Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 : * All Rights Reserved.
5 : */
6 : #include "xfs.h"
7 : #include "xfs_fs.h"
8 : #include "xfs_shared.h"
9 : #include "xfs_format.h"
10 : #include "xfs_log_format.h"
11 : #include "xfs_trans_resv.h"
12 : #include "xfs_bit.h"
13 : #include "xfs_mount.h"
14 : #include "xfs_inode.h"
15 : #include "xfs_btree.h"
16 : #include "xfs_ialloc.h"
17 : #include "xfs_ialloc_btree.h"
18 : #include "xfs_alloc.h"
19 : #include "xfs_errortag.h"
20 : #include "xfs_error.h"
21 : #include "xfs_bmap.h"
22 : #include "xfs_trans.h"
23 : #include "xfs_buf_item.h"
24 : #include "xfs_icreate_item.h"
25 : #include "xfs_icache.h"
26 : #include "xfs_trace.h"
27 : #include "xfs_log.h"
28 : #include "xfs_rmap.h"
29 : #include "xfs_ag.h"
30 :
31 : /*
32 : * Lookup a record by ino in the btree given by cur.
33 : */
34 : int /* error */
35 3032015626 : xfs_inobt_lookup(
36 : struct xfs_btree_cur *cur, /* btree cursor */
37 : xfs_agino_t ino, /* starting inode of chunk */
38 : xfs_lookup_t dir, /* <=, >=, == */
39 : int *stat) /* success/failure */
40 : {
41 5961880987 : cur->bc_rec.i.ir_startino = ino;
42 5961880987 : cur->bc_rec.i.ir_holemask = 0;
43 5961880987 : cur->bc_rec.i.ir_count = 0;
44 5961880987 : cur->bc_rec.i.ir_freecount = 0;
45 5961880987 : cur->bc_rec.i.ir_free = 0;
46 3034702078 : return xfs_btree_lookup(cur, dir, stat);
47 : }
48 :
49 : /*
50 : * Update the record referred to by cur to the value given.
51 : * This either works (return 0) or gets an EFSCORRUPTED error.
52 : */
53 : STATIC int /* error */
54 144056981 : xfs_inobt_update(
55 : struct xfs_btree_cur *cur, /* btree cursor */
56 : xfs_inobt_rec_incore_t *irec) /* btree record */
57 : {
58 144056981 : union xfs_btree_rec rec;
59 :
60 144056981 : rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
61 144056981 : if (xfs_has_sparseinodes(cur->bc_mp)) {
62 144056719 : rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
63 144056719 : rec.inobt.ir_u.sp.ir_count = irec->ir_count;
64 144056719 : rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
65 : } else {
66 : /* ir_holemask/ir_count not supported on-disk */
67 262 : rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
68 : }
69 144056981 : rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
70 144056981 : return xfs_btree_update(cur, &rec);
71 : }
72 :
73 : /* Convert on-disk btree record to incore inobt record. */
74 : void
75 14304103128 : xfs_inobt_btrec_to_irec(
76 : struct xfs_mount *mp,
77 : const union xfs_btree_rec *rec,
78 : struct xfs_inobt_rec_incore *irec)
79 : {
80 14304103128 : irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
81 14304103128 : if (xfs_has_sparseinodes(mp)) {
82 14304102012 : irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
83 14304102012 : irec->ir_count = rec->inobt.ir_u.sp.ir_count;
84 14304102012 : irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
85 : } else {
86 : /*
87 : * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
88 : * values for full inode chunks.
