Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0 */
2 : #undef TRACE_SYSTEM
3 : #define TRACE_SYSTEM sched
4 :
5 : #if !defined(_TRACE_SCHED_H) || defined(TRACE_HEADER_MULTI_READ)
6 : #define _TRACE_SCHED_H
7 :
8 : #include <linux/kthread.h>
9 : #include <linux/sched/numa_balancing.h>
10 : #include <linux/tracepoint.h>
11 : #include <linux/binfmts.h>
12 :
13 : /*
14 : * Tracepoint for calling kthread_stop, performed to end a kthread:
15 : */
16 : TRACE_EVENT(sched_kthread_stop,
17 :
18 : TP_PROTO(struct task_struct *t),
19 :
20 : TP_ARGS(t),
21 :
22 : TP_STRUCT__entry(
23 : __array( char, comm, TASK_COMM_LEN )
24 : __field( pid_t, pid )
25 : ),
26 :
27 : TP_fast_assign(
28 : memcpy(__entry->comm, t->comm, TASK_COMM_LEN);
29 : __entry->pid = t->pid;
30 : ),
31 :
32 : TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid)
33 : );
34 :
35 : /*
36 : * Tracepoint for the return value of the kthread stopping:
37 : */
38 : TRACE_EVENT(sched_kthread_stop_ret,
39 :
40 : TP_PROTO(int ret),
41 :
42 : TP_ARGS(ret),
43 :
44 : TP_STRUCT__entry(
45 : __field( int, ret )
46 : ),
47 :
48 : TP_fast_assign(
49 : __entry->ret = ret;
50 : ),
51 :
52 : TP_printk("ret=%d", __entry->ret)
53 : );
54 :
55 : /**
56 : * sched_kthread_work_queue_work - called when a work gets queued
57 : * @worker: pointer to the kthread_worker
58 : * @work: pointer to struct kthread_work
59 : *
60 : * This event occurs when a work is queued immediately or once a
61 : * delayed work is actually queued (ie: once the delay has been
62 : * reached).
63 : */
64 : TRACE_EVENT(sched_kthread_work_queue_work,
65 :
66 : TP_PROTO(struct kthread_worker *worker,
67 : struct kthread_work *work),
68 :
69 : TP_ARGS(worker, work),
70 :
71 : TP_STRUCT__entry(
72 : __field( void *, work )
73 : __field( void *, function)
74 : __field( void *, worker)
75 : ),
76 :
77 : TP_fast_assign(
78 : __entry->work = work;
79 : __entry->function = work->func;
80 : __entry->worker = worker;
81 : ),
82 :
83 : TP_printk("work struct=%p function=%ps worker=%p",
84 : __entry->work, __entry->function, __entry->worker)
85 : );
86 :
87 : /**
88 : * sched_kthread_work_execute_start - called immediately before the work callback
89 : * @work: pointer to struct kthread_work
90 : *
91 : * Allows to track kthread work execution.
92 : */
93 : TRACE_EVENT(sched_kthread_work_execute_start,
94 :
95 : TP_PROTO(struct kthread_work *work),
96 :
97 : TP_ARGS(work),
98 :
99 : TP_STRUCT__entry(
100 : __field( void *, work )
101 : __field( void *, function)
102 : ),
103 :
104 : TP_fast_assign(
105 : __entry->work = work;
106 : __entry->function = work->func;
107 : ),
108 :
109 : TP_printk("work struct %p: function %ps", __entry->work, __entry->function)
110 : );
111 :
112 : /**
113 : * sched_kthread_work_execute_end - called immediately after the work callback
114 : * @work: pointer to struct work_struct
115 : * @function: pointer to worker function
116 : *
117 : * Allows to track workqueue execution.
