * is via the following sequence of events: (1) CPU 0 enters an RCU
     718             :  * read-side critical section, (2) CPU 1 invokes call_rcu() to register
     719             :  * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
     720             :  * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
     721             :  * callback is invoked.  This is legal, because the RCU read-side critical
     722             :  * section that was running concurrently with the call_rcu() (and which
     723             :  * therefore might be referencing something that the corresponding RCU
     724             :  * callback would free up) has completed before the corresponding
     725             :  * RCU callback is invoked.
     726             :  *
     727             :  * RCU read-side critical sections may be nested.  Any deferred actions
     728             :  * will be deferred until the outermost RCU read-side critical section
     729             :  * completes.
     730             :  *
     731             :  * You can avoid reading and understanding the next paragraph by
     732             :  * following this rule: don't put anything in an rcu_read_lock() RCU
     733             :  * read-side critical section that would block in a !PREEMPTION kernel.
     734             :  * But if you want the full story, read on!
     735             :  *
     736             :  * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
     737             :  * it is illegal to block while in an RCU read-side critical section.
     738             :  * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
     739             :  * kernel builds, RCU read-side critical sections may be preempted,
     740             :  * but explicit blocking is illegal.  Finally, in preemptible RCU
     741             :  * implementations in real-time (with -rt patchset) kernel builds, RCU
     742             :  * read-side critical sections may be preempted and they may also block, but
     743             :  * only when acquiring spinlocks that are subject to priority inheritance.
     744             :  */
     745             : static __always_inline void rcu_read_lock(void)
     746             : {
     747 >20085*10^7 :         __rcu_read_lock();
     748 >22673*10^7 :         __acquire(RCU);
     749 >22673*10^7 :         rcu_lock_acquire(&rcu_lock_map);
     750 >22673*10^7 :         RCU_LOCKDEP_WARN(!rcu_is_watching(),
     751             :                          "rcu_read_lock() used illegally while idle");
     752 30407556060 : }
     753             : 
     754             : /*
     755             :  * So where is rcu_write_lock()?  It does not exist, as there is no
     756             :  * way for writers to lock out RCU readers.  This is a feature, not
     757             :  * a bug -- this property is what provides RCU's performance benefits.
     758             :  * Of course, writers must coordinate with each other.  The normal
     759             :  * spinlock primitives work well for this, but any other technique may be
     760             :  * used as well.  RCU does not care how the writers keep out of each
     761             :  * others' way, as long as they do so.
     762             :  */
     763             : 
     764             : /**
     765             :  * rcu_read_unlock() - marks the end of an RCU read-side critical section.
     766             :  *
     767             :  * In almost all situations, rcu_read_unlock() is immune from deadlock.
     768             :  * In recent kernels that have consolidated synchronize_sched() and
     769             :  * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity
     770             :  * also extends to the scheduler's runqueue and priority-inheritance
     771             :  * spinlocks, courtesy of the quiescent-state deferral that is carried
     772             :  * out when rcu_read_unlock() is invoked with interrupts disabled.
     773             :  *
     774             :  * See rcu_read_lock() for more information.
     775             :  */
     776             : static inline void rcu_read_unlock(void)
     777             : {
     778 >22660*10^7 :         RCU_LOCKDEP_WARN(!rcu_is_watching(),
     779             :                          "rcu_read_unlock() used illegally while idle");
     780 >22660*10^7 :         __release(RCU);
     781 >21040*10^7 :         __rcu_read_unlock();
     782 >11397*10^7 :         rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
     783  1141238807 : }
     784             : 
     785             : /**
     786             :  * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
     787             :  *
     788             :  * This is equivalent to rcu_read_lock(), but also disables softirqs.
     789             :  * Note that anything else that disables softirqs can also serve as an RCU
     790             :  * read-side critical section.  However, please note that this equivalence
     791             :  * applies only to v5.0 and later.  Before v5.0, rcu_read_lock() and
     792             :  * rcu_read_lock_bh() were unrelated.