89 : */
90 1116 : irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
91 1116 : irec->ir_count = XFS_INODES_PER_CHUNK;
92 1116 : irec->ir_freecount =
93 1116 : be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
94 : }
95 14304103128 : irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
96 14304103128 : }
97 :
98 : /* Simple checks for inode records. */
99 : xfs_failaddr_t
100 14345784434 : xfs_inobt_check_irec(
101 : struct xfs_btree_cur *cur,
102 : const struct xfs_inobt_rec_incore *irec)
103 : {
104 14345784434 : uint64_t realfree;
105 :
106 : /* Record has to be properly aligned within the AG. */
107 14345784434 : if (!xfs_verify_agino(cur->bc_ag.pag, irec->ir_startino))
108 0 : return __this_address;
109 14345784434 : if (!xfs_verify_agino(cur->bc_ag.pag,
110 : irec->ir_startino + XFS_INODES_PER_CHUNK - 1))
111 0 : return __this_address;
112 14345784434 : if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
113 : irec->ir_count > XFS_INODES_PER_CHUNK)
114 0 : return __this_address;
115 14345784434 : if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
116 0 : return __this_address;
117 :
118 : /* if there are no holes, return the first available offset */
119 14345784434 : if (!xfs_inobt_issparse(irec->ir_holemask))
120 8602980653 : realfree = irec->ir_free;
121 : else
122 5742803781 : realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
123 28670403673 : if (hweight64(realfree) != irec->ir_freecount)
124 8569666 : return __this_address;
125 :
126 : return NULL;
127 : }
128 :
129 : static inline int
130 0 : xfs_inobt_complain_bad_rec(
131 : struct xfs_btree_cur *cur,
132 : xfs_failaddr_t fa,
133 : const struct xfs_inobt_rec_incore *irec)
134 : {
135 0 : struct xfs_mount *mp = cur->bc_mp;
136 :
137 0 : xfs_warn(mp,
138 : "%s Inode BTree record corruption in AG %d detected at %pS!",
139 : cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free",
140 : cur->bc_ag.pag->pag_agno, fa);
141 0 : xfs_warn(mp,
142 : "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
143 : irec->ir_startino, irec->ir_count, irec->ir_freecount,
144 : irec->ir_free, irec->ir_holemask);
145 0 : return -EFSCORRUPTED;
146 : }
147 :
148 : /*
149 : * Get the data from the pointed-to record.
150 : */
151 : int
152 14143203124 : xfs_inobt_get_rec(
153 : struct xfs_btree_cur *cur,
154 : struct xfs_inobt_rec_incore *irec,
155 : int *stat)
156 : {
157 14143203124 : struct xfs_mount *mp = cur->bc_mp;
158 14143203124 : union xfs_btree_rec *rec;
159 14143203124 : xfs_failaddr_t fa;
160 14143203124 : int error;
161 :
162 14143203124 : error = xfs_btree_get_rec(cur, &rec, stat);
163 14131482440 : if (error || *stat == 0)
164 : return error;
165 :
166 14140060648 : xfs_inobt_btrec_to_irec(mp, rec, irec);
167 14136249747 : fa = xfs_inobt_check_irec(cur, irec);
168 14170769310 : if (fa)
169 0 : return xfs_inobt_complain_bad_rec(cur, fa, irec);
170 :
171 : return 0;
172 : }
173 :
174 : /*
175 : * Insert a single inobt record. Cursor must already point to desired location.
176 : */
177 : int
178 0 : xfs_inobt_insert_rec(
179 : struct xfs_btree_cur *cur,
180 : uint16_t holemask,
181 : uint8_t count,
182 : int32_t freecount,
183 : xfs_inofree_t free,
184 : int *stat)
185 : {
186 10103851 : cur->bc_rec.i.ir_holemask = holemask;
187 10103851 : cur->bc_rec.i.ir_count = count;
188 10103851 : cur->bc_rec.i.ir_freecount = freecount;
189 10103851 : cur->bc_rec.i.ir_free = free;
190 0 : return xfs_btree_insert(cur, stat);
191 : }
192 :
193 : /*
194 : * Insert records describing a newly allocated inode chunk into the inobt.
195 : */
196 : STATIC int
197 350118 : xfs_inobt_insert(
198 : struct xfs_perag *pag,
199 : struct xfs_trans *tp,
200 : struct xfs_buf *agbp,
201 : xfs_agino_t newino,
202 : xfs_agino_t newlen,
203 : xfs_btnum_t btnum)
204 : {
205 350118 : struct xfs_btree_cur *cur;
206 350118 : xfs_agino_t thisino;
207 350118 : int i;
208 350118 : int error;
209 :
210 350118 : cur = xfs_inobt_init_cursor(pag, tp, agbp, btnum);
211 :
212 350118 : for (thisino = newino;
213 700266 : thisino < newino + newlen;
214 350149 : thisino += XFS_INODES_PER_CHUNK) {
215 350149 : error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
216 350150 : if (error) {
217 1 : xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
218 1 : return error;
219 : }
220 350149 : ASSERT(i == 0);
221 :
222 350149 : error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
223 : XFS_INODES_PER_CHUNK,
224 : XFS_INODES_PER_CHUNK,
225 : XFS_INOBT_ALL_FREE, &i);
226 350149 : if (error) {
227 0 : xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
228 0 : return error;
229 : }
230 350149 : ASSERT(i == 1);
231 : }
232 :
233 350117 : xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
234 :
235 350117 : return 0;
236 : }
237 :
238 : /*
239 : * Verify that the number of free inodes in the AGI is correct.
