Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * fs/userfaultfd.c
4 : *
5 : * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 : * Copyright (C) 2008-2009 Red Hat, Inc.
7 : * Copyright (C) 2015 Red Hat, Inc.
8 : *
9 : * Some part derived from fs/eventfd.c (anon inode setup) and
10 : * mm/ksm.c (mm hashing).
11 : */
12 :
13 : #include <linux/list.h>
14 : #include <linux/hashtable.h>
15 : #include <linux/sched/signal.h>
16 : #include <linux/sched/mm.h>
17 : #include <linux/mm.h>
18 : #include <linux/mm_inline.h>
19 : #include <linux/mmu_notifier.h>
20 : #include <linux/poll.h>
21 : #include <linux/slab.h>
22 : #include <linux/seq_file.h>
23 : #include <linux/file.h>
24 : #include <linux/bug.h>
25 : #include <linux/anon_inodes.h>
26 : #include <linux/syscalls.h>
27 : #include <linux/userfaultfd_k.h>
28 : #include <linux/mempolicy.h>
29 : #include <linux/ioctl.h>
30 : #include <linux/security.h>
31 : #include <linux/hugetlb.h>
32 : #include <linux/swapops.h>
33 : #include <linux/miscdevice.h>
34 :
35 : static int sysctl_unprivileged_userfaultfd __read_mostly;
36 :
37 : #ifdef CONFIG_SYSCTL
38 : static struct ctl_table vm_userfaultfd_table[] = {
39 : {
40 : .procname = "unprivileged_userfaultfd",
41 : .data = &sysctl_unprivileged_userfaultfd,
42 : .maxlen = sizeof(sysctl_unprivileged_userfaultfd),
43 : .mode = 0644,
44 : .proc_handler = proc_dointvec_minmax,
45 : .extra1 = SYSCTL_ZERO,
46 : .extra2 = SYSCTL_ONE,
47 : },
48 : { }
49 : };
50 : #endif
51 :
52 : static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
53 :
54 : /*
55 : * Start with fault_pending_wqh and fault_wqh so they're more likely
56 : * to be in the same cacheline.
57 : *
58 : * Locking order:
59 : * fd_wqh.lock
60 : * fault_pending_wqh.lock
61 : * fault_wqh.lock
62 : * event_wqh.lock
63 : *
64 : * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
65 : * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
66 : * also taken in IRQ context.
67 : */
68 : struct userfaultfd_ctx {
69 : /* waitqueue head for the pending (i.e. not read) userfaults */
70 : wait_queue_head_t fault_pending_wqh;
71 : /* waitqueue head for the userfaults */
72 : wait_queue_head_t fault_wqh;
73 : /* waitqueue head for the pseudo fd to wakeup poll/read */
74 : wait_queue_head_t fd_wqh;
75 : /* waitqueue head for events */
76 : wait_queue_head_t event_wqh;
77 : /* a refile sequence protected by fault_pending_wqh lock */
78 : seqcount_spinlock_t refile_seq;
79 : /* pseudo fd refcounting */
80 : refcount_t refcount;
81 : /* userfaultfd syscall flags */
82 : unsigned int flags;
83 : /* features requested from the userspace */
84 : unsigned int features;
85 : /* released */
86 : bool released;
87 : /* memory mappings are changing because of non-cooperative event */
88 : atomic_t mmap_changing;
89 : /* mm with one ore more vmas attached to this userfaultfd_ctx */
90 : struct mm_struct *mm;
91 : };
92 :
93 : struct userfaultfd_fork_ctx {
94 : struct userfaultfd_ctx *orig;
95 : struct userfaultfd_ctx *new;
96 : struct list_head list;
97 : };
98 :
99 : struct userfaultfd_unmap_ctx {
100 : struct userfaultfd_ctx *ctx;
101 : unsigned long start;
102 : unsigned long end;
103 : struct list_head list;
104 : };
105 :
106 : struct userfaultfd_wait_queue {
107 : struct uffd_msg msg;
108 : wait_queue_entry_t wq;
109 : struct userfaultfd_ctx *ctx;
110 : bool waken;
111 : };
112 :
113 : struct userfaultfd_wake_range {
114 : unsigned long start;
115 : unsigned long len;
116 : };
117 :
118 : /* internal indication that UFFD_API ioctl was successfully executed */
119 : #define UFFD_FEATURE_INITIALIZED (1u << 31)
120 :
121 : static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
122 : {
123 0 : return ctx->features & UFFD_FEATURE_INITIALIZED;
124 : }
125 :
126 : /*
127 : * Whether WP_UNPOPULATED is enabled on the uffd context. It is only
128 : * meaningful when userfaultfd_wp()==true on the vma and when it's
129 : * anonymous.
130 : */
131 0 : bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
132 : {
133 0 : struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
134 :
135 0 : if (!ctx)
136 : return false;
137 :
138 0 : return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
139 : }
140 :
141 1310946012 : static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
142 : vm_flags_t flags)
143 : {
144 1310946012 : const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
145 :
146 1310946012 : vm_flags_reset(vma, flags);
147 : /*
148 : * For shared mappings, we want to enable writenotify while
149 : * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
150 : * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
151 : */
152 1310940376 : if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
153 0 : vma_set_page_prot(vma);
154 1310940376 : }
155 :
156 0 : static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
157 : int wake_flags, void *key)
158 : {
159 0 : struct userfaultfd_wake_range *range = key;
160 0 : int ret;
161 0 : struct userfaultfd_wait_queue *uwq;
162 0 : unsigned long start, len;
163 :
164 0 : uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
165 0 : ret = 0;
166 : /* len == 0 means wake all */
167 0 : start = range->start;
168 0 : len = range->len;
169 0 : if (len && (start > uwq->msg.arg.pagefault.address ||
170 0 : start + len <= uwq->msg.arg.pagefault.address))
171 0 : goto out;
172 0 : WRITE_ONCE(uwq->waken, true);
173 : /*
174 : * The Program-Order guarantees provided by the scheduler
175 : * ensure uwq->waken is visible before the task is woken.
176 : */
177 0 : ret = wake_up_state(wq->private, mode);
178 0 : if (ret) {
179 : /*
180 : * Wake only once, autoremove behavior.
181 : *
182 : * After the effect of list_del_init is visible to the other
183 : * CPUs, the waitqueue may disappear from under us, see the
184 : * !list_empty_careful() in handle_userfault().
185 : *
186 : * try_to_wake_up() has an implicit smp_mb(), and the
187 : * wq->private is read before calling the extern function
188 : * "wake_up_state" (which in turns calls try_to_wake_up).
189 : */
190 0 : list_del_init(&wq->entry);
191 : }
192 0 : out:
193 0 : return ret;
194 : }
195 :
196 : /**
197 : * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
198 : * context.
199 : * @ctx: [in] Pointer to the userfaultfd context.
200 : */
201 : static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
202 : {
203 0 : refcount_inc(&ctx->refcount);
204 : }
205 :
206 : /**
207 : * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
208 : * context.
209 : * @ctx: [in] Pointer to userfaultfd context.
210 : *
211 : * The userfaultfd context reference must have been previously acquired either
212 : * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
213 : */
214 0 : static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
215 : {
216 0 : if (refcount_dec_and_test(&ctx->refcount)) {
217 0 : VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
218 0 : VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
219 0 : VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
220 0 : VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
221 0 : VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
222 0 : VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
223 0 : VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
224 0 : VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
225 0 : mmdrop(ctx->mm);
226 0 : kmem_cache_free(userfaultfd_ctx_cachep, ctx);
227 : }
228 0 : }
229 :
230 0 : static inline void msg_init(struct uffd_msg *msg)
231 : {
232 0 : BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
233 : /*
234 : * Must use memset to zero out the paddings or kernel data is
235 : * leaked to userland.
236 : */
237 0 : memset(msg, 0, sizeof(struct uffd_msg));
238 0 : }
239 :
240 0 : static inline struct uffd_msg userfault_msg(unsigned long address,
241 : unsigned long real_address,
242 : unsigned int flags,
243 : unsigned long reason,
244 : unsigned int features)
245 : {
246 0 : struct uffd_msg msg;
247 :
248 0 : msg_init(&msg);
249 0 : msg.event = UFFD_EVENT_PAGEFAULT;
250 :
251 0 : msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
252 0 : real_address : address;
253 :
254 : /*
255 : * These flags indicate why the userfault occurred:
256 : * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
257 : * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
258 : * - Neither of these flags being set indicates a MISSING fault.
259 : *
260 : * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
261 : * fault. Otherwise, it was a read fault.
262 : */
263 0 : if (flags & FAULT_FLAG_WRITE)
264 0 : msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
265 0 : if (reason & VM_UFFD_WP)
266 0 : msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
267 0 : if (reason & VM_UFFD_MINOR)
268 0 : msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
269 0 : if (features & UFFD_FEATURE_THREAD_ID)
270 0 : msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
271 0 : return msg;
272 : }
273 :
274 : #ifdef CONFIG_HUGETLB_PAGE
275 : /*
276 : * Same functionality as userfaultfd_must_wait below with modifications for
277 : * hugepmd ranges.
278 : */
279 0 : static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
280 : struct vm_area_struct *vma,
281 : unsigned long address,
282 : unsigned long flags,
283 : unsigned long reason)
284 : {
285 0 : pte_t *ptep, pte;
286 0 : bool ret = true;
287 :
288 0 : mmap_assert_locked(ctx->mm);
289 :
290 0 : ptep = hugetlb_walk(vma, address, vma_mmu_pagesize(vma));
291 0 : if (!ptep)
292 0 : goto out;
293 :
294 0 : ret = false;
295 0 : pte = huge_ptep_get(ptep);
296 :
297 : /*
298 : * Lockless access: we're in a wait_event so it's ok if it
299 : * changes under us. PTE markers should be handled the same as none
300 : * ptes here.