118 : */
119 : TRACE_EVENT(sched_kthread_work_execute_end,
120 :
121 : TP_PROTO(struct kthread_work *work, kthread_work_func_t function),
122 :
123 : TP_ARGS(work, function),
124 :
125 : TP_STRUCT__entry(
126 : __field( void *, work )
127 : __field( void *, function)
128 : ),
129 :
130 : TP_fast_assign(
131 : __entry->work = work;
132 : __entry->function = function;
133 : ),
134 :
135 : TP_printk("work struct %p: function %ps", __entry->work, __entry->function)
136 : );
137 :
138 : /*
139 : * Tracepoint for waking up a task:
140 : */
141 : DECLARE_EVENT_CLASS(sched_wakeup_template,
142 :
143 : TP_PROTO(struct task_struct *p),
144 :
145 : TP_ARGS(__perf_task(p)),
146 :
147 : TP_STRUCT__entry(
148 : __array( char, comm, TASK_COMM_LEN )
149 : __field( pid_t, pid )
150 : __field( int, prio )
151 : __field( int, target_cpu )
152 : ),
153 :
154 : TP_fast_assign(
155 : memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
156 : __entry->pid = p->pid;
157 : __entry->prio = p->prio; /* XXX SCHED_DEADLINE */
158 : __entry->target_cpu = task_cpu(p);
159 : ),
160 :
161 : TP_printk("comm=%s pid=%d prio=%d target_cpu=%03d",
162 : __entry->comm, __entry->pid, __entry->prio,
163 : __entry->target_cpu)
164 : );
165 :
166 : /*
167 : * Tracepoint called when waking a task; this tracepoint is guaranteed to be
168 : * called from the waking context.
169 : */
170 : DEFINE_EVENT(sched_wakeup_template, sched_waking,
171 : TP_PROTO(struct task_struct *p),
172 : TP_ARGS(p));
173 :
174 : /*
175 : * Tracepoint called when the task is actually woken; p->state == TASK_RUNNING.
176 : * It is not always called from the waking context.
177 : */
178 : DEFINE_EVENT(sched_wakeup_template, sched_wakeup,
179 : TP_PROTO(struct task_struct *p),
180 : TP_ARGS(p));
181 :
182 : /*
183 : * Tracepoint for waking up a new task:
184 : */
185 : DEFINE_EVENT(sched_wakeup_template, sched_wakeup_new,
186 : TP_PROTO(struct task_struct *p),
187 : TP_ARGS(p));
188 :
189 : #ifdef CREATE_TRACE_POINTS
190 : static inline long __trace_sched_switch_state(bool preempt,
191 : unsigned int prev_state,
192 : struct task_struct *p)
193 : {
194 : unsigned int state;
195 :
196 : #ifdef CONFIG_SCHED_DEBUG
197 : BUG_ON(p != current);
198 : #endif /* CONFIG_SCHED_DEBUG */
199 :
200 : /*
201 : * Preemption ignores task state, therefore preempted tasks are always
202 : * RUNNING (we will not have dequeued if state != RUNNING).
203 : */
204 : if (preempt)
205 : return TASK_REPORT_MAX;
206 :
207 : /*
208 : * task_state_index() uses fls() and returns a value from 0-8 range.
209 : * Decrement it by 1 (except TASK_RUNNING state i.e 0) before using
210 : * it for left shift operation to get the correct task->state
211 : * mapping.
212 : */
213 : state = __task_state_index(prev_state, p->exit_state);
214 :
215 : return state ? (1 << (state - 1)) : state;
216 : }
217 : #endif /* CREATE_TRACE_POINTS */
218 :
219 : /*
220 : * Tracepoint for task switches, performed by the scheduler:
221 : */
222 : TRACE_EVENT(sched_switch,
223 :
224 : TP_PROTO(bool preempt,
225 : struct task_struct *prev,
226 : struct task_struct *next,
227 : unsigned int prev_state),
228 :
229 : TP_ARGS(preempt, prev, next, prev_state),
230 :
231 : TP_STRUCT__entry(
232 : __array( char, prev_comm, TASK_COMM_LEN )
233 : __field( pid_t, prev_pid )
234 : __field( int, prev_prio )
235 : __field( long, prev_state )
236 : __array( char, next_comm, TASK_COMM_LEN )
237 : __field( pid_t, next_pid )
238 : __field( int, next_prio )
239 : ),
240 :
241 : TP_fast_assign(
242 : memcpy(__entry->next_comm, next->comm, TASK_COMM_LEN);
243 : __entry->prev_pid = prev->pid;
244 : __entry->prev_prio = prev->prio;
245 : __entry->prev_state = __trace_sched_switch_state(preempt, prev_state, prev);
246 : memcpy(__entry->prev_comm, prev->comm, TASK_COMM_LEN);
247 : __entry->next_pid = next->pid;
248 : __entry->next_prio = next->prio;
249 : /* XXX SCHED_DEADLINE */
250 : ),
251 :
252 : TP_printk("prev_comm=%s prev_pid=%d prev_prio=%d prev_state=%s%s ==> next_comm=%s next_pid=%d next_prio=%d",
253 : __entry->prev_comm, __entry->prev_pid, __entry->prev_prio,
254 :
255 : (__entry->prev_state & (TASK_REPORT_MAX - 1)) ?