240 : */
241 : #ifdef DEBUG
242 : static int
243 292184585 : xfs_check_agi_freecount(
244 : struct xfs_btree_cur *cur)
245 : {
246 292184585 : if (cur->bc_nlevels == 1) {
247 259456053 : xfs_inobt_rec_incore_t rec;
248 259456053 : int freecount = 0;
249 259456053 : int error;
250 259456053 : int i;
251 :
252 259456053 : error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
253 259470026 : if (error)
254 335 : return error;
255 :
256 8535944193 : do {
257 8535944193 : error = xfs_inobt_get_rec(cur, &rec, &i);
258 8527666232 : if (error)
259 0 : return error;
260 :
261 8527666232 : if (i) {
262 8545833558 : freecount += rec.ir_freecount;
263 8545833558 : error = xfs_btree_increment(cur, 0, &i);
264 8554163494 : if (error)
265 0 : return error;
266 : }
267 8535996168 : } while (i == 1);
268 :
269 519043332 : if (!xfs_is_shutdown(cur->bc_mp))
270 259527521 : ASSERT(freecount == cur->bc_ag.pag->pagi_freecount);
271 : }
272 : return 0;
273 : }
274 : #else
275 : #define xfs_check_agi_freecount(cur) 0
276 : #endif
277 :
278 : /*
279 : * Initialise a new set of inodes. When called without a transaction context
280 : * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
281 : * than logging them (which in a transaction context puts them into the AIL
282 : * for writeback rather than the xfsbufd queue).
283 : */
284 : int
285 360195 : xfs_ialloc_inode_init(
286 : struct xfs_mount *mp,
287 : struct xfs_trans *tp,
288 : struct list_head *buffer_list,
289 : int icount,
290 : xfs_agnumber_t agno,
291 : xfs_agblock_t agbno,
292 : xfs_agblock_t length,
293 : unsigned int gen)
294 : {
295 360195 : struct xfs_buf *fbuf;
296 360195 : struct xfs_dinode *free;
297 360195 : int nbufs;
298 360195 : int version;
299 360195 : int i, j;
300 360195 : xfs_daddr_t d;
301 360195 : xfs_ino_t ino = 0;
302 360195 : int error;
303 :
304 : /*
305 : * Loop over the new block(s), filling in the inodes. For small block
306 : * sizes, manipulate the inodes in buffers which are multiples of the
307 : * blocks size.
308 : */
309 360195 : nbufs = length / M_IGEO(mp)->blocks_per_cluster;
310 :
311 : /*
312 : * Figure out what version number to use in the inodes we create. If
313 : * the superblock version has caught up to the one that supports the new
314 : * inode format, then use the new inode version. Otherwise use the old
315 : * version so that old kernels will continue to be able to use the file
316 : * system.
317 : *
318 : * For v3 inodes, we also need to write the inode number into the inode,
319 : * so calculate the first inode number of the chunk here as
320 : * XFS_AGB_TO_AGINO() only works within a filesystem block, not
321 : * across multiple filesystem blocks (such as a cluster) and so cannot
322 : * be used in the cluster buffer loop below.
323 : *
324 : * Further, because we are writing the inode directly into the buffer
325 : * and calculating a CRC on the entire inode, we have ot log the entire
326 : * inode so that the entire range the CRC covers is present in the log.
327 : * That means for v3 inode we log the entire buffer rather than just the
328 : * inode cores.
329 : */
330 360195 : if (xfs_has_v3inodes(mp)) {
331 360193 : version = 3;
332 360193 : ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
333 :
334 : /*
335 : * log the initialisation that is about to take place as an
336 : * logical operation. This means the transaction does not
337 : * need to log the physical changes to the inode buffers as log
338 : * recovery will know what initialisation is actually needed.
339 : * Hence we only need to log the buffers as "ordered" buffers so
340 : * they track in the AIL as if they were physically logged.
341 : */
342 360193 : if (tp)
343 352459 : xfs_icreate_log(tp, agno, agbno, icount,
344 352459 : mp->m_sb.sb_inodesize, length, gen);
345 : } else
346 : version = 2;
347 :
348 899283 : for (j = 0; j < nbufs; j++) {
349 : /*
350 : * Get the block.