301 : */
302 0 : if (huge_pte_none_mostly(pte))
303 : ret = true;
304 0 : if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
305 0 : ret = true;
306 0 : out:
307 0 : return ret;
308 : }
309 : #else
310 : static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
311 : struct vm_area_struct *vma,
312 : unsigned long address,
313 : unsigned long flags,
314 : unsigned long reason)
315 : {
316 : return false; /* should never get here */
317 : }
318 : #endif /* CONFIG_HUGETLB_PAGE */
319 :
320 : /*
321 : * Verify the pagetables are still not ok after having reigstered into
322 : * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
323 : * userfault that has already been resolved, if userfaultfd_read and
324 : * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
325 : * threads.
326 : */
327 0 : static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
328 : unsigned long address,
329 : unsigned long flags,
330 : unsigned long reason)
331 : {
332 0 : struct mm_struct *mm = ctx->mm;
333 0 : pgd_t *pgd;
334 0 : p4d_t *p4d;
335 0 : pud_t *pud;
336 0 : pmd_t *pmd, _pmd;
337 0 : pte_t *pte;
338 0 : pte_t ptent;
339 0 : bool ret = true;
340 :
341 0 : mmap_assert_locked(mm);
342 :
343 0 : pgd = pgd_offset(mm, address);
344 0 : if (!pgd_present(*pgd))
345 : goto out;
346 0 : p4d = p4d_offset(pgd, address);
347 0 : if (!p4d_present(*p4d))
348 0 : goto out;
349 0 : pud = pud_offset(p4d, address);
350 0 : if (!pud_present(*pud))
351 0 : goto out;
352 0 : pmd = pmd_offset(pud, address);
353 0 : again:
354 0 : _pmd = pmdp_get_lockless(pmd);
355 0 : if (pmd_none(_pmd))
356 0 : goto out;
357 :
358 0 : ret = false;
359 0 : if (!pmd_present(_pmd) || pmd_devmap(_pmd))
360 0 : goto out;
361 :
362 0 : if (pmd_trans_huge(_pmd)) {
363 0 : if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
364 0 : ret = true;
365 0 : goto out;
366 : }
367 :
368 0 : pte = pte_offset_map(pmd, address);
369 0 : if (!pte) {
370 0 : ret = true;
371 0 : goto again;
372 : }
373 : /*
374 : * Lockless access: we're in a wait_event so it's ok if it
375 : * changes under us. PTE markers should be handled the same as none
376 : * ptes here.
377 : */
378 0 : ptent = ptep_get(pte);
379 0 : if (pte_none_mostly(ptent))
380 : ret = true;
381 0 : if (!pte_write(ptent) && (reason & VM_UFFD_WP))
382 0 : ret = true;
383 : pte_unmap(pte);
384 :
385 0 : out:
386 0 : return ret;
387 : }
388 :
389 : static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
390 : {
391 0 : if (flags & FAULT_FLAG_INTERRUPTIBLE)
392 : return TASK_INTERRUPTIBLE;
393 :
394 0 : if (flags & FAULT_FLAG_KILLABLE)
395 0 : return TASK_KILLABLE;
396 :
397 : return TASK_UNINTERRUPTIBLE;
398 : }
399 :
400 : /*
401 : * The locking rules involved in returning VM_FAULT_RETRY depending on
402 : * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
403 : * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
404 : * recommendation in __lock_page_or_retry is not an understatement.
405 : *
406 : * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
407 : * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
408 : * not set.
409 : *
410 : * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
411 : * set, VM_FAULT_RETRY can still be returned if and only if there are
412 : * fatal_signal_pending()s, and the mmap_lock must be released before
413 : * returning it.
414 : */
415 0 : vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
416 : {
417 0 : struct vm_area_struct *vma = vmf->vma;
418 0 : struct mm_struct *mm = vma->vm_mm;
419 0 : struct userfaultfd_ctx *ctx;
420 0 : struct userfaultfd_wait_queue uwq;
421 0 : vm_fault_t ret = VM_FAULT_SIGBUS;
422 0 : bool must_wait;
423 0 : unsigned int blocking_state;
424 :
425 : /*
426 : * We don't do userfault handling for the final child pid update.
427 : *
428 : * We also don't do userfault handling during
429 : * coredumping. hugetlbfs has the special
430 : * follow_hugetlb_page() to skip missing pages in the
431 : * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
432 : * the no_page_table() helper in follow_page_mask(), but the
433 : * shmem_vm_ops->fault method is invoked even during
434 : * coredumping without mmap_lock and it ends up here.
435 : */
436 0 : if (current->flags & (PF_EXITING|PF_DUMPCORE))
437 0 : goto out;
438 :
439 : /*
440 : * Coredumping runs without mmap_lock so we can only check that
441 : * the mmap_lock is held, if PF_DUMPCORE was not set.
442 : */
443 0 : mmap_assert_locked(mm);
444 :
445 0 : ctx = vma->vm_userfaultfd_ctx.ctx;
446 0 : if (!ctx)
447 0 : goto out;
448 :
449 0 : BUG_ON(ctx->mm != mm);
450 :
451 : /* Any unrecognized flag is a bug. */
452 0 : VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
453 : /* 0 or > 1 flags set is a bug; we expect exactly 1. */
454 0 : VM_BUG_ON(!reason || (reason & (reason - 1)));
455 :
456 0 : if (ctx->features & UFFD_FEATURE_SIGBUS)
457 0 : goto out;
458 0 : if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
459 0 : goto out;
460 :
461 : /*
462 : * If it's already released don't get it. This avoids to loop
463 : * in __get_user_pages if userfaultfd_release waits on the
464 : * caller of handle_userfault to release the mmap_lock.
465 : */
466 0 : if (unlikely(READ_ONCE(ctx->released))) {
467 : /*
468 : * Don't return VM_FAULT_SIGBUS in this case, so a non
469 : * cooperative manager can close the uffd after the
470 : * last UFFDIO_COPY, without risking to trigger an
471 : * involuntary SIGBUS if the process was starting the
472 : * userfaultfd while the userfaultfd was still armed
473 : * (but after the last UFFDIO_COPY). If the uffd
474 : * wasn't already closed when the userfault reached
475 : * this point, that would normally be solved by
476 : * userfaultfd_must_wait returning 'false'.
477 : *
478 : * If we were to return VM_FAULT_SIGBUS here, the non
479 : * cooperative manager would be instead forced to
480 : * always call UFFDIO_UNREGISTER before it can safely
481 : * close the uffd.
482 : */
483 0 : ret = VM_FAULT_NOPAGE;
484 0 : goto out;
485 : }
486 :
487 : /*
488 : * Check that we can return VM_FAULT_RETRY.
489 : *
490 : * NOTE: it should become possible to return VM_FAULT_RETRY
491 : * even if FAULT_FLAG_TRIED is set without leading to gup()
492 : * -EBUSY failures, if the userfaultfd is to be extended for
493 : * VM_UFFD_WP tracking and we intend to arm the userfault
494 : * without first stopping userland access to the memory. For
495 : * VM_UFFD_MISSING userfaults this is enough for now.
496 : */
497 0 : if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
498 : /*
499 : * Validate the invariant that nowait must allow retry
500 : * to be sure not to return SIGBUS erroneously on
501 : * nowait invocations.
502 : */
503 0 : BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
504 : #ifdef CONFIG_DEBUG_VM
505 : if (printk_ratelimit()) {
506 : printk(KERN_WARNING
507 : "FAULT_FLAG_ALLOW_RETRY missing %x\n",
508 : vmf->flags);
509 : dump_stack();
510 : }
511 : #endif
512 0 : goto out;
513 : }
514 :
515 : /*
516 : * Handle nowait, not much to do other than tell it to retry
517 : * and wait.
518 : */
519 0 : ret = VM_FAULT_RETRY;
520 0 : if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
521 0 : goto out;
522 :
523 : /* take the reference before dropping the mmap_lock */
524 0 : userfaultfd_ctx_get(ctx);
525 :
526 0 : init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
527 0 : uwq.wq.private = current;
528 0 : uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
529 : reason, ctx->features);
530 0 : uwq.ctx = ctx;
531 0 : uwq.waken = false;
532 :
533 0 : blocking_state = userfaultfd_get_blocking_state(vmf->flags);
534 :
535 : /*
536 : * Take the vma lock now, in order to safely call
537 : * userfaultfd_huge_must_wait() later. Since acquiring the
538 : * (sleepable) vma lock can modify the current task state, that
539 : * must be before explicitly calling set_current_state().
540 : */
541 0 : if (is_vm_hugetlb_page(vma))
542 0 : hugetlb_vma_lock_read(vma);
543 :
544 0 : spin_lock_irq(&ctx->fault_pending_wqh.lock);
545 : /*
546 : * After the __add_wait_queue the uwq is visible to userland
547 : * through poll/read().
548 : */
549 0 : __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
550 : /*
551 : * The smp_mb() after __set_current_state prevents the reads
552 : * following the spin_unlock to happen before the list_add in
553 : * __add_wait_queue.
554 : */
555 0 : set_current_state(blocking_state);
556 0 : spin_unlock_irq(&ctx->fault_pending_wqh.lock);
557 :
558 0 : if (!is_vm_hugetlb_page(vma))
559 0 : must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
560 : reason);
561 : else
562 0 : must_wait = userfaultfd_huge_must_wait(ctx, vma,
563 0 : vmf->address,
564 0 : vmf->flags, reason);
565 0 : if (is_vm_hugetlb_page(vma))
566 0 : hugetlb_vma_unlock_read(vma);
567 0 : mmap_read_unlock(mm);
568 :
569 0 : if (likely(must_wait && !READ_ONCE(ctx->released))) {
570 0 : wake_up_poll(&ctx->fd_wqh, EPOLLIN);
571 0 : schedule();
572 : }
573 :
574 0 : __set_current_state(TASK_RUNNING);
575 :
576 : /*
577 : * Here we race with the list_del; list_add in
578 : * userfaultfd_ctx_read(), however because we don't ever run
579 : * list_del_init() to refile across the two lists, the prev
580 : * and next pointers will never point to self. list_add also
581 : * would never let any of the two pointers to point to
582 : * self. So list_empty_careful won't risk to see both pointers
583 : * pointing to self at any time during the list refile. The
584 : * only case where list_del_init() is called is the full
585 : * removal in the wake function and there we don't re-list_add
586 : * and it's fine not to block on the spinlock. The uwq on this
587 : * kernel stack can be released after the list_del_init.