256 : __print_flags(__entry->prev_state & (TASK_REPORT_MAX - 1), "|",
257 : { TASK_INTERRUPTIBLE, "S" },
258 : { TASK_UNINTERRUPTIBLE, "D" },
259 : { __TASK_STOPPED, "T" },
260 : { __TASK_TRACED, "t" },
261 : { EXIT_DEAD, "X" },
262 : { EXIT_ZOMBIE, "Z" },
263 : { TASK_PARKED, "P" },
264 : { TASK_DEAD, "I" }) :
265 : "R",
266 :
267 : __entry->prev_state & TASK_REPORT_MAX ? "+" : "",
268 : __entry->next_comm, __entry->next_pid, __entry->next_prio)
269 : );
270 :
271 : /*
272 : * Tracepoint for a task being migrated:
273 : */
274 : TRACE_EVENT(sched_migrate_task,
275 :
276 : TP_PROTO(struct task_struct *p, int dest_cpu),
277 :
278 : TP_ARGS(p, dest_cpu),
279 :
280 : TP_STRUCT__entry(
281 : __array( char, comm, TASK_COMM_LEN )
282 : __field( pid_t, pid )
283 : __field( int, prio )
284 : __field( int, orig_cpu )
285 : __field( int, dest_cpu )
286 : ),
287 :
288 : TP_fast_assign(
289 : memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
290 : __entry->pid = p->pid;
291 : __entry->prio = p->prio; /* XXX SCHED_DEADLINE */
292 : __entry->orig_cpu = task_cpu(p);
293 : __entry->dest_cpu = dest_cpu;
294 : ),
295 :
296 : TP_printk("comm=%s pid=%d prio=%d orig_cpu=%d dest_cpu=%d",
297 : __entry->comm, __entry->pid, __entry->prio,
298 : __entry->orig_cpu, __entry->dest_cpu)
299 : );
300 :
301 : DECLARE_EVENT_CLASS(sched_process_template,
302 :
303 : TP_PROTO(struct task_struct *p),
304 :
305 : TP_ARGS(p),
306 :
307 : TP_STRUCT__entry(
308 : __array( char, comm, TASK_COMM_LEN )
309 : __field( pid_t, pid )
310 : __field( int, prio )
311 : ),
312 :
313 : TP_fast_assign(
314 : memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
315 : __entry->pid = p->pid;
316 : __entry->prio = p->prio; /* XXX SCHED_DEADLINE */
317 : ),
318 :
319 : TP_printk("comm=%s pid=%d prio=%d",
320 : __entry->comm, __entry->pid, __entry->prio)
321 : );
322 :
323 : /*
324 : * Tracepoint for freeing a task:
325 : */
326 : DEFINE_EVENT(sched_process_template, sched_process_free,
327 : TP_PROTO(struct task_struct *p),
328 : TP_ARGS(p));
329 :
330 : /*
331 : * Tracepoint for a task exiting:
332 : */
333 : DEFINE_EVENT(sched_process_template, sched_process_exit,
334 : TP_PROTO(struct task_struct *p),
335 : TP_ARGS(p));
336 :
337 : /*
338 : * Tracepoint for waiting on task to unschedule:
339 : */
340 : DEFINE_EVENT(sched_process_template, sched_wait_task,
341 : TP_PROTO(struct task_struct *p),
342 : TP_ARGS(p));
343 :
344 : /*
345 : * Tracepoint for a waiting task:
346 : */