351 : */
352 539086 : d = XFS_AGB_TO_DADDR(mp, agno, agbno +
353 : (j * M_IGEO(mp)->blocks_per_cluster));
354 539086 : error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
355 539086 : mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
356 : XBF_UNMAPPED, &fbuf);
357 539090 : if (error)
358 0 : return error;
359 :
360 : /* Initialize the inode buffers and log them appropriately. */
361 539090 : fbuf->b_ops = &xfs_inode_buf_ops;
362 539090 : xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
363 18331185 : for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
364 17253005 : int ioffset = i << mp->m_sb.sb_inodelog;
365 :
366 17253005 : free = xfs_make_iptr(mp, fbuf, i);
367 17252976 : free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
368 17252976 : free->di_version = version;
369 17252976 : free->di_gen = cpu_to_be32(gen);
370 17252976 : free->di_next_unlinked = cpu_to_be32(NULLAGINO);
371 :
372 17252976 : if (version == 3) {
373 17252848 : free->di_ino = cpu_to_be64(ino);
374 17252848 : ino++;
375 17252848 : uuid_copy(&free->di_uuid,
376 17252848 : &mp->m_sb.sb_meta_uuid);
377 17252848 : xfs_dinode_calc_crc(mp, free);
378 128 : } else if (tp) {
379 : /* just log the inode core */
380 128 : xfs_trans_log_buf(tp, fbuf, ioffset,
381 256 : ioffset + XFS_DINODE_SIZE(mp) - 1);
382 : }
383 : }
384 :
385 539090 : if (tp) {
386 : /*
387 : * Mark the buffer as an inode allocation buffer so it
388 : * sticks in AIL at the point of this allocation
389 : * transaction. This ensures the they are on disk before
390 : * the tail of the log can be moved past this
391 : * transaction (i.e. by preventing relogging from moving
392 : * it forward in the log).
393 : */
394 527481 : xfs_trans_inode_alloc_buf(tp, fbuf);
395 527481 : if (version == 3) {
396 : /*
397 : * Mark the buffer as ordered so that they are
398 : * not physically logged in the transaction but
399 : * still tracked in the AIL as part of the
400 : * transaction and pin the log appropriately.
401 : */
402 527477 : xfs_trans_ordered_buf(tp, fbuf);
403 : }
404 : } else {
405 11609 : fbuf->b_flags |= XBF_DONE;
406 11609 : xfs_buf_delwri_queue(fbuf, buffer_list);
407 11609 : xfs_buf_relse(fbuf);
408 : }
409 : }
410 : return 0;
411 : }
412 :
413 : /*
414 : * Align startino and allocmask for a recently allocated sparse chunk such that
415 : * they are fit for insertion (or merge) into the on-disk inode btrees.
416 : *
417 : * Background:
418 : *
419 : * When enabled, sparse inode support increases the inode alignment from cluster
420 : * size to inode chunk size. This means that the minimum range between two
421 : * non-adjacent inode records in the inobt is large enough for a full inode
422 : * record. This allows for cluster sized, cluster aligned block allocation
423 : * without need to worry about whether the resulting inode record overlaps with
424 : * another record in the tree. Without this basic rule, we would have to deal
425 : * with the consequences of overlap by potentially undoing recent allocations in
426 : * the inode allocation codepath.
427 : *
428 : * Because of this alignment rule (which is enforced on mount), there are two
429 : * inobt possibilities for newly allocated sparse chunks. One is that the
430 : * aligned inode record for the chunk covers a range of inodes not already
431 : * covered in the inobt (i.e., it is safe to insert a new sparse record). The
432 : * other is that a record already exists at the aligned startino that considers
433 : * the newly allocated range as sparse. In the latter case, record content is
434 : * merged in hope that sparse inode chunks fill to full chunks over time.
435 : */
436 : STATIC void
437 177402 : xfs_align_sparse_ino(
438 : struct xfs_mount *mp,
439 : xfs_agino_t *startino,
440 : uint16_t *allocmask)
441 : {
442 177402 : xfs_agblock_t agbno;
443 177402 : xfs_agblock_t mod;
444 177402 : int offset;
445 :
446 177402 : agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
447 177402 : mod = agbno % mp->m_sb.sb_inoalignmt;
448 177402 : if (!mod)
449 : return;
450 :
451 : /* calculate the inode offset and align startino */
452 99923 : offset = XFS_AGB_TO_AGINO(mp, mod);
453 99923 : *startino -= offset;
454 :
455 : /*
456 : * Since startino has been aligned down, left shift allocmask such that
457 : * it continues to represent the same physical inodes relative to the
458 : * new startino.