     793             :  *
     794             :  * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
     795             :  * must occur in the same context, for example, it is illegal to invoke
     796             :  * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
     797             :  * was invoked from some other task.
     798             :  */
     799             : static inline void rcu_read_lock_bh(void)
     800             : {
     801             :         local_bh_disable();
     802             :         __acquire(RCU_BH);
     803             :         rcu_lock_acquire(&rcu_bh_lock_map);
     804             :         RCU_LOCKDEP_WARN(!rcu_is_watching(),
     805             :                          "rcu_read_lock_bh() used illegally while idle");
     806             : }
     807             : 
     808             : /**
     809             :  * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
     810             :  *
     811             :  * See rcu_read_lock_bh() for more information.
     812             :  */
     813             : static inline void rcu_read_unlock_bh(void)
     814             : {
     815             :         RCU_LOCKDEP_WARN(!rcu_is_watching(),
     816             :                          "rcu_read_unlock_bh() used illegally while idle");
     817             :         rcu_lock_release(&rcu_bh_lock_map);
     818             :         __release(RCU_BH);
     819             :         local_bh_enable();
     820             : }
     821             : 
     822             : /**
     823             :  * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
     824             :  *
     825             :  * This is equivalent to rcu_read_lock(), but also disables preemption.
     826             :  * Read-side critical sections can also be introduced by anything else that
     827             :  * disables preemption, including local_irq_disable() and friends.  However,
     828             :  * please note that the equivalence to rcu_read_lock() applies only to
     829             :  * v5.0 and later.  Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
     830             :  * were unrelated.
     831             :  *
     832             :  * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
     833             :  * must occur in the same context, for example, it is illegal to invoke
     834             :  * rcu_read_unlock_sched() from process context if the matching
     835             :  * rcu_read_lock_sched() was invoked from an NMI handler.
     836             :  */
     837             : static inline void rcu_read_lock_sched(void)
     838             : {
     839   567080129 :         preempt_disable();
     840   567097717 :         __acquire(RCU_SCHED);
     841   567097717 :         rcu_lock_acquire(&rcu_sched_lock_map);
     842   567097717 :         RCU_LOCKDEP_WARN(!rcu_is_watching(),
     843             :                          "rcu_read_lock_sched() used illegally while idle");
     844             : }
     845             : 
     846             : /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
     847             : static inline notrace void rcu_read_lock_sched_notrace(void)
     848             : {
     849             :         preempt_disable_notrace();
     850             :         __acquire(RCU_SCHED);
     851             : }
     852             : 
     853             : /**
     854             :  * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
     855             :  *
     856             :  * See rcu_read_lock_sched() for more information.
     857             :  */
     858   567107972 : static inline void rcu_read_unlock_sched(void)
     859             : {
     860   567107972 :         RCU_LOCKDEP_WARN(!rcu_is_watching(),
     861             :                          "rcu_read_unlock_sched() used illegally while idle");
     862   567107972 :         rcu_lock_release(&rcu_sched_lock_map);
     863   567107972 :         __release(RCU_SCHED);
     864   567107972 :         preempt_enable();
     865   567106355 : }
     866             : 
     867             : /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
     868             : static inline notrace void rcu_read_unlock_sched_notrace(void)
     869             : {
     870             :         __release(RCU_SCHED);
     871             :         preempt_enable_notrace();
     872             : }
     873             : 
     874             : /**
     875             :  * RCU_INIT_POINTER() - initialize an RCU protected pointer
     876             :  * @p: The pointer to be initialized.
     877             :  * @v: The value to initialized the pointer to.
     878             :  *
     879             :  * Initialize an RCU-protected pointer in special cases where readers
     880             :  * do not need ordering constraints on the CPU or the compiler.  These
     881             :  * special cases are:
     882             :  *
     883             :  * 1.   This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
     884             :  * 2.   The caller has taken whatever steps are required to prevent
     885             :  *      RCU readers from concurrently accessing this pointer *or*
     886             :  * 3.   The referenced data structure has already been exposed to
     887             :  *      readers either at compile time or via rcu_assign_pointer() *and*
     888             :  *
     889             :  *      a.      You have not made *any* reader-visible changes to
     890             :  *              this structure since then *or*
     891             :  *      b.      It is OK for readers accessing this structure from its
     892             :  *              new location to see the old state of the structure.  (For
     893             :  *              example, the changes were to statistical counters or to
     894             :  *              other state where exact synchronization is not required.)