347 : TRACE_EVENT(sched_process_wait,
348 :
349 : TP_PROTO(struct pid *pid),
350 :
351 : TP_ARGS(pid),
352 :
353 : TP_STRUCT__entry(
354 : __array( char, comm, TASK_COMM_LEN )
355 : __field( pid_t, pid )
356 : __field( int, prio )
357 : ),
358 :
359 : TP_fast_assign(
360 : memcpy(__entry->comm, current->comm, TASK_COMM_LEN);
361 : __entry->pid = pid_nr(pid);
362 : __entry->prio = current->prio; /* XXX SCHED_DEADLINE */
363 : ),
364 :
365 : TP_printk("comm=%s pid=%d prio=%d",
366 : __entry->comm, __entry->pid, __entry->prio)
367 : );
368 :
369 : /*
370 : * Tracepoint for kernel_clone:
371 : */
372 : TRACE_EVENT(sched_process_fork,
373 :
374 : TP_PROTO(struct task_struct *parent, struct task_struct *child),
375 :
376 : TP_ARGS(parent, child),
377 :
378 : TP_STRUCT__entry(
379 : __array( char, parent_comm, TASK_COMM_LEN )
380 : __field( pid_t, parent_pid )
381 : __array( char, child_comm, TASK_COMM_LEN )
382 : __field( pid_t, child_pid )
383 : ),
384 :
385 : TP_fast_assign(
386 : memcpy(__entry->parent_comm, parent->comm, TASK_COMM_LEN);
387 : __entry->parent_pid = parent->pid;
388 : memcpy(__entry->child_comm, child->comm, TASK_COMM_LEN);
389 : __entry->child_pid = child->pid;
390 : ),
391 :
392 : TP_printk("comm=%s pid=%d child_comm=%s child_pid=%d",
393 : __entry->parent_comm, __entry->parent_pid,
394 : __entry->child_comm, __entry->child_pid)
395 : );
396 :
397 : /*
398 : * Tracepoint for exec:
399 : */
400 32411307 : TRACE_EVENT(sched_process_exec,
401 :
402 : TP_PROTO(struct task_struct *p, pid_t old_pid,
403 : struct linux_binprm *bprm),
404 :
405 : TP_ARGS(p, old_pid, bprm),
406 :
407 : TP_STRUCT__entry(
408 : __string( filename, bprm->filename )
409 : __field( pid_t, pid )
410 : __field( pid_t, old_pid )
411 : ),
412 :
413 : TP_fast_assign(
414 : __assign_str(filename, bprm->filename);
415 : __entry->pid = p->pid;
416 : __entry->old_pid = old_pid;
417 : ),
418 :
419 : TP_printk("filename=%s pid=%d old_pid=%d", __get_str(filename),
420 : __entry->pid, __entry->old_pid)
421 : );
422 :
423 :
424 : #ifdef CONFIG_SCHEDSTATS
425 : #define DEFINE_EVENT_SCHEDSTAT DEFINE_EVENT
426 : #define DECLARE_EVENT_CLASS_SCHEDSTAT DECLARE_EVENT_CLASS
427 : #else
428 : #define DEFINE_EVENT_SCHEDSTAT DEFINE_EVENT_NOP
429 : #define DECLARE_EVENT_CLASS_SCHEDSTAT DECLARE_EVENT_CLASS_NOP
430 : #endif
431 :
432 : /*
433 : * XXX the below sched_stat tracepoints only apply to SCHED_OTHER/BATCH/IDLE
434 : * adding sched_stat support to SCHED_FIFO/RR would be welcome.