459 : */
460 99923 : *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
461 : }
462 :
463 : /*
464 : * Determine whether the source inode record can merge into the target. Both
465 : * records must be sparse, the inode ranges must match and there must be no
466 : * allocation overlap between the records.
467 : */
468 : STATIC bool
469 25229 : __xfs_inobt_can_merge(
470 : struct xfs_inobt_rec_incore *trec, /* tgt record */
471 : struct xfs_inobt_rec_incore *srec) /* src record */
472 : {
473 25229 : uint64_t talloc;
474 25229 : uint64_t salloc;
475 :
476 : /* records must cover the same inode range */
477 25229 : if (trec->ir_startino != srec->ir_startino)
478 : return false;
479 :
480 : /* both records must be sparse */
481 25229 : if (!xfs_inobt_issparse(trec->ir_holemask) ||
482 25229 : !xfs_inobt_issparse(srec->ir_holemask))
483 : return false;
484 :
485 : /* both records must track some inodes */
486 25229 : if (!trec->ir_count || !srec->ir_count)
487 : return false;
488 :
489 : /* can't exceed capacity of a full record */
490 25229 : if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
491 : return false;
492 :
493 : /* verify there is no allocation overlap */
494 25229 : talloc = xfs_inobt_irec_to_allocmask(trec);
495 25229 : salloc = xfs_inobt_irec_to_allocmask(srec);
496 25229 : if (talloc & salloc)
497 0 : return false;
498 :
499 : return true;
500 : }
501 :
502 : /*
503 : * Merge the source inode record into the target. The caller must call
504 : * __xfs_inobt_can_merge() to ensure the merge is valid.
505 : */
506 : STATIC void
507 25229 : __xfs_inobt_rec_merge(
508 : struct xfs_inobt_rec_incore *trec, /* target */
509 : struct xfs_inobt_rec_incore *srec) /* src */
510 : {
511 25229 : ASSERT(trec->ir_startino == srec->ir_startino);
512 :
513 : /* combine the counts */
514 25229 : trec->ir_count += srec->ir_count;
515 25229 : trec->ir_freecount += srec->ir_freecount;
516 :
517 : /*
518 : * Merge the holemask and free mask. For both fields, 0 bits refer to
519 : * allocated inodes. We combine the allocated ranges with bitwise AND.
520 : */
521 25229 : trec->ir_holemask &= srec->ir_holemask;
522 25229 : trec->ir_free &= srec->ir_free;
523 25229 : }
524 :
525 : /*
526 : * Insert a new sparse inode chunk into the associated inode btree. The inode
527 : * record for the sparse chunk is pre-aligned to a startino that should match
528 : * any pre-existing sparse inode record in the tree. This allows sparse chunks
529 : * to fill over time.
530 : *
531 : * This function supports two modes of handling preexisting records depending on
532 : * the merge flag. If merge is true, the provided record is merged with the
533 : * existing record and updated in place. The merged record is returned in nrec.
534 : * If merge is false, an existing record is replaced with the provided record.
535 : * If no preexisting record exists, the provided record is always inserted.
536 : *
537 : * It is considered corruption if a merge is requested and not possible. Given
538 : * the sparse inode alignment constraints, this should never happen.
539 : */
540 : STATIC int
541 354804 : xfs_inobt_insert_sprec(
542 : struct xfs_perag *pag,
543 : struct xfs_trans *tp,
544 : struct xfs_buf *agbp,
545 : int btnum,
546 : struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
547 : bool merge) /* merge or replace */
548 : {
549 354804 : struct xfs_mount *mp = pag->pag_mount;
550 354804 : struct xfs_btree_cur *cur;
551 354804 : int error;
552 354804 : int i;
553 354804 : struct xfs_inobt_rec_incore rec;
554 :
555 354804 : cur = xfs_inobt_init_cursor(pag, tp, agbp, btnum);
556 :
557 : /* the new record is pre-aligned so we know where to look */
558 354804 : error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
559 354804 : if (error)
560 0 : goto error;
561 : /* if nothing there, insert a new record and return */
562 354804 : if (i == 0) {
563 329575 : error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
564 329575 : nrec->ir_count, nrec->ir_freecount,
565 : nrec->ir_free, &i);
566 329575 : if (error)
567 0 : goto error;
568 329575 : if (XFS_IS_CORRUPT(mp, i != 1)) {
569 0 : error = -EFSCORRUPTED;
570 0 : goto error;
571 : }
572 :
573 329575 : goto out;
574 : }
575 :
576 : /*
577 : * A record exists at this startino. Merge or replace the record
578 : * depending on what we've been asked to do.