     895             :  *
     896             :  * Failure to follow these rules governing use of RCU_INIT_POINTER() will
     897             :  * result in impossible-to-diagnose memory corruption.  As in the structures
     898             :  * will look OK in crash dumps, but any concurrent RCU readers might
     899             :  * see pre-initialized values of the referenced data structure.  So
     900             :  * please be very careful how you use RCU_INIT_POINTER()!!!
     901             :  *
     902             :  * If you are creating an RCU-protected linked structure that is accessed
     903             :  * by a single external-to-structure RCU-protected pointer, then you may
     904             :  * use RCU_INIT_POINTER() to initialize the internal RCU-protected
     905             :  * pointers, but you must use rcu_assign_pointer() to initialize the
     906             :  * external-to-structure pointer *after* you have completely initialized
     907             :  * the reader-accessible portions of the linked structure.
     908             :  *
     909             :  * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
     910             :  * ordering guarantees for either the CPU or the compiler.
     911             :  */
     912             : #define RCU_INIT_POINTER(p, v) \
     913             :         do { \
     914             :                 rcu_check_sparse(p, __rcu); \
     915             :                 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
     916             :         } while (0)
     917             : 
     918             : /**
     919             :  * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
     920             :  * @p: The pointer to be initialized.
     921             :  * @v: The value to initialized the pointer to.
     922             :  *
     923             :  * GCC-style initialization for an RCU-protected pointer in a structure field.
     924             :  */
     925             : #define RCU_POINTER_INITIALIZER(p, v) \
     926             :                 .p = RCU_INITIALIZER(v)
     927             : 
     928             : /*
     929             :  * Does the specified offset indicate that the corresponding rcu_head
     930             :  * structure can be handled by kvfree_rcu()?
     931             :  */
     932             : #define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
     933             : 
     934             : /**
     935             :  * kfree_rcu() - kfree an object after a grace period.
     936             :  * @ptr: pointer to kfree for double-argument invocations.
     937             :  * @rhf: the name of the struct rcu_head within the type of @ptr.
     938             :  *
     939             :  * Many rcu callbacks functions just call kfree() on the base structure.
     940             :  * These functions are trivial, but their size adds up, and furthermore
     941             :  * when they are used in a kernel module, that module must invoke the
     942             :  * high-latency rcu_barrier() function at module-unload time.
     943             :  *
     944             :  * The kfree_rcu() function handles this issue.  Rather than encoding a
     945             :  * function address in the embedded rcu_head structure, kfree_rcu() instead
     946             :  * encodes the offset of the rcu_head structure within the base structure.
     947             :  * Because the functions are not allowed in the low-order 4096 bytes of
     948             :  * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
     949             :  * If the offset is larger than 4095 bytes, a compile-time error will
     950             :  * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
     951             :  * either fall back to use of call_rcu() or rearrange the structure to
     952             :  * position the rcu_head structure into the first 4096 bytes.
     953             :  *
     954             :  * The object to be freed can be allocated either by kmalloc() or
     955             :  * kmem_cache_alloc().
     956             :  *
     957             :  * Note that the allowable offset might decrease in the future.
     958             :  *
     959             :  * The BUILD_BUG_ON check must not involve any function calls, hence the
     960             :  * checks are done in macros here.
     961             :  */
     962             : #define kfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
     963             : #define kvfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
     964             : 
     965             : /**
     966             :  * kfree_rcu_mightsleep() - kfree an object after a grace period.
     967             :  * @ptr: pointer to kfree for single-argument invocations.
     968             :  *
     969             :  * When it comes to head-less variant, only one argument
     970             :  * is passed and that is just a pointer which has to be
     971             :  * freed after a grace period. Therefore the semantic is
     972             :  *
     973             :  *     kfree_rcu_mightsleep(ptr);
     974             :  *
     975             :  * where @ptr is the pointer to be freed by kvfree().