435 : */
436 : DECLARE_EVENT_CLASS_SCHEDSTAT(sched_stat_template,
437 :
438 : TP_PROTO(struct task_struct *tsk, u64 delay),
439 :
440 : TP_ARGS(__perf_task(tsk), __perf_count(delay)),
441 :
442 : TP_STRUCT__entry(
443 : __array( char, comm, TASK_COMM_LEN )
444 : __field( pid_t, pid )
445 : __field( u64, delay )
446 : ),
447 :
448 : TP_fast_assign(
449 : memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
450 : __entry->pid = tsk->pid;
451 : __entry->delay = delay;
452 : ),
453 :
454 : TP_printk("comm=%s pid=%d delay=%Lu [ns]",
455 : __entry->comm, __entry->pid,
456 : (unsigned long long)__entry->delay)
457 : );
458 :
459 : /*
460 : * Tracepoint for accounting wait time (time the task is runnable
461 : * but not actually running due to scheduler contention).
462 : */
463 : DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_wait,
464 : TP_PROTO(struct task_struct *tsk, u64 delay),
465 : TP_ARGS(tsk, delay));
466 :
467 : /*
468 : * Tracepoint for accounting sleep time (time the task is not runnable,
469 : * including iowait, see below).
470 : */
471 : DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_sleep,
472 : TP_PROTO(struct task_struct *tsk, u64 delay),
473 : TP_ARGS(tsk, delay));
474 :
475 : /*
476 : * Tracepoint for accounting iowait time (time the task is not runnable
477 : * due to waiting on IO to complete).
478 : */
479 : DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_iowait,
480 : TP_PROTO(struct task_struct *tsk, u64 delay),
481 : TP_ARGS(tsk, delay));
482 :
483 : /*
484 : * Tracepoint for accounting blocked time (time the task is in uninterruptible).
485 : */
486 : DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_blocked,
487 : TP_PROTO(struct task_struct *tsk, u64 delay),
488 : TP_ARGS(tsk, delay));
489 :
490 : /*
491 : * Tracepoint for accounting runtime (time the task is executing
492 : * on a CPU).
493 : */
494 : DECLARE_EVENT_CLASS(sched_stat_runtime,
495 :
496 : TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime),
497 :
498 : TP_ARGS(tsk, __perf_count(runtime), vruntime),
499 :
500 : TP_STRUCT__entry(
501 : __array( char, comm, TASK_COMM_LEN )
502 : __field( pid_t, pid )
503 : __field( u64, runtime )
504 : __field( u64, vruntime )
505 : ),
506 :
507 : TP_fast_assign(
508 : memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
509 : __entry->pid = tsk->pid;
510 : __entry->runtime = runtime;
511 : __entry->vruntime = vruntime;
512 : ),
513 :
514 : TP_printk("comm=%s pid=%d runtime=%Lu [ns] vruntime=%Lu [ns]",
515 : __entry->comm, __entry->pid,
516 : (unsigned long long)__entry->runtime,
517 : (unsigned long long)__entry->vruntime)
518 : );
519 :
520 : DEFINE_EVENT(sched_stat_runtime, sched_stat_runtime,
521 : TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime),
522 : TP_ARGS(tsk, runtime, vruntime));
523 :
524 : /*
525 : * Tracepoint for showing priority inheritance modifying a tasks
526 : * priority.
527 : */
528 : TRACE_EVENT(sched_pi_setprio,
529 :
530 : TP_PROTO(struct task_struct *tsk, struct task_struct *pi_task),
531 :
532 : TP_ARGS(tsk, pi_task),
533 :
534 : TP_STRUCT__entry(
535 : __array( char, comm, TASK_COMM_LEN )
536 : __field( pid_t, pid )
537 : __field( int, oldprio )
538 : __field( int, newprio )
539 : ),
540 :
541 : TP_fast_assign(
542 : memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
543 : __entry->pid = tsk->pid;
544 : __entry->oldprio = tsk->prio;
545 : __entry->newprio = pi_task ?