588 : */
589 0 : if (!list_empty_careful(&uwq.wq.entry)) {
590 0 : spin_lock_irq(&ctx->fault_pending_wqh.lock);
591 : /*
592 : * No need of list_del_init(), the uwq on the stack
593 : * will be freed shortly anyway.
594 : */
595 0 : list_del(&uwq.wq.entry);
596 0 : spin_unlock_irq(&ctx->fault_pending_wqh.lock);
597 : }
598 :
599 : /*
600 : * ctx may go away after this if the userfault pseudo fd is
601 : * already released.
602 : */
603 0 : userfaultfd_ctx_put(ctx);
604 :
605 0 : out:
606 0 : return ret;
607 : }
608 :
609 0 : static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
610 : struct userfaultfd_wait_queue *ewq)
611 : {
612 0 : struct userfaultfd_ctx *release_new_ctx;
613 :
614 0 : if (WARN_ON_ONCE(current->flags & PF_EXITING))
615 0 : goto out;
616 :
617 0 : ewq->ctx = ctx;
618 0 : init_waitqueue_entry(&ewq->wq, current);
619 0 : release_new_ctx = NULL;
620 :
621 0 : spin_lock_irq(&ctx->event_wqh.lock);
622 : /*
623 : * After the __add_wait_queue the uwq is visible to userland
624 : * through poll/read().
625 : */
626 0 : __add_wait_queue(&ctx->event_wqh, &ewq->wq);
627 0 : for (;;) {
628 0 : set_current_state(TASK_KILLABLE);
629 0 : if (ewq->msg.event == 0)
630 : break;
631 0 : if (READ_ONCE(ctx->released) ||
632 0 : fatal_signal_pending(current)) {
633 : /*
634 : * &ewq->wq may be queued in fork_event, but
635 : * __remove_wait_queue ignores the head
636 : * parameter. It would be a problem if it
637 : * didn't.
638 : */
639 0 : __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
640 0 : if (ewq->msg.event == UFFD_EVENT_FORK) {
641 0 : struct userfaultfd_ctx *new;
642 :
643 0 : new = (struct userfaultfd_ctx *)
644 : (unsigned long)
645 0 : ewq->msg.arg.reserved.reserved1;
646 0 : release_new_ctx = new;
647 : }
648 : break;
649 : }
650 :
651 0 : spin_unlock_irq(&ctx->event_wqh.lock);
652 :
653 0 : wake_up_poll(&ctx->fd_wqh, EPOLLIN);
654 0 : schedule();
655 :
656 0 : spin_lock_irq(&ctx->event_wqh.lock);
657 : }
658 0 : __set_current_state(TASK_RUNNING);
659 0 : spin_unlock_irq(&ctx->event_wqh.lock);
660 :
661 0 : if (release_new_ctx) {
662 0 : struct vm_area_struct *vma;
663 0 : struct mm_struct *mm = release_new_ctx->mm;
664 0 : VMA_ITERATOR(vmi, mm, 0);
665 :
666 : /* the various vma->vm_userfaultfd_ctx still points to it */
667 0 : mmap_write_lock(mm);
668 0 : for_each_vma(vmi, vma) {
669 0 : if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
670 0 : vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
671 0 : userfaultfd_set_vm_flags(vma,
672 0 : vma->vm_flags & ~__VM_UFFD_FLAGS);
673 : }
674 : }
675 0 : mmap_write_unlock(mm);
676 :
677 0 : userfaultfd_ctx_put(release_new_ctx);
678 : }
679 :
680 : /*
681 : * ctx may go away after this if the userfault pseudo fd is
682 : * already released.
683 : */
684 0 : out:
685 0 : atomic_dec(&ctx->mmap_changing);
686 0 : VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
687 0 : userfaultfd_ctx_put(ctx);
688 0 : }
689 :
690 0 : static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
691 : struct userfaultfd_wait_queue *ewq)
692 : {
693 0 : ewq->msg.event = 0;
694 0 : wake_up_locked(&ctx->event_wqh);
695 0 : __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
696 0 : }
697 :
698 1310961682 : int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
699 : {
700 1310961682 : struct userfaultfd_ctx *ctx = NULL, *octx;
701 1310961682 : struct userfaultfd_fork_ctx *fctx;
702 :
703 1310961682 : octx = vma->vm_userfaultfd_ctx.ctx;
704 1310961682 : if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
705 1310961682 : vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
706 1310961682 : userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
707 1310961682 : return 0;
708 : }
709 :
710 0 : list_for_each_entry(fctx, fcs, list)
711 0 : if (fctx->orig == octx) {
712 0 : ctx = fctx->new;
713 0 : break;
714 : }
715 :
716 0 : if (!ctx) {
717 0 : fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
718 0 : if (!fctx)
719 : return -ENOMEM;
720 :
721 0 : ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
722 0 : if (!ctx) {
723 0 : kfree(fctx);
724 0 : return -ENOMEM;
725 : }
726 :
727 0 : refcount_set(&ctx->refcount, 1);
728 0 : ctx->flags = octx->flags;
729 0 : ctx->features = octx->features;
730 0 : ctx->released = false;
731 0 : atomic_set(&ctx->mmap_changing, 0);
732 0 : ctx->mm = vma->vm_mm;
733 0 : mmgrab(ctx->mm);
734 :
735 0 : userfaultfd_ctx_get(octx);
736 0 : atomic_inc(&octx->mmap_changing);
737 0 : fctx->orig = octx;
738 0 : fctx->new = ctx;
739 0 : list_add_tail(&fctx->list, fcs);
740 : }
741 :
742 0 : vma->vm_userfaultfd_ctx.ctx = ctx;
743 0 : return 0;
744 : }
745 :
746 0 : static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
747 : {
748 0 : struct userfaultfd_ctx *ctx = fctx->orig;
749 0 : struct userfaultfd_wait_queue ewq;
750 :
751 0 : msg_init(&ewq.msg);
752 :
753 0 : ewq.msg.event = UFFD_EVENT_FORK;
754 0 : ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
755 :
756 0 : userfaultfd_event_wait_completion(ctx, &ewq);
757 0 : }
758 :
759 45146350 : void dup_userfaultfd_complete(struct list_head *fcs)
760 : {
761 45146350 : struct userfaultfd_fork_ctx *fctx, *n;
762 :
763 45141644 : list_for_each_entry_safe(fctx, n, fcs, list) {
764 0 : dup_fctx(fctx);
765 0 : list_del(&fctx->list);
766 0 : kfree(fctx);
767 : }
768 45141644 : }
769 :
770 8216 : void mremap_userfaultfd_prep(struct vm_area_struct *vma,
771 : struct vm_userfaultfd_ctx *vm_ctx)
772 : {
773 8216 : struct userfaultfd_ctx *ctx;
774 :
775 8216 : ctx = vma->vm_userfaultfd_ctx.ctx;
776 :
777 8216 : if (!ctx)
778 : return;
779 :
780 0 : if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
781 0 : vm_ctx->ctx = ctx;
782 0 : userfaultfd_ctx_get(ctx);
783 0 : atomic_inc(&ctx->mmap_changing);
784 : } else {
785 : /* Drop uffd context if remap feature not enabled */
786 0 : vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
787 0 : userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
788 : }
789 : }
790 :
791 48811 : void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
792 : unsigned long from, unsigned long to,
793 : unsigned long len)
794 : {
795 48811 : struct userfaultfd_ctx *ctx = vm_ctx->ctx;
796 48811 : struct userfaultfd_wait_queue ewq;
797 :
798 48811 : if (!ctx)
799 48811 : return;
800 :
801 0 : if (to & ~PAGE_MASK) {
802 0 : userfaultfd_ctx_put(ctx);
803 0 : return;
804 : }
805 :
806 0 : msg_init(&ewq.msg);
807 :
808 0 : ewq.msg.event = UFFD_EVENT_REMAP;
809 0 : ewq.msg.arg.remap.from = from;
810 0 : ewq.msg.arg.remap.to = to;
811 0 : ewq.msg.arg.remap.len = len;
812 :
813 0 : userfaultfd_event_wait_completion(ctx, &ewq);
814 : }
815 :
816 168670047 : bool userfaultfd_remove(struct vm_area_struct *vma,
817 : unsigned long start, unsigned long end)
818 : {
819 168670047 : struct mm_struct *mm = vma->vm_mm;
820 168670047 : struct userfaultfd_ctx *ctx;
821 168670047 : struct userfaultfd_wait_queue ewq;
822 :
823 168670047 : ctx = vma->vm_userfaultfd_ctx.ctx;
824 168670047 : if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
825 : return true;
826 :
827 0 : userfaultfd_ctx_get(ctx);
828 0 : atomic_inc(&ctx->mmap_changing);
829 0 : mmap_read_unlock(mm);
830 :
831 0 : msg_init(&ewq.msg);
832 :
833 0 : ewq.msg.event = UFFD_EVENT_REMOVE;
834 0 : ewq.msg.arg.remove.start = start;
835 0 : ewq.msg.arg.remove.end = end;
836 :
837 0 : userfaultfd_event_wait_completion(ctx, &ewq);
838 :
839 0 : return false;
840 : }
841 :
842 0 : static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
843 : unsigned long start, unsigned long end)
844 : {
845 0 : struct userfaultfd_unmap_ctx *unmap_ctx;
846 :
847 0 : list_for_each_entry(unmap_ctx, unmaps, list)
848 0 : if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
849 0 : unmap_ctx->end == end)
850 : return true;
851 :
852 : return false;
853 : }
854 :
855 693532807 : int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start,
856 : unsigned long end, struct list_head *unmaps)
857 : {
858 693532807 : struct userfaultfd_unmap_ctx *unmap_ctx;
859 693532807 : struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
860 :
861 693532807 : if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
862 0 : has_unmap_ctx(ctx, unmaps, start, end))
863 : return 0;
864 :
865 0 : unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
866 0 : if (!unmap_ctx)
867 : return -ENOMEM;
868 :
869 0 : userfaultfd_ctx_get(ctx);
870 0 : atomic_inc(&ctx->mmap_changing);
871 0 : unmap_ctx->ctx = ctx;
872 0 : unmap_ctx->start = start;
873 0 : unmap_ctx->end = end;
874 0 : list_add_tail(&unmap_ctx->list, unmaps);
875 :
876 0 : return 0;
877 : }
878 :
879 1292367665 : void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
880 : {
881 1292367665 : struct userfaultfd_unmap_ctx *ctx, *n;
882 1292367665 : struct userfaultfd_wait_queue ewq;
883 :
884 1292262038 : list_for_each_entry_safe(ctx, n, uf, list) {
885 0 : msg_init(&ewq.msg);
886 :
887 0 : ewq.msg.event = UFFD_EVENT_UNMAP;
888 0 : ewq.msg.arg.remove.start = ctx->start;
889 0 : ewq.msg.arg.remove.end = ctx->end;
890 :
891 0 : userfaultfd_event_wait_completion(ctx->ctx, &ewq);
892 :
893 0 : list_del(&ctx->list);
894 0 : kfree(ctx);
895 : }
896 1292262038 : }
897 :
898 0 : static int userfaultfd_release(struct inode *inode, struct file *file)
899 : {
900 0 : struct userfaultfd_ctx *ctx = file->private_data;
901 0 : struct mm_struct *mm = ctx->mm;
902 0 : struct vm_area_struct *vma, *prev;
903 : /* len == 0 means wake all */
904 0 : struct userfaultfd_wake_range range = { .len = 0, };
905 0 : unsigned long new_flags;
906 0 : VMA_ITERATOR(vmi, mm, 0);
907 :
908 0 : WRITE_ONCE(ctx->released, true);
909 :
910 0 : if (!mmget_not_zero(mm))
911 0 : goto wakeup;
912 :
913 : /*
914 : * Flush page faults out of all CPUs. NOTE: all page faults
915 : * must be retried without returning VM_FAULT_SIGBUS if
916 : * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
917 : * changes while handle_userfault released the mmap_lock. So
918 : * it's critical that released is set to true (above), before
919 : * taking the mmap_lock for writing.