579 : */
580 25229 : if (merge) {
581 25229 : error = xfs_inobt_get_rec(cur, &rec, &i);
582 25229 : if (error)
583 0 : goto error;
584 25229 : if (XFS_IS_CORRUPT(mp, i != 1)) {
585 0 : error = -EFSCORRUPTED;
586 0 : goto error;
587 : }
588 25229 : if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
589 0 : error = -EFSCORRUPTED;
590 0 : goto error;
591 : }
592 :
593 : /*
594 : * This should never fail. If we have coexisting records that
595 : * cannot merge, something is seriously wrong.
596 : */
597 25229 : if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
598 0 : error = -EFSCORRUPTED;
599 0 : goto error;
600 : }
601 :
602 25229 : trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino,
603 : rec.ir_holemask, nrec->ir_startino,
604 : nrec->ir_holemask);
605 :
606 : /* merge to nrec to output the updated record */
607 25229 : __xfs_inobt_rec_merge(nrec, &rec);
608 :
609 25229 : trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino,
610 : nrec->ir_holemask);
611 :
612 25229 : error = xfs_inobt_rec_check_count(mp, nrec);
613 25229 : if (error)
614 0 : goto error;
615 : }
616 :
617 25229 : error = xfs_inobt_update(cur, nrec);
618 25229 : if (error)
619 0 : goto error;
620 :
621 25229 : out:
622 354804 : xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
623 354804 : return 0;
624 0 : error:
625 0 : xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
626 0 : return error;
627 : }
628 :
629 : /*
630 : * Allocate new inodes in the allocation group specified by agbp. Returns 0 if
631 : * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
632 : * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
633 : * inode count threshold, or the usual negative error code for other errors.
634 : */
635 : STATIC int
636 638517 : xfs_ialloc_ag_alloc(
637 : struct xfs_perag *pag,
638 : struct xfs_trans *tp,
639 : struct xfs_buf *agbp)
640 : {
641 638517 : struct xfs_agi *agi;
642 638517 : struct xfs_alloc_arg args;
643 638517 : int error;
644 638517 : xfs_agino_t newino; /* new first inode's number */
645 638517 : xfs_agino_t newlen; /* new number of inodes */
646 638517 : int isaligned = 0; /* inode allocation at stripe */
647 : /* unit boundary */
648 : /* init. to full chunk */
649 638517 : struct xfs_inobt_rec_incore rec;
650 638517 : struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp);
651 638517 : uint16_t allocmask = (uint16_t) -1;
652 638517 : int do_sparse = 0;
653 :
654 638517 : memset(&args, 0, sizeof(args));
655 638517 : args.tp = tp;
656 638517 : args.mp = tp->t_mountp;
657 638517 : args.fsbno = NULLFSBLOCK;
658 638517 : args.oinfo = XFS_RMAP_OINFO_INODES;
659 638517 : args.pag = pag;
660 :
661 : #ifdef DEBUG
662 : /* randomly do sparse inode allocations */
663 638517 : if (xfs_has_sparseinodes(tp->t_mountp) &&
664 638514 : igeo->ialloc_min_blks < igeo->ialloc_blks)
665 638471 : do_sparse = get_random_u32_below(2);
666 : #endif
667 :
668 : /*
669 : * Locking will ensure that we don't have two callers in here
670 : * at one time.
671 : */
672 638517 : newlen = igeo->ialloc_inos;
673 638517 : if (igeo->maxicount &&
674 638516 : percpu_counter_read_positive(&args.mp->m_icount) + newlen >
675 : igeo->maxicount)
676 : return -ENOSPC;
677 638492 : args.minlen = args.maxlen = igeo->ialloc_blks;
678 : /*
679 : * First try to allocate inodes contiguous with the last-allocated
680 : * chunk of inodes. If the filesystem is striped, this will fill
681 : * an entire stripe unit with inodes.