546 : min(tsk->normal_prio, pi_task->prio) :
547 : tsk->normal_prio;
548 : /* XXX SCHED_DEADLINE bits missing */
549 : ),
550 :
551 : TP_printk("comm=%s pid=%d oldprio=%d newprio=%d",
552 : __entry->comm, __entry->pid,
553 : __entry->oldprio, __entry->newprio)
554 : );
555 :
556 : #ifdef CONFIG_DETECT_HUNG_TASK
557 : TRACE_EVENT(sched_process_hang,
558 : TP_PROTO(struct task_struct *tsk),
559 : TP_ARGS(tsk),
560 :
561 : TP_STRUCT__entry(
562 : __array( char, comm, TASK_COMM_LEN )
563 : __field( pid_t, pid )
564 : ),
565 :
566 : TP_fast_assign(
567 : memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
568 : __entry->pid = tsk->pid;
569 : ),
570 :
571 : TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid)
572 : );
573 : #endif /* CONFIG_DETECT_HUNG_TASK */
574 :
575 : /*
576 : * Tracks migration of tasks from one runqueue to another. Can be used to
577 : * detect if automatic NUMA balancing is bouncing between nodes.
578 : */
579 : TRACE_EVENT(sched_move_numa,
580 :
581 : TP_PROTO(struct task_struct *tsk, int src_cpu, int dst_cpu),
582 :
583 : TP_ARGS(tsk, src_cpu, dst_cpu),
584 :
585 : TP_STRUCT__entry(
586 : __field( pid_t, pid )
587 : __field( pid_t, tgid )
588 : __field( pid_t, ngid )
589 : __field( int, src_cpu )
590 : __field( int, src_nid )
591 : __field( int, dst_cpu )
592 : __field( int, dst_nid )
593 : ),
594 :
595 : TP_fast_assign(
596 : __entry->pid = task_pid_nr(tsk);
597 : __entry->tgid = task_tgid_nr(tsk);
598 : __entry->ngid = task_numa_group_id(tsk);
599 : __entry->src_cpu = src_cpu;
600 : __entry->src_nid = cpu_to_node(src_cpu);
601 : __entry->dst_cpu = dst_cpu;
602 : __entry->dst_nid = cpu_to_node(dst_cpu);
603 : ),
604 :
605 : TP_printk("pid=%d tgid=%d ngid=%d src_cpu=%d src_nid=%d dst_cpu=%d dst_nid=%d",
606 : __entry->pid, __entry->tgid, __entry->ngid,
607 : __entry->src_cpu, __entry->src_nid,
608 : __entry->dst_cpu, __entry->dst_nid)
609 : );
610 :
611 : DECLARE_EVENT_CLASS(sched_numa_pair_template,
612 :
613 : TP_PROTO(struct task_struct *src_tsk, int src_cpu,
614 : struct task_struct *dst_tsk, int dst_cpu),
615 :
616 : TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu),
617 :
618 : TP_STRUCT__entry(
619 : __field( pid_t, src_pid )
620 : __field( pid_t, src_tgid )
621 : __field( pid_t, src_ngid )
622 : __field( int, src_cpu )
623 : __field( int, src_nid )
624 : __field( pid_t, dst_pid )
625 : __field( pid_t, dst_tgid )
626 : __field( pid_t, dst_ngid )
627 : __field( int, dst_cpu )
628 : __field( int, dst_nid )
629 : ),
630 :
631 : TP_fast_assign(
632 : __entry->src_pid = task_pid_nr(src_tsk);
633 : __entry->src_tgid = task_tgid_nr(src_tsk);
634 : __entry->src_ngid = task_numa_group_id(src_tsk);
635 : __entry->src_cpu = src_cpu;
636 : __entry->src_nid = cpu_to_node(src_cpu);
637 : __entry->dst_pid = dst_tsk ? task_pid_nr(dst_tsk) : 0;
638 : __entry->dst_tgid = dst_tsk ? task_tgid_nr(dst_tsk) : 0;