920 : */
921 0 : mmap_write_lock(mm);
922 0 : prev = NULL;
923 0 : for_each_vma(vmi, vma) {
924 0 : cond_resched();
925 0 : BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
926 : !!(vma->vm_flags & __VM_UFFD_FLAGS));
927 0 : if (vma->vm_userfaultfd_ctx.ctx != ctx) {
928 0 : prev = vma;
929 0 : continue;
930 : }
931 0 : new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
932 0 : prev = vma_merge(&vmi, mm, prev, vma->vm_start, vma->vm_end,
933 : new_flags, vma->anon_vma,
934 : vma->vm_file, vma->vm_pgoff,
935 : vma_policy(vma),
936 0 : NULL_VM_UFFD_CTX, anon_vma_name(vma));
937 0 : if (prev) {
938 : vma = prev;
939 : } else {
940 0 : prev = vma;
941 : }
942 :
943 0 : userfaultfd_set_vm_flags(vma, new_flags);
944 0 : vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
945 : }
946 0 : mmap_write_unlock(mm);
947 0 : mmput(mm);
948 0 : wakeup:
949 : /*
950 : * After no new page faults can wait on this fault_*wqh, flush
951 : * the last page faults that may have been already waiting on
952 : * the fault_*wqh.
953 : */
954 0 : spin_lock_irq(&ctx->fault_pending_wqh.lock);
955 0 : __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
956 0 : __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
957 0 : spin_unlock_irq(&ctx->fault_pending_wqh.lock);
958 :
959 : /* Flush pending events that may still wait on event_wqh */
960 0 : wake_up_all(&ctx->event_wqh);
961 :
962 0 : wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
963 0 : userfaultfd_ctx_put(ctx);
964 0 : return 0;
965 : }
966 :
967 : /* fault_pending_wqh.lock must be hold by the caller */
968 : static inline struct userfaultfd_wait_queue *find_userfault_in(
969 : wait_queue_head_t *wqh)
970 : {
971 0 : wait_queue_entry_t *wq;
972 0 : struct userfaultfd_wait_queue *uwq;
973 :
974 0 : lockdep_assert_held(&wqh->lock);
975 :
976 0 : uwq = NULL;
977 0 : if (!waitqueue_active(wqh))
978 0 : goto out;
979 : /* walk in reverse to provide FIFO behavior to read userfaults */
980 0 : wq = list_last_entry(&wqh->head, typeof(*wq), entry);
981 0 : uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
982 : out:
983 0 : return uwq;
984 : }
985 :
986 : static inline struct userfaultfd_wait_queue *find_userfault(
987 : struct userfaultfd_ctx *ctx)
988 : {
989 0 : return find_userfault_in(&ctx->fault_pending_wqh);
990 : }
991 :
992 : static inline struct userfaultfd_wait_queue *find_userfault_evt(
993 : struct userfaultfd_ctx *ctx)
994 : {
995 0 : return find_userfault_in(&ctx->event_wqh);
996 : }
997 :
998 0 : static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
999 : {
1000 0 : struct userfaultfd_ctx *ctx = file->private_data;
1001 0 : __poll_t ret;
1002 :
1003 0 : poll_wait(file, &ctx->fd_wqh, wait);
1004 :
1005 0 : if (!userfaultfd_is_initialized(ctx))
1006 : return EPOLLERR;
1007 :
1008 : /*
1009 : * poll() never guarantees that read won't block.
1010 : * userfaults can be waken before they're read().
1011 : */
1012 0 : if (unlikely(!(file->f_flags & O_NONBLOCK)))
1013 : return EPOLLERR;
1014 : /*
1015 : * lockless access to see if there are pending faults
1016 : * __pollwait last action is the add_wait_queue but
1017 : * the spin_unlock would allow the waitqueue_active to
1018 : * pass above the actual list_add inside
1019 : * add_wait_queue critical section. So use a full
1020 : * memory barrier to serialize the list_add write of
1021 : * add_wait_queue() with the waitqueue_active read
1022 : * below.
1023 : */
1024 0 : ret = 0;
1025 0 : smp_mb();
1026 0 : if (waitqueue_active(&ctx->fault_pending_wqh))
1027 : ret = EPOLLIN;
1028 0 : else if (waitqueue_active(&ctx->event_wqh))
1029 0 : ret = EPOLLIN;
1030 :
1031 : return ret;
1032 : }
1033 :
1034 : static const struct file_operations userfaultfd_fops;
1035 :
1036 0 : static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1037 : struct inode *inode,
1038 : struct uffd_msg *msg)
1039 : {
1040 0 : int fd;
1041 :
1042 0 : fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
1043 0 : O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
1044 0 : if (fd < 0)
1045 : return fd;
1046 :
1047 0 : msg->arg.reserved.reserved1 = 0;
1048 0 : msg->arg.fork.ufd = fd;
1049 0 : return 0;
1050 : }
1051 :
1052 0 : static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1053 : struct uffd_msg *msg, struct inode *inode)
1054 : {
1055 0 : ssize_t ret;
1056 0 : DECLARE_WAITQUEUE(wait, current);
1057 0 : struct userfaultfd_wait_queue *uwq;
1058 : /*
1059 : * Handling fork event requires sleeping operations, so
1060 : * we drop the event_wqh lock, then do these ops, then
1061 : * lock it back and wake up the waiter. While the lock is
1062 : * dropped the ewq may go away so we keep track of it
1063 : * carefully.
1064 : */
1065 0 : LIST_HEAD(fork_event);
1066 0 : struct userfaultfd_ctx *fork_nctx = NULL;
1067 :
1068 : /* always take the fd_wqh lock before the fault_pending_wqh lock */
1069 0 : spin_lock_irq(&ctx->fd_wqh.lock);
1070 0 : __add_wait_queue(&ctx->fd_wqh, &wait);
1071 0 : for (;;) {
1072 0 : set_current_state(TASK_INTERRUPTIBLE);
1073 0 : spin_lock(&ctx->fault_pending_wqh.lock);
1074 0 : uwq = find_userfault(ctx);
1075 0 : if (uwq) {
1076 : /*
1077 : * Use a seqcount to repeat the lockless check
1078 : * in wake_userfault() to avoid missing
1079 : * wakeups because during the refile both
1080 : * waitqueue could become empty if this is the
1081 : * only userfault.
1082 : */
1083 0 : write_seqcount_begin(&ctx->refile_seq);
1084 :
1085 : /*
1086 : * The fault_pending_wqh.lock prevents the uwq
1087 : * to disappear from under us.
1088 : *
1089 : * Refile this userfault from
1090 : * fault_pending_wqh to fault_wqh, it's not
1091 : * pending anymore after we read it.
1092 : *
1093 : * Use list_del() by hand (as
1094 : * userfaultfd_wake_function also uses
1095 : * list_del_init() by hand) to be sure nobody
1096 : * changes __remove_wait_queue() to use
1097 : * list_del_init() in turn breaking the
1098 : * !list_empty_careful() check in
1099 : * handle_userfault(). The uwq->wq.head list
1100 : * must never be empty at any time during the
1101 : * refile, or the waitqueue could disappear
1102 : * from under us. The "wait_queue_head_t"
1103 : * parameter of __remove_wait_queue() is unused
1104 : * anyway.
