Line data Source code
1 : #ifndef _LINUX_HASH_H 2 : #define _LINUX_HASH_H 3 : /* Fast hashing routine for ints, longs and pointers. 4 : (C) 2002 Nadia Yvette Chambers, IBM */ 5 : 6 : #include <asm/types.h> 7 : #include <linux/compiler.h> 8 : 9 : /* 10 : * The "GOLDEN_RATIO_PRIME" is used in ifs/btrfs/brtfs_inode.h and 11 : * fs/inode.c. It's not actually prime any more (the previous primes 12 : * were actively bad for hashing), but the name remains. 13 : */ 14 : #if BITS_PER_LONG == 32 15 : #define GOLDEN_RATIO_PRIME GOLDEN_RATIO_32 16 : #define hash_long(val, bits) hash_32(val, bits) 17 : #elif BITS_PER_LONG == 64 18 : #define hash_long(val, bits) hash_64(val, bits) 19 : #define GOLDEN_RATIO_PRIME GOLDEN_RATIO_64 20 : #else 21 : #error Wordsize not 32 or 64 22 : #endif 23 : 24 : /* 25 : * This hash multiplies the input by a large odd number and takes the 26 : * high bits. Since multiplication propagates changes to the most 27 : * significant end only, it is essential that the high bits of the 28 : * product be used for the hash value. 29 : * 30 : * Chuck Lever verified the effectiveness of this technique: 31 : * http://www.citi.umich.edu/techreports/reports/citi-tr-00-1.pdf 32 : * 33 : * Although a random odd number will do, it turns out that the golden 34 : * ratio phi = (sqrt(5)-1)/2, or its negative, has particularly nice 35 : * properties. (See Knuth vol 3, section 6.4, exercise 9.) 36 : * 37 : * These are the negative, (1 - phi) = phi**2 = (3 - sqrt(5))/2, 38 : * which is very slightly easier to multiply by and makes no 39 : * difference to the hash distribution. 40 : */ 41 : #define GOLDEN_RATIO_32 0x61C88647 42 : #define GOLDEN_RATIO_64 0x61C8864680B583EBull 43 : 44 : #ifdef CONFIG_HAVE_ARCH_HASH 45 : /* This header may use the GOLDEN_RATIO_xx constants */ 46 : #include <asm/hash.h> 47 : #endif 48 : 49 : /* 50 : * The _generic versions exist only so lib/test_hash.c can compare 51 : * the arch-optimized versions with the generic. 52 : * 53 : * Note that if you change these, any <asm/hash.h> that aren't updated 54 : * to match need to have their HAVE_ARCH_* define values updated so the 55 : * self-test will not false-positive. 56 : */ 57 : #ifndef HAVE_ARCH__HASH_32 58 : #define __hash_32 __hash_32_generic 59 : #endif 60 : static inline u32 __hash_32_generic(u32 val) 61 : { 62 1838242194 : return val * GOLDEN_RATIO_32; 63 : } 64 : 65 774369 : static inline u32 hash_32(u32 val, unsigned int bits) 66 : { 67 : /* High bits are more random, so use them. */ 68 1838242194 : return __hash_32(val) >> (32 - bits); 69 : } 70 : 71 : #ifndef HAVE_ARCH_HASH_64 72 : #define hash_64 hash_64_generic 73 : #endif 74 : static __always_inline u32 hash_64_generic(u64 val, unsigned int bits) 75 : { 76 : #if BITS_PER_LONG == 64 77 : /* 64x64-bit multiply is efficient on all 64-bit processors */ 78 149832545 : return val * GOLDEN_RATIO_64 >> (64 - bits); 79 : #else 80 : /* Hash 64 bits using only 32x32-bit multiply. */ 81 : return hash_32((u32)val ^ __hash_32(val >> 32), bits); 82 : #endif 83 : } 84 : 85 : static inline u32 hash_ptr(const void *ptr, unsigned int bits) 86 : { 87 148813063 : return hash_long((unsigned long)ptr, bits); 88 : } 89 : 90 : /* This really should be called fold32_ptr; it does no hashing to speak of. */ 91 : static inline u32 hash32_ptr(const void *ptr) 92 : { 93 : unsigned long val = (unsigned long)ptr; 94 : 95 : #if BITS_PER_LONG == 64 96 : val ^= (val >> 32); 97 : #endif 98 : return (u32)val; 99 : } 100 : 101 : #endif /* _LINUX_HASH_H */