639 : __entry->dst_ngid = dst_tsk ? task_numa_group_id(dst_tsk) : 0;
640 : __entry->dst_cpu = dst_cpu;
641 : __entry->dst_nid = dst_cpu >= 0 ? cpu_to_node(dst_cpu) : -1;
642 : ),
643 :
644 : TP_printk("src_pid=%d src_tgid=%d src_ngid=%d src_cpu=%d src_nid=%d dst_pid=%d dst_tgid=%d dst_ngid=%d dst_cpu=%d dst_nid=%d",
645 : __entry->src_pid, __entry->src_tgid, __entry->src_ngid,
646 : __entry->src_cpu, __entry->src_nid,
647 : __entry->dst_pid, __entry->dst_tgid, __entry->dst_ngid,
648 : __entry->dst_cpu, __entry->dst_nid)
649 : );
650 :
651 : DEFINE_EVENT(sched_numa_pair_template, sched_stick_numa,
652 :
653 : TP_PROTO(struct task_struct *src_tsk, int src_cpu,
654 : struct task_struct *dst_tsk, int dst_cpu),
655 :
656 : TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu)
657 : );
658 :
659 : DEFINE_EVENT(sched_numa_pair_template, sched_swap_numa,
660 :
661 : TP_PROTO(struct task_struct *src_tsk, int src_cpu,
662 : struct task_struct *dst_tsk, int dst_cpu),
663 :
664 : TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu)
665 : );
666 :
667 :
668 : /*
669 : * Tracepoint for waking a polling cpu without an IPI.
670 : */
671 : TRACE_EVENT(sched_wake_idle_without_ipi,
672 :
673 : TP_PROTO(int cpu),
674 :
675 : TP_ARGS(cpu),
676 :
677 : TP_STRUCT__entry(
678 : __field( int, cpu )
679 : ),
680 :
681 : TP_fast_assign(
682 : __entry->cpu = cpu;
683 : ),
684 :
685 : TP_printk("cpu=%d", __entry->cpu)
686 : );
687 :
688 : /*
689 : * Following tracepoints are not exported in tracefs and provide hooking
690 : * mechanisms only for testing and debugging purposes.
691 : *
692 : * Postfixed with _tp to make them easily identifiable in the code.
693 : */
694 : DECLARE_TRACE(pelt_cfs_tp,
695 : TP_PROTO(struct cfs_rq *cfs_rq),
696 : TP_ARGS(cfs_rq));
697 :
698 : DECLARE_TRACE(pelt_rt_tp,
699 : TP_PROTO(struct rq *rq),
700 : TP_ARGS(rq));
701 :
702 : DECLARE_TRACE(pelt_dl_tp,
703 : TP_PROTO(struct rq *rq),
704 : TP_ARGS(rq));
705 :
706 : DECLARE_TRACE(pelt_thermal_tp,
707 : TP_PROTO(struct rq *rq),
708 : TP_ARGS(rq));
709 :
710 : DECLARE_TRACE(pelt_irq_tp,
711 : TP_PROTO(struct rq *rq),
712 : TP_ARGS(rq));
713 :
714 : DECLARE_TRACE(pelt_se_tp,
715 : TP_PROTO(struct sched_entity *se),
716 : TP_ARGS(se));
717 :
718 : DECLARE_TRACE(sched_cpu_capacity_tp,
719 : TP_PROTO(struct rq *rq),
720 : TP_ARGS(rq));
721 :
722 : DECLARE_TRACE(sched_overutilized_tp,
723 : TP_PROTO(struct root_domain *rd, bool overutilized),
724 : TP_ARGS(rd, overutilized));
725 :
726 : DECLARE_TRACE(sched_util_est_cfs_tp,
727 : TP_PROTO(struct cfs_rq *cfs_rq),
728 : TP_ARGS(cfs_rq));
729 :
730 : DECLARE_TRACE(sched_util_est_se_tp,
731 : TP_PROTO(struct sched_entity *se),
732 : TP_ARGS(se));
733 :
734 : DECLARE_TRACE(sched_update_nr_running_tp,
735 : TP_PROTO(struct rq *rq, int change),
736 : TP_ARGS(rq, change));
737 :
738 : #endif /* _TRACE_SCHED_H */
739 :
740 : /* This part must be outside protection */
741 : #include <trace/define_trace.h>
|