1105 : */
1106 0 : list_del(&uwq->wq.entry);
1107 0 : add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1108 :
1109 0 : write_seqcount_end(&ctx->refile_seq);
1110 :
1111 : /* careful to always initialize msg if ret == 0 */
1112 0 : *msg = uwq->msg;
1113 0 : spin_unlock(&ctx->fault_pending_wqh.lock);
1114 0 : ret = 0;
1115 0 : break;
1116 : }
1117 0 : spin_unlock(&ctx->fault_pending_wqh.lock);
1118 :
1119 0 : spin_lock(&ctx->event_wqh.lock);
1120 0 : uwq = find_userfault_evt(ctx);
1121 0 : if (uwq) {
1122 0 : *msg = uwq->msg;
1123 :
1124 0 : if (uwq->msg.event == UFFD_EVENT_FORK) {
1125 0 : fork_nctx = (struct userfaultfd_ctx *)
1126 : (unsigned long)
1127 0 : uwq->msg.arg.reserved.reserved1;
1128 0 : list_move(&uwq->wq.entry, &fork_event);
1129 : /*
1130 : * fork_nctx can be freed as soon as
1131 : * we drop the lock, unless we take a
1132 : * reference on it.
1133 : */
1134 0 : userfaultfd_ctx_get(fork_nctx);
1135 0 : spin_unlock(&ctx->event_wqh.lock);
1136 0 : ret = 0;
1137 0 : break;
1138 : }
1139 :
1140 0 : userfaultfd_event_complete(ctx, uwq);
1141 0 : spin_unlock(&ctx->event_wqh.lock);
1142 0 : ret = 0;
1143 0 : break;
1144 : }
1145 0 : spin_unlock(&ctx->event_wqh.lock);
1146 :
1147 0 : if (signal_pending(current)) {
1148 : ret = -ERESTARTSYS;
1149 : break;
1150 : }
1151 0 : if (no_wait) {
1152 : ret = -EAGAIN;
1153 : break;
1154 : }
1155 0 : spin_unlock_irq(&ctx->fd_wqh.lock);
1156 0 : schedule();
1157 0 : spin_lock_irq(&ctx->fd_wqh.lock);
1158 : }
1159 0 : __remove_wait_queue(&ctx->fd_wqh, &wait);
1160 0 : __set_current_state(TASK_RUNNING);
1161 0 : spin_unlock_irq(&ctx->fd_wqh.lock);
1162 :
1163 0 : if (!ret && msg->event == UFFD_EVENT_FORK) {
1164 0 : ret = resolve_userfault_fork(fork_nctx, inode, msg);
1165 0 : spin_lock_irq(&ctx->event_wqh.lock);
1166 0 : if (!list_empty(&fork_event)) {
1167 : /*
1168 : * The fork thread didn't abort, so we can
1169 : * drop the temporary refcount.
1170 : */
1171 0 : userfaultfd_ctx_put(fork_nctx);
1172 :
1173 0 : uwq = list_first_entry(&fork_event,
1174 : typeof(*uwq),
1175 : wq.entry);
1176 : /*
1177 : * If fork_event list wasn't empty and in turn
1178 : * the event wasn't already released by fork
1179 : * (the event is allocated on fork kernel
1180 : * stack), put the event back to its place in
1181 : * the event_wq. fork_event head will be freed
1182 : * as soon as we return so the event cannot
1183 : * stay queued there no matter the current
1184 : * "ret" value.
1185 : */
1186 0 : list_del(&uwq->wq.entry);
1187 0 : __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1188 :
1189 : /*
1190 : * Leave the event in the waitqueue and report
1191 : * error to userland if we failed to resolve
1192 : * the userfault fork.
1193 : */
1194 0 : if (likely(!ret))
1195 0 : userfaultfd_event_complete(ctx, uwq);
1196 : } else {
1197 : /*
1198 : * Here the fork thread aborted and the
1199 : * refcount from the fork thread on fork_nctx
1200 : * has already been released. We still hold
1201 : * the reference we took before releasing the
1202 : * lock above. If resolve_userfault_fork
1203 : * failed we've to drop it because the
1204 : * fork_nctx has to be freed in such case. If
1205 : * it succeeded we'll hold it because the new
1206 : * uffd references it.
1207 : */
1208 0 : if (ret)
1209 0 : userfaultfd_ctx_put(fork_nctx);
1210 : }
1211 0 : spin_unlock_irq(&ctx->event_wqh.lock);
1212 : }
1213 :
1214 0 : return ret;
1215 : }
1216 :
1217 0 : static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1218 : size_t count, loff_t *ppos)
1219 : {
1220 0 : struct userfaultfd_ctx *ctx = file->private_data;
1221 0 : ssize_t _ret, ret = 0;
1222 0 : struct uffd_msg msg;
1223 0 : int no_wait = file->f_flags & O_NONBLOCK;
1224 0 : struct inode *inode = file_inode(file);
1225 :
1226 0 : if (!userfaultfd_is_initialized(ctx))
1227 : return -EINVAL;
1228 :
1229 0 : for (;;) {
1230 0 : if (count < sizeof(msg))
1231 0 : return ret ? ret : -EINVAL;
1232 0 : _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1233 0 : if (_ret < 0)
1234 0 : return ret ? ret : _ret;
1235 0 : if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1236 0 : return ret ? ret : -EFAULT;
1237 0 : ret += sizeof(msg);
1238 0 : buf += sizeof(msg);
1239 0 : count -= sizeof(msg);
1240 : /*
1241 : * Allow to read more than one fault at time but only
1242 : * block if waiting for the very first one.
1243 : */
1244 0 : no_wait = O_NONBLOCK;
1245 : }
1246 : }
1247 :
1248 0 : static void __wake_userfault(struct userfaultfd_ctx *ctx,
1249 : struct userfaultfd_wake_range *range)
1250 : {
1251 0 : spin_lock_irq(&ctx->fault_pending_wqh.lock);
1252 : /* wake all in the range and autoremove */
1253 0 : if (waitqueue_active(&ctx->fault_pending_wqh))
1254 0 : __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1255 : range);
1256 0 : if (waitqueue_active(&ctx->fault_wqh))
1257 0 : __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1258 0 : spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1259 0 : }
1260 :
1261 : static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1262 : struct userfaultfd_wake_range *range)
1263 : {
1264 0 : unsigned seq;
1265 0 : bool need_wakeup;
1266 :
1267 : /*
1268 : * To be sure waitqueue_active() is not reordered by the CPU
1269 : * before the pagetable update, use an explicit SMP memory
1270 : * barrier here. PT lock release or mmap_read_unlock(mm) still
1271 : * have release semantics that can allow the
1272 : * waitqueue_active() to be reordered before the pte update.
1273 : */
1274 0 : smp_mb();
1275 :
1276 : /*
1277 : * Use waitqueue_active because it's very frequent to
1278 : * change the address space atomically even if there are no
1279 : * userfaults yet. So we take the spinlock only when we're
1280 : * sure we've userfaults to wake.
1281 : */
1282 : do {
1283 0 : seq = read_seqcount_begin(&ctx->refile_seq);
1284 0 : need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1285 : waitqueue_active(&ctx->fault_wqh);
1286 0 : cond_resched();
1287 0 : } while (read_seqcount_retry(&ctx->refile_seq, seq));
1288 0 : if (need_wakeup)
1289 0 : __wake_userfault(ctx, range);
1290 : }
1291 :
1292 : static __always_inline int validate_range(struct mm_struct *mm,
1293 : __u64 start, __u64 len)
1294 : {
1295 0 : __u64 task_size = mm->task_size;
1296 :
1297 0 : if (start & ~PAGE_MASK)
1298 : return -EINVAL;
1299 0 : if (len & ~PAGE_MASK)
1300 : return -EINVAL;
1301 0 : if (!len)
1302 : return -EINVAL;
1303 0 : if (start < mmap_min_addr)
1304 : return -EINVAL;
1305 0 : if (start >= task_size)
1306 : return -EINVAL;
1307 0 : if (len > task_size - start)
1308 0 : return -EINVAL;
1309 : return 0;
1310 : }
1311 :
1312 0 : static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1313 : unsigned long arg)
1314 : {
1315 0 : struct mm_struct *mm = ctx->mm;
1316 0 : struct vm_area_struct *vma, *prev, *cur;
1317 0 : int ret;
1318 0 : struct uffdio_register uffdio_register;
1319 0 : struct uffdio_register __user *user_uffdio_register;
1320 0 : unsigned long vm_flags, new_flags;
1321 0 : bool found;
1322 0 : bool basic_ioctls;
1323 0 : unsigned long start, end, vma_end;
1324 0 : struct vma_iterator vmi;
1325 0 : pgoff_t pgoff;
1326 :
1327 0 : user_uffdio_register = (struct uffdio_register __user *) arg;
1328 :
1329 0 : ret = -EFAULT;
1330 0 : if (copy_from_user(&uffdio_register, user_uffdio_register,
1331 : sizeof(uffdio_register)-sizeof(__u64)))
1332 0 : goto out;
1333 :
1334 0 : ret = -EINVAL;
1335 0 : if (!uffdio_register.mode)
1336 0 : goto out;
1337 0 : if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1338 0 : goto out;
1339 0 : vm_flags = 0;
1340 0 : if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1341 0 : vm_flags |= VM_UFFD_MISSING;
1342 0 : if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1343 : #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1344 : goto out;
1345 : #endif
1346 0 : vm_flags |= VM_UFFD_WP;
1347 : }
1348 0 : if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1349 : #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1350 : goto out;
1351 : #endif
1352 0 : vm_flags |= VM_UFFD_MINOR;
1353 : }
1354 :
1355 0 : ret = validate_range(mm, uffdio_register.range.start,
1356 : uffdio_register.range.len);
1357 0 : if (ret)
1358 0 : goto out;
1359 :
1360 0 : start = uffdio_register.range.start;
1361 0 : end = start + uffdio_register.range.len;
1362 :
1363 0 : ret = -ENOMEM;
1364 0 : if (!mmget_not_zero(mm))
1365 0 : goto out;
1366 :
1367 0 : ret = -EINVAL;
1368 0 : mmap_write_lock(mm);
1369 0 : vma_iter_init(&vmi, mm, start);
1370 0 : vma = vma_find(&vmi, end);
1371 0 : if (!vma)
1372 0 : goto out_unlock;
1373 :
1374 : /*
1375 : * If the first vma contains huge pages, make sure start address
1376 : * is aligned to huge page size.