     976             :  *
     977             :  * Please note, head-less way of freeing is permitted to
     978             :  * use from a context that has to follow might_sleep()
     979             :  * annotation. Otherwise, please switch and embed the
     980             :  * rcu_head structure within the type of @ptr.
     981             :  */
     982             : #define kfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
     983             : #define kvfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
     984             : 
     985             : #define kvfree_rcu_arg_2(ptr, rhf)                                      \
     986             : do {                                                                    \
     987             :         typeof (ptr) ___p = (ptr);                                      \
     988             :                                                                         \
     989             :         if (___p) {                                                                     \
     990             :                 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf)));   \
     991             :                 kvfree_call_rcu(&((___p)->rhf), (void *) (___p));                        \
     992             :         }                                                                               \
     993             : } while (0)
     994             : 
     995             : #define kvfree_rcu_arg_1(ptr)                                   \
     996             : do {                                                            \
     997             :         typeof(ptr) ___p = (ptr);                               \
     998             :                                                                 \
     999             :         if (___p)                                               \
    1000             :                 kvfree_call_rcu(NULL, (void *) (___p));         \
    1001             : } while (0)
    1002             : 
    1003             : /*
    1004             :  * Place this after a lock-acquisition primitive to guarantee that
    1005             :  * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
    1006             :  * if the UNLOCK and LOCK are executed by the same CPU or if the
    1007             :  * UNLOCK and LOCK operate on the same lock variable.
    1008             :  */
    1009             : #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
    1010             : #define smp_mb__after_unlock_lock()     smp_mb()  /* Full ordering for lock. */
    1011             : #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
    1012             : #define smp_mb__after_unlock_lock()     do { } while (0)
    1013             : #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
    1014             : 
    1015             : 
    1016             : /* Has the specified rcu_head structure been handed to call_rcu()? */
    1017             : 
    1018             : /**
    1019             :  * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
    1020             :  * @rhp: The rcu_head structure to initialize.
    1021             :  *
    1022             :  * If you intend to invoke rcu_head_after_call_rcu() to test whether a
    1023             :  * given rcu_head structure has already been passed to call_rcu(), then
    1024             :  * you must also invoke this rcu_head_init() function on it just after
    1025             :  * allocating that structure.  Calls to this function must not race with
    1026             :  * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
    1027             :  */
    1028             : static inline void rcu_head_init(struct rcu_head *rhp)
    1029             : {
    1030             :         rhp->func = (rcu_callback_t)~0L;
    1031             : }
    1032             : 
    1033             : /**
    1034             :  * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
    1035             :  * @rhp: The rcu_head structure to test.
    1036             :  * @f: The function passed to call_rcu() along with @rhp.
    1037             :  *
    1038             :  * Returns @true if the @rhp has been passed to call_rcu() with @func,
    1039             :  * and @false otherwise.  Emits a warning in any other case, including
    1040             :  * the case where @rhp has already been invoked after a grace period.
    1041             :  * Calls to this function must not race with callback invocation.  One way
    1042             :  * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
    1043             :  * in an RCU read-side critical section that includes a read-side fetch
    1044             :  * of the pointer to the structure containing @rhp.
    1045             :  */
    1046             : static inline bool
    1047             : rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
    1048             : {
    1049             :         rcu_callback_t func = READ_ONCE(rhp->func);
    1050             : 
    1051             :         if (func == f)
    1052             :                 return true;
    1053             :         WARN_ON_ONCE(func != (rcu_callback_t)~0L);
    1054             :         return false;
    1055             : }
    1056             : 
    1057             : /* kernel/ksysfs.c definitions */
    1058             : extern int rcu_expedited;
    1059             : extern int rcu_normal;
    1060             : 
    1061             : DEFINE_LOCK_GUARD_0(rcu, rcu_read_lock(), rcu_read_unlock())
    1062             : 
    1063             : #endif /* __LINUX_RCUPDATE_H */

Generated by: LCOV version 1.14