682 : */
683 638492 : agi = agbp->b_addr;
684 638492 : newino = be32_to_cpu(agi->agi_newino);
685 638492 : args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
686 638492 : igeo->ialloc_blks;
687 638492 : if (do_sparse)
688 319108 : goto sparse_alloc;
689 621379 : if (likely(newino != NULLAGINO &&
690 : (args.agbno < be32_to_cpu(agi->agi_length)))) {
691 301988 : args.prod = 1;
692 :
693 : /*
694 : * We need to take into account alignment here to ensure that
695 : * we don't modify the free list if we fail to have an exact
696 : * block. If we don't have an exact match, and every oher
697 : * attempt allocation attempt fails, we'll end up cancelling
698 : * a dirty transaction and shutting down.
699 : *
700 : * For an exact allocation, alignment must be 1,
701 : * however we need to take cluster alignment into account when
702 : * fixing up the freelist. Use the minalignslop field to
703 : * indicate that extra blocks might be required for alignment,
704 : * but not to use them in the actual exact allocation.
705 : */
706 301988 : args.alignment = 1;
707 301988 : args.minalignslop = igeo->cluster_align - 1;
708 :
709 : /* Allow space for the inode btree to split. */
710 301988 : args.minleft = igeo->inobt_maxlevels;
711 603976 : error = xfs_alloc_vextent_exact_bno(&args,
712 301988 : XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
713 : args.agbno));
714 301988 : if (error)
715 : return error;
716 :
717 : /*
718 : * This request might have dirtied the transaction if the AG can
719 : * satisfy the request, but the exact block was not available.
720 : * If the allocation did fail, subsequent requests will relax
721 : * the exact agbno requirement and increase the alignment
722 : * instead. It is critical that the total size of the request
723 : * (len + alignment + slop) does not increase from this point
724 : * on, so reset minalignslop to ensure it is not included in
725 : * subsequent requests.
726 : */
727 301984 : args.minalignslop = 0;
728 : }
729 :
730 319380 : if (unlikely(args.fsbno == NULLFSBLOCK)) {
731 : /*
732 : * Set the alignment for the allocation.
733 : * If stripe alignment is turned on then align at stripe unit
734 : * boundary.
735 : * If the cluster size is smaller than a filesystem block
736 : * then we're doing I/O for inodes in filesystem block size
737 : * pieces, so don't need alignment anyway.
738 : */
739 259418 : isaligned = 0;
740 259418 : if (igeo->ialloc_align) {
741 0 : ASSERT(!xfs_has_noalign(args.mp));
742 0 : args.alignment = args.mp->m_dalign;
743 0 : isaligned = 1;
744 : } else
745 259418 : args.alignment = igeo->cluster_align;
746 : /*
747 : * Allocate a fixed-size extent of inodes.
748 : */
749 259418 : args.prod = 1;
750 : /*
751 : * Allow space for the inode btree to split.
752 : */
753 259418 : args.minleft = igeo->inobt_maxlevels;
754 518836 : error = xfs_alloc_vextent_near_bno(&args,
755 259418 : XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
756 : be32_to_cpu(agi->agi_root)));
757 259418 : if (error)
758 : return error;
759 : }
760 :
761 : /*
762 : * If stripe alignment is turned on, then try again with cluster
763 : * alignment.
764 : */
765 259416 : if (isaligned && args.fsbno == NULLFSBLOCK) {
766 0 : args.alignment = igeo->cluster_align;
767 0 : error = xfs_alloc_vextent_near_bno(&args,
768 0 : XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
769 : be32_to_cpu(agi->agi_root)));
770 0 : if (error)
771 : return error;
772 : }
773 :
774 : /*
775 : * Finally, try a sparse allocation if the filesystem supports it and
776 : * the sparse allocation length is smaller than a full chunk.
777 : */
778 319378 : if (xfs_has_sparseinodes(args.mp) &&
779 319376 : igeo->ialloc_min_blks < igeo->ialloc_blks &&
780 319333 : args.fsbno == NULLFSBLOCK) {
781 144317 : sparse_alloc:
782 463425 : args.alignment = args.mp->m_sb.sb_spino_align;
783 463425 : args.prod = 1;
784 :
785 463425 : args.minlen = igeo->ialloc_min_blks;
786 463425 : args.maxlen = args.minlen;
787 :
788 : /*
789 : * The inode record will be aligned to full chunk size. We must
790 : * prevent sparse allocation from AG boundaries that result in
791 : * invalid inode records, such as records that start at agbno 0
792 : * or extend beyond the AG.