1377 : */
1378 0 : if (is_vm_hugetlb_page(vma)) {
1379 0 : unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1380 :
1381 0 : if (start & (vma_hpagesize - 1))
1382 0 : goto out_unlock;
1383 : }
1384 :
1385 : /*
1386 : * Search for not compatible vmas.
1387 : */
1388 : found = false;
1389 : basic_ioctls = false;
1390 : cur = vma;
1391 0 : do {
1392 0 : cond_resched();
1393 :
1394 0 : BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1395 : !!(cur->vm_flags & __VM_UFFD_FLAGS));
1396 :
1397 : /* check not compatible vmas */
1398 0 : ret = -EINVAL;
1399 0 : if (!vma_can_userfault(cur, vm_flags))
1400 0 : goto out_unlock;
1401 :
1402 : /*
1403 : * UFFDIO_COPY will fill file holes even without
1404 : * PROT_WRITE. This check enforces that if this is a
1405 : * MAP_SHARED, the process has write permission to the backing
1406 : * file. If VM_MAYWRITE is set it also enforces that on a
1407 : * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1408 : * F_WRITE_SEAL can be taken until the vma is destroyed.
1409 : */
1410 0 : ret = -EPERM;
1411 0 : if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1412 0 : goto out_unlock;
1413 :
1414 : /*
1415 : * If this vma contains ending address, and huge pages
1416 : * check alignment.
1417 : */
1418 0 : if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1419 0 : end > cur->vm_start) {
1420 0 : unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1421 :
1422 0 : ret = -EINVAL;
1423 :
1424 0 : if (end & (vma_hpagesize - 1))
1425 0 : goto out_unlock;
1426 : }
1427 0 : if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1428 0 : goto out_unlock;
1429 :
1430 : /*
1431 : * Check that this vma isn't already owned by a
1432 : * different userfaultfd. We can't allow more than one
1433 : * userfaultfd to own a single vma simultaneously or we
1434 : * wouldn't know which one to deliver the userfaults to.
1435 : */
1436 0 : ret = -EBUSY;
1437 0 : if (cur->vm_userfaultfd_ctx.ctx &&
1438 : cur->vm_userfaultfd_ctx.ctx != ctx)
1439 0 : goto out_unlock;
1440 :
1441 : /*
1442 : * Note vmas containing huge pages
1443 : */
1444 0 : if (is_vm_hugetlb_page(cur))
1445 0 : basic_ioctls = true;
1446 :
1447 0 : found = true;
1448 0 : } for_each_vma_range(vmi, cur, end);
1449 0 : BUG_ON(!found);
1450 :
1451 0 : vma_iter_set(&vmi, start);
1452 0 : prev = vma_prev(&vmi);
1453 0 : if (vma->vm_start < start)
1454 0 : prev = vma;
1455 :
1456 : ret = 0;
1457 0 : for_each_vma_range(vmi, vma, end) {
1458 0 : cond_resched();
1459 :
1460 0 : BUG_ON(!vma_can_userfault(vma, vm_flags));
1461 0 : BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1462 : vma->vm_userfaultfd_ctx.ctx != ctx);
1463 0 : WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1464 :
1465 : /*
1466 : * Nothing to do: this vma is already registered into this
1467 : * userfaultfd and with the right tracking mode too.
1468 : */
1469 0 : if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1470 0 : (vma->vm_flags & vm_flags) == vm_flags)
1471 0 : goto skip;
1472 :
1473 0 : if (vma->vm_start > start)
1474 : start = vma->vm_start;
1475 0 : vma_end = min(end, vma->vm_end);
1476 :
1477 0 : new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1478 0 : pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
1479 0 : prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags,
1480 : vma->anon_vma, vma->vm_file, pgoff,
1481 : vma_policy(vma),
1482 0 : ((struct vm_userfaultfd_ctx){ ctx }),
1483 : anon_vma_name(vma));
1484 0 : if (prev) {
1485 : /* vma_merge() invalidated the mas */
1486 0 : vma = prev;
1487 0 : goto next;
1488 : }
1489 0 : if (vma->vm_start < start) {
1490 0 : ret = split_vma(&vmi, vma, start, 1);
1491 0 : if (ret)
1492 : break;
1493 : }
1494 0 : if (vma->vm_end > end) {
1495 0 : ret = split_vma(&vmi, vma, end, 0);
1496 0 : if (ret)
1497 : break;
1498 : }
1499 0 : next:
1500 : /*
1501 : * In the vma_merge() successful mprotect-like case 8:
1502 : * the next vma was merged into the current one and
1503 : * the current one has not been updated yet.
1504 : */
1505 0 : userfaultfd_set_vm_flags(vma, new_flags);
1506 0 : vma->vm_userfaultfd_ctx.ctx = ctx;
1507 :
1508 0 : if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1509 0 : hugetlb_unshare_all_pmds(vma);
1510 :
1511 0 : skip:
1512 0 : prev = vma;
1513 0 : start = vma->vm_end;
1514 : }
1515 :
1516 0 : out_unlock:
1517 0 : mmap_write_unlock(mm);
1518 0 : mmput(mm);
1519 0 : if (!ret) {
1520 0 : __u64 ioctls_out;
1521 :
1522 0 : ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1523 : UFFD_API_RANGE_IOCTLS;
1524 :
1525 : /*
1526 : * Declare the WP ioctl only if the WP mode is
1527 : * specified and all checks passed with the range
1528 : */
1529 0 : if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1530 0 : ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1531 :
1532 : /* CONTINUE ioctl is only supported for MINOR ranges. */
1533 0 : if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1534 0 : ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1535 :
1536 : /*
1537 : * Now that we scanned all vmas we can already tell
1538 : * userland which ioctls methods are guaranteed to
1539 : * succeed on this range.
1540 : */
1541 0 : if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1542 0 : ret = -EFAULT;
1543 : }
1544 0 : out:
1545 0 : return ret;
1546 : }
1547 :
1548 0 : static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1549 : unsigned long arg)
1550 : {
1551 0 : struct mm_struct *mm = ctx->mm;
1552 0 : struct vm_area_struct *vma, *prev, *cur;
1553 0 : int ret;
1554 0 : struct uffdio_range uffdio_unregister;
1555 0 : unsigned long new_flags;
1556 0 : bool found;
1557 0 : unsigned long start, end, vma_end;
1558 0 : const void __user *buf = (void __user *)arg;
1559 0 : struct vma_iterator vmi;
1560 0 : pgoff_t pgoff;
1561 :
1562 0 : ret = -EFAULT;
1563 0 : if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1564 0 : goto out;
1565 :
1566 0 : ret = validate_range(mm, uffdio_unregister.start,
1567 : uffdio_unregister.len);
1568 0 : if (ret)
1569 0 : goto out;
1570 :
1571 0 : start = uffdio_unregister.start;
1572 0 : end = start + uffdio_unregister.len;
1573 :
1574 0 : ret = -ENOMEM;
1575 0 : if (!mmget_not_zero(mm))
1576 0 : goto out;
1577 :
1578 0 : mmap_write_lock(mm);
1579 0 : ret = -EINVAL;
1580 0 : vma_iter_init(&vmi, mm, start);
1581 0 : vma = vma_find(&vmi, end);
1582 0 : if (!vma)
1583 0 : goto out_unlock;
1584 :
1585 : /*
1586 : * If the first vma contains huge pages, make sure start address
1587 : * is aligned to huge page size.
1588 : */
1589 0 : if (is_vm_hugetlb_page(vma)) {
1590 0 : unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1591 :
1592 0 : if (start & (vma_hpagesize - 1))
1593 0 : goto out_unlock;
1594 : }
1595 :
1596 : /*
1597 : * Search for not compatible vmas.
1598 : */
1599 : found = false;
1600 : cur = vma;
1601 0 : do {
1602 0 : cond_resched();
1603 :
1604 0 : BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1605 : !!(cur->vm_flags & __VM_UFFD_FLAGS));
1606 :
1607 : /*
1608 : * Check not compatible vmas, not strictly required
1609 : * here as not compatible vmas cannot have an
1610 : * userfaultfd_ctx registered on them, but this
1611 : * provides for more strict behavior to notice
1612 : * unregistration errors.
1613 : */
1614 0 : if (!vma_can_userfault(cur, cur->vm_flags))
1615 0 : goto out_unlock;
1616 :
1617 0 : found = true;
1618 0 : } for_each_vma_range(vmi, cur, end);
1619 0 : BUG_ON(!found);
1620 :
1621 0 : vma_iter_set(&vmi, start);
1622 0 : prev = vma_prev(&vmi);
1623 0 : if (vma->vm_start < start)
1624 0 : prev = vma;
1625 :
1626 : ret = 0;
1627 0 : for_each_vma_range(vmi, vma, end) {
1628 0 : cond_resched();
1629 :
1630 0 : BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1631 :
1632 : /*
1633 : * Nothing to do: this vma is already registered into this
1634 : * userfaultfd and with the right tracking mode too.
1635 : */
1636 0 : if (!vma->vm_userfaultfd_ctx.ctx)
1637 0 : goto skip;
1638 :
1639 0 : WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1640 :
1641 0 : if (vma->vm_start > start)
1642 : start = vma->vm_start;
1643 0 : vma_end = min(end, vma->vm_end);
1644 :
1645 0 : if (userfaultfd_missing(vma)) {
1646 : /*
1647 : * Wake any concurrent pending userfault while
1648 : * we unregister, so they will not hang
1649 : * permanently and it avoids userland to call
1650 : * UFFDIO_WAKE explicitly.
1651 : */
1652 0 : struct userfaultfd_wake_range range;
1653 0 : range.start = start;
1654 0 : range.len = vma_end - start;
1655 0 : wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1656 : }
1657 :
1658 : /* Reset ptes for the whole vma range if wr-protected */
1659 0 : if (userfaultfd_wp(vma))
1660 0 : uffd_wp_range(vma, start, vma_end - start, false);
1661 :
1662 0 : new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1663 0 : pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
1664 0 : prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags,
1665 : vma->anon_vma, vma->vm_file, pgoff,
1666 : vma_policy(vma),
1667 0 : NULL_VM_UFFD_CTX, anon_vma_name(vma));
1668 0 : if (prev) {
1669 0 : vma = prev;
1670 0 : goto next;
1671 : }
1672 0 : if (vma->vm_start < start) {
1673 0 : ret = split_vma(&vmi, vma, start, 1);
1674 0 : if (ret)
1675 : break;
1676 : }
1677 0 : if (vma->vm_end > end) {
1678 0 : ret = split_vma(&vmi, vma, end, 0);
1679 0 : if (ret)
1680 : break;
1681 : }
1682 0 : next:
1683 : /*
1684 : * In the vma_merge() successful mprotect-like case 8:
1685 : * the next vma was merged into the current one and
1686 : * the current one has not been updated yet.
1687 : */
1688 0 : userfaultfd_set_vm_flags(vma, new_flags);
1689 0 : vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1690 :
1691 0 : skip:
1692 0 : prev = vma;
1693 0 : start = vma->vm_end;
1694 : }
1695 :
1696 0 : out_unlock:
1697 0 : mmap_write_unlock(mm);
1698 0 : mmput(mm);
1699 0 : out:
1700 0 : return ret;
1701 : }
1702 :
1703 : /*
1704 : * userfaultfd_wake may be used in combination with the
1705 : * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1706 : */
1707 0 : static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1708 : unsigned long arg)
1709 : {
1710 0 : int ret;
1711 0 : struct uffdio_range uffdio_wake;
1712 0 : struct userfaultfd_wake_range range;
1713 0 : const void __user *buf = (void __user *)arg;
1714 :
1715 0 : ret = -EFAULT;
1716 0 : if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1717 0 : goto out;
1718 :
1719 0 : ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1720 0 : if (ret)
1721 0 : goto out;
1722 :
1723 0 : range.start = uffdio_wake.start;
1724 0 : range.len = uffdio_wake.len;
1725 :
1726 : /*
1727 : * len == 0 means wake all and we don't want to wake all here,
1728 : * so check it again to be sure.
1729 : */
1730 0 : VM_BUG_ON(!range.len);
1731 :
1732 0 : wake_userfault(ctx, &range);
1733 : ret = 0;
1734 :
1735 0 : out:
1736 0 : return ret;
1737 : }
1738 :
1739 0 : static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1740 : unsigned long arg)
1741 : {
1742 0 : __s64 ret;
1743 0 : struct uffdio_copy uffdio_copy;
1744 0 : struct uffdio_copy __user *user_uffdio_copy;
1745 0 : struct userfaultfd_wake_range range;
1746 0 : uffd_flags_t flags = 0;
1747 :
1748 0 : user_uffdio_copy = (struct uffdio_copy __user *) arg;
1749 :
1750 0 : ret = -EAGAIN;
1751 0 : if (atomic_read(&ctx->mmap_changing))
1752 0 : goto out;
1753 :
1754 0 : ret = -EFAULT;
1755 0 : if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1756 : /* don't copy "copy" last field */
1757 : sizeof(uffdio_copy)-sizeof(__s64)))
1758 0 : goto out;
1759 :
1760 0 : ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1761 0 : if (ret)
1762 0 : goto out;
1763 : /*
1764 : * double check for wraparound just in case. copy_from_user()
1765 : * will later check uffdio_copy.src + uffdio_copy.len to fit
1766 : * in the userland range.
1767 : */
1768 0 : ret = -EINVAL;
1769 0 : if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1770 0 : goto out;
1771 0 : if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1772 0 : goto out;
1773 0 : if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1774 0 : flags |= MFILL_ATOMIC_WP;
1775 0 : if (mmget_not_zero(ctx->mm)) {
1776 0 : ret = mfill_atomic_copy(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1777 0 : uffdio_copy.len, &ctx->mmap_changing,
1778 : flags);
1779 0 : mmput(ctx->mm);
1780 : } else {
1781 : return -ESRCH;
1782 : }
1783 0 : if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1784 : return -EFAULT;
1785 0 : if (ret < 0)
1786 0 : goto out;
1787 0 : BUG_ON(!ret);
1788 : /* len == 0 would wake all */
1789 0 : range.len = ret;
1790 0 : if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1791 0 : range.start = uffdio_copy.dst;
1792 0 : wake_userfault(ctx, &range);
1793 : }
1794 0 : ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1795 0 : out:
1796 0 : return ret;
1797 : }
1798 :
1799 0 : static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1800 : unsigned long arg)
1801 : {
1802 0 : __s64 ret;
1803 0 : struct uffdio_zeropage uffdio_zeropage;
1804 0 : struct uffdio_zeropage __user *user_uffdio_zeropage;
1805 0 : struct userfaultfd_wake_range range;
1806 :
1807 0 : user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1808 :
1809 0 : ret = -EAGAIN;
1810 0 : if (atomic_read(&ctx->mmap_changing))
1811 0 : goto out;
1812 :
1813 0 : ret = -EFAULT;
1814 0 : if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1815 : /* don't copy "zeropage" last field */
1816 : sizeof(uffdio_zeropage)-sizeof(__s64)))
1817 0 : goto out;
1818 :
1819 0 : ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1820 : uffdio_zeropage.range.len);
1821 0 : if (ret)
1822 0 : goto out;
1823 0 : ret = -EINVAL;
1824 0 : if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1825 0 : goto out;
1826 :
1827 0 : if (mmget_not_zero(ctx->mm)) {
1828 0 : ret = mfill_atomic_zeropage(ctx->mm, uffdio_zeropage.range.start,
1829 0 : uffdio_zeropage.range.len,
1830 : &ctx->mmap_changing);
1831 0 : mmput(ctx->mm);
1832 : } else {
1833 : return -ESRCH;
1834 : }
1835 0 : if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1836 : return -EFAULT;
1837 0 : if (ret < 0)
1838 0 : goto out;
1839 : /* len == 0 would wake all */
1840 0 : BUG_ON(!ret);
1841 0 : range.len = ret;
1842 0 : if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1843 0 : range.start = uffdio_zeropage.range.start;
1844 0 : wake_userfault(ctx, &range);
1845 : }
1846 0 : ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1847 0 : out:
1848 0 : return ret;
1849 : }
1850 :
1851 0 : static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1852 : unsigned long arg)
1853 : {
1854 0 : int ret;
1855 0 : struct uffdio_writeprotect uffdio_wp;
1856 0 : struct uffdio_writeprotect __user *user_uffdio_wp;
1857 0 : struct userfaultfd_wake_range range;
1858 0 : bool mode_wp, mode_dontwake;
1859 :
1860 0 : if (atomic_read(&ctx->mmap_changing))
1861 : return -EAGAIN;
1862 :
1863 0 : user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1864 :
1865 0 : if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1866 : sizeof(struct uffdio_writeprotect)))
1867 : return -EFAULT;
1868 :
1869 0 : ret = validate_range(ctx->mm, uffdio_wp.range.start,
1870 : uffdio_wp.range.len);
1871 0 : if (ret)
1872 : return ret;
1873 :
1874 0 : if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1875 : UFFDIO_WRITEPROTECT_MODE_WP))
1876 : return -EINVAL;
1877 :
1878 0 : mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1879 0 : mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1880 :
1881 0 : if (mode_wp && mode_dontwake)
1882 : return -EINVAL;
1883 :
1884 0 : if (mmget_not_zero(ctx->mm)) {
1885 0 : ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1886 0 : uffdio_wp.range.len, mode_wp,
1887 : &ctx->mmap_changing);
1888 0 : mmput(ctx->mm);
1889 : } else {
1890 : return -ESRCH;
1891 : }
1892 :
1893 0 : if (ret)
1894 : return ret;
1895 :
1896 0 : if (!mode_wp && !mode_dontwake) {
1897 0 : range.start = uffdio_wp.range.start;
1898 0 : range.len = uffdio_wp.range.len;
1899 0 : wake_userfault(ctx, &range);
1900 : }
1901 : return ret;
1902 : }
1903 :
1904 0 : static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1905 : {
1906 0 : __s64 ret;
1907 0 : struct uffdio_continue uffdio_continue;
1908 0 : struct uffdio_continue __user *user_uffdio_continue;
1909 0 : struct userfaultfd_wake_range range;
1910 0 : uffd_flags_t flags = 0;
1911 :
1912 0 : user_uffdio_continue = (struct uffdio_continue __user *)arg;
1913 :
1914 0 : ret = -EAGAIN;
1915 0 : if (atomic_read(&ctx->mmap_changing))
1916 0 : goto out;
1917 :
1918 0 : ret = -EFAULT;
1919 0 : if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1920 : /* don't copy the output fields */
1921 : sizeof(uffdio_continue) - (sizeof(__s64))))
1922 0 : goto out;
1923 :
1924 0 : ret = validate_range(ctx->mm, uffdio_continue.range.start,
1925 : uffdio_continue.range.len);
1926 0 : if (ret)
1927 0 : goto out;
1928 :
1929 0 : ret = -EINVAL;
1930 : /* double check for wraparound just in case. */
1931 0 : if (uffdio_continue.range.start + uffdio_continue.range.len <=
1932 : uffdio_continue.range.start) {
1933 0 : goto out;
1934 : }
1935 0 : if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1936 : UFFDIO_CONTINUE_MODE_WP))
1937 0 : goto out;
1938 0 : if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1939 0 : flags |= MFILL_ATOMIC_WP;
1940 :
1941 0 : if (mmget_not_zero(ctx->mm)) {
1942 0 : ret = mfill_atomic_continue(ctx->mm, uffdio_continue.range.start,
1943 0 : uffdio_continue.range.len,
1944 : &ctx->mmap_changing, flags);
1945 0 : mmput(ctx->mm);
1946 : } else {
1947 : return -ESRCH;
1948 : }
1949 :
1950 0 : if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1951 : return -EFAULT;
1952 0 : if (ret < 0)
1953 0 : goto out;
1954 :
1955 : /* len == 0 would wake all */
1956 0 : BUG_ON(!ret);
1957 0 : range.len = ret;
1958 0 : if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1959 0 : range.start = uffdio_continue.range.start;
1960 0 : wake_userfault(ctx, &range);
1961 : }
1962 0 : ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1963 :
1964 0 : out:
1965 0 : return ret;
1966 : }
1967 :
1968 : static inline unsigned int uffd_ctx_features(__u64 user_features)
1969 : {
1970 : /*
1971 : * For the current set of features the bits just coincide. Set
1972 : * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1973 : */
1974 0 : return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1975 : }
1976 :
1977 : /*
1978 : * userland asks for a certain API version and we return which bits
1979 : * and ioctl commands are implemented in this kernel for such API
1980 : * version or -EINVAL if unknown.