793 : *
794 : * Set min agbno to the first aligned, non-zero agbno and max to
795 : * the last aligned agbno that is at least one full chunk from
796 : * the end of the AG.
797 : */
798 463425 : args.min_agbno = args.mp->m_sb.sb_inoalignmt;
799 463425 : args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
800 463425 : args.mp->m_sb.sb_inoalignmt) -
801 463425 : igeo->ialloc_blks;
802 :
803 926850 : error = xfs_alloc_vextent_near_bno(&args,
804 463425 : XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
805 : be32_to_cpu(agi->agi_root)));
806 463425 : if (error)
807 : return error;
808 :
809 463408 : newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
810 463408 : ASSERT(newlen <= XFS_INODES_PER_CHUNK);
811 463408 : allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
812 : }
813 :
814 638469 : if (args.fsbno == NULLFSBLOCK)
815 : return -EAGAIN;
816 :
817 352463 : ASSERT(args.len == args.minlen);
818 :
819 : /*
820 : * Stamp and write the inode buffers.
821 : *
822 : * Seed the new inode cluster with a random generation number. This
823 : * prevents short-term reuse of generation numbers if a chunk is
824 : * freed and then immediately reallocated. We use random numbers
825 : * rather than a linear progression to prevent the next generation
826 : * number from being easily guessable.
827 : */
828 352463 : error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno,
829 : args.agbno, args.len, get_random_u32());
830 :
831 352463 : if (error)
832 : return error;
833 : /*
834 : * Convert the results.
835 : */
836 352463 : newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
837 :
838 352463 : if (xfs_inobt_issparse(~allocmask)) {
839 : /*
840 : * We've allocated a sparse chunk. Align the startino and mask.
841 : */
842 177402 : xfs_align_sparse_ino(args.mp, &newino, &allocmask);
843 :
844 177402 : rec.ir_startino = newino;
845 177402 : rec.ir_holemask = ~allocmask;
846 177402 : rec.ir_count = newlen;
847 177402 : rec.ir_freecount = newlen;
848 177402 : rec.ir_free = XFS_INOBT_ALL_FREE;
849 :
850 : /*
851 : * Insert the sparse record into the inobt and allow for a merge
852 : * if necessary. If a merge does occur, rec is updated to the
853 : * merged record.
854 : */
855 177402 : error = xfs_inobt_insert_sprec(pag, tp, agbp,
856 : XFS_BTNUM_INO, &rec, true);
857 177402 : if (error == -EFSCORRUPTED) {
858 0 : xfs_alert(args.mp,
859 : "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
860 : XFS_AGINO_TO_INO(args.mp, pag->pag_agno,
861 : rec.ir_startino),
862 : rec.ir_holemask, rec.ir_count);
863 0 : xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
864 : }
865 177402 : if (error)
866 : return error;
867 :
868 : /*
869 : * We can't merge the part we've just allocated as for the inobt
870 : * due to finobt semantics. The original record may or may not
871 : * exist independent of whether physical inodes exist in this
872 : * sparse chunk.
873 : *
874 : * We must update the finobt record based on the inobt record.
875 : * rec contains the fully merged and up to date inobt record
876 : * from the previous call. Set merge false to replace any
877 : * existing record with this one.
878 : */
879 177402 : if (xfs_has_finobt(args.mp)) {
880 177402 : error = xfs_inobt_insert_sprec(pag, tp, agbp,
881 : XFS_BTNUM_FINO, &rec, false);
882 177402 : if (error)
883 : return error;
884 : }
885 : } else {
886 : /* full chunk - insert new records to both btrees */
887 175061 : error = xfs_inobt_insert(pag, tp, agbp, newino, newlen,
888 : XFS_BTNUM_INO);
889 175061 : if (error)
890 : return error;
891 :
892 175061 : if (xfs_has_finobt(args.mp)) {
893 175057 : error = xfs_inobt_insert(pag, tp, agbp, newino,
894 : newlen, XFS_BTNUM_FINO);
895 175057 : if (error)
896 : return error;
897 : }
898 : }
899 :
900 : /*
901 : * Update AGI counts and newino