1981 : */
1982 0 : static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1983 : unsigned long arg)
1984 : {
1985 0 : struct uffdio_api uffdio_api;
1986 0 : void __user *buf = (void __user *)arg;
1987 0 : unsigned int ctx_features;
1988 0 : int ret;
1989 0 : __u64 features;
1990 :
1991 0 : ret = -EFAULT;
1992 0 : if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1993 0 : goto out;
1994 0 : features = uffdio_api.features;
1995 0 : ret = -EINVAL;
1996 0 : if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1997 0 : goto err_out;
1998 0 : ret = -EPERM;
1999 0 : if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
2000 0 : goto err_out;
2001 : /* report all available features and ioctls to userland */
2002 0 : uffdio_api.features = UFFD_API_FEATURES;
2003 : #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
2004 : uffdio_api.features &=
2005 : ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
2006 : #endif
2007 : #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
2008 : uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
2009 : #endif
2010 : #ifndef CONFIG_PTE_MARKER_UFFD_WP
2011 : uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
2012 : uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
2013 : #endif
2014 0 : uffdio_api.ioctls = UFFD_API_IOCTLS;
2015 0 : ret = -EFAULT;
2016 0 : if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2017 0 : goto out;
2018 :
2019 : /* only enable the requested features for this uffd context */
2020 0 : ctx_features = uffd_ctx_features(features);
2021 0 : ret = -EINVAL;
2022 0 : if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2023 0 : goto err_out;
2024 :
2025 : ret = 0;
2026 0 : out:
2027 0 : return ret;
2028 0 : err_out:
2029 0 : memset(&uffdio_api, 0, sizeof(uffdio_api));
2030 0 : if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2031 0 : ret = -EFAULT;
2032 0 : goto out;
2033 : }
2034 :
2035 0 : static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2036 : unsigned long arg)
2037 : {
2038 0 : int ret = -EINVAL;
2039 0 : struct userfaultfd_ctx *ctx = file->private_data;
2040 :
2041 0 : if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2042 : return -EINVAL;
2043 :
2044 0 : switch(cmd) {
2045 0 : case UFFDIO_API:
2046 0 : ret = userfaultfd_api(ctx, arg);
2047 0 : break;
2048 0 : case UFFDIO_REGISTER:
2049 0 : ret = userfaultfd_register(ctx, arg);
2050 0 : break;
2051 0 : case UFFDIO_UNREGISTER:
2052 0 : ret = userfaultfd_unregister(ctx, arg);
2053 0 : break;
2054 0 : case UFFDIO_WAKE:
2055 0 : ret = userfaultfd_wake(ctx, arg);
2056 0 : break;
2057 0 : case UFFDIO_COPY:
2058 0 : ret = userfaultfd_copy(ctx, arg);
2059 0 : break;
2060 0 : case UFFDIO_ZEROPAGE:
2061 0 : ret = userfaultfd_zeropage(ctx, arg);
2062 0 : break;
2063 0 : case UFFDIO_WRITEPROTECT:
2064 0 : ret = userfaultfd_writeprotect(ctx, arg);
2065 0 : break;
2066 0 : case UFFDIO_CONTINUE:
2067 0 : ret = userfaultfd_continue(ctx, arg);
2068 0 : break;
2069 : }
2070 0 : return ret;
2071 : }
2072 :
2073 : #ifdef CONFIG_PROC_FS
2074 0 : static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2075 : {
2076 0 : struct userfaultfd_ctx *ctx = f->private_data;
2077 0 : wait_queue_entry_t *wq;
2078 0 : unsigned long pending = 0, total = 0;
2079 :
2080 0 : spin_lock_irq(&ctx->fault_pending_wqh.lock);
2081 0 : list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2082 0 : pending++;
2083 0 : total++;
2084 : }
2085 0 : list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2086 0 : total++;
2087 : }
2088 0 : spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2089 :
2090 : /*
2091 : * If more protocols will be added, there will be all shown
2092 : * separated by a space. Like this:
2093 : * protocols: aa:... bb:...
2094 : */
2095 0 : seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2096 : pending, total, UFFD_API, ctx->features,
2097 : UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2098 0 : }
2099 : #endif
2100 :
2101 : static const struct file_operations userfaultfd_fops = {
2102 : #ifdef CONFIG_PROC_FS
2103 : .show_fdinfo = userfaultfd_show_fdinfo,
2104 : #endif
2105 : .release = userfaultfd_release,
2106 : .poll = userfaultfd_poll,
2107 : .read = userfaultfd_read,
2108 : .unlocked_ioctl = userfaultfd_ioctl,
2109 : .compat_ioctl = compat_ptr_ioctl,
2110 : .llseek = noop_llseek,
2111 : };
2112 :
2113 0 : static void init_once_userfaultfd_ctx(void *mem)
2114 : {
2115 0 : struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2116 :
2117 0 : init_waitqueue_head(&ctx->fault_pending_wqh);
2118 0 : init_waitqueue_head(&ctx->fault_wqh);
2119 0 : init_waitqueue_head(&ctx->event_wqh);
2120 0 : init_waitqueue_head(&ctx->fd_wqh);
2121 0 : seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2122 0 : }
2123 :
2124 0 : static int new_userfaultfd(int flags)
2125 : {
2126 0 : struct userfaultfd_ctx *ctx;
2127 0 : int fd;
2128 :
2129 0 : BUG_ON(!current->mm);
2130 :
2131 : /* Check the UFFD_* constants for consistency. */
2132 0 : BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2133 0 : BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2134 0 : BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2135 :
2136 0 : if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2137 : return -EINVAL;
2138 :
2139 0 : ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2140 0 : if (!ctx)
2141 : return -ENOMEM;
2142 :
2143 0 : refcount_set(&ctx->refcount, 1);
2144 0 : ctx->flags = flags;
2145 0 : ctx->features = 0;
2146 0 : ctx->released = false;
2147 0 : atomic_set(&ctx->mmap_changing, 0);
2148 0 : ctx->mm = current->mm;
2149 : /* prevent the mm struct to be freed */
2150 0 : mmgrab(ctx->mm);
2151 :
2152 0 : fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2153 : O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2154 0 : if (fd < 0) {
2155 0 : mmdrop(ctx->mm);
2156 0 : kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2157 : }
2158 : return fd;
2159 : }
2160 :
2161 0 : static inline bool userfaultfd_syscall_allowed(int flags)
2162 : {
2163 : /* Userspace-only page faults are always allowed */
2164 0 : if (flags & UFFD_USER_MODE_ONLY)
2165 : return true;
2166 :
2167 : /*
2168 : * The user is requesting a userfaultfd which can handle kernel faults.
2169 : * Privileged users are always allowed to do this.
2170 : */
2171 0 : if (capable(CAP_SYS_PTRACE))
2172 : return true;
2173 :
2174 : /* Otherwise, access to kernel fault handling is sysctl controlled. */
2175 0 : return sysctl_unprivileged_userfaultfd;
2176 : }
2177 :
2178 0 : SYSCALL_DEFINE1(userfaultfd, int, flags)
2179 : {
2180 0 : if (!userfaultfd_syscall_allowed(flags))
2181 : return -EPERM;
2182 :
2183 0 : return new_userfaultfd(flags);
2184 : }
2185 :
2186 0 : static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2187 : {
2188 0 : if (cmd != USERFAULTFD_IOC_NEW)
2189 : return -EINVAL;
2190 :
2191 0 : return new_userfaultfd(flags);
2192 : }
2193 :
2194 : static const struct file_operations userfaultfd_dev_fops = {
2195 : .unlocked_ioctl = userfaultfd_dev_ioctl,
2196 : .compat_ioctl = userfaultfd_dev_ioctl,
2197 : .owner = THIS_MODULE,
2198 : .llseek = noop_llseek,
2199 : };
2200 :
2201 : static struct miscdevice userfaultfd_misc = {
2202 : .minor = MISC_DYNAMIC_MINOR,
2203 : .name = "userfaultfd",
2204 : .fops = &userfaultfd_dev_fops
2205 : };
2206 :
2207 0 : static int __init userfaultfd_init(void)
2208 : {
2209 0 : int ret;
2210 :
2211 0 : ret = misc_register(&userfaultfd_misc);
2212 0 : if (ret)
2213 : return ret;
2214 :
2215 0 : userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2216 : sizeof(struct userfaultfd_ctx),
2217 : 0,
2218 : SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2219 : init_once_userfaultfd_ctx);
2220 : #ifdef CONFIG_SYSCTL
2221 0 : register_sysctl_init("vm", vm_userfaultfd_table);
2222 : #endif
2223 0 : return 0;
2224 : }
2225 : __initcall(userfaultfd_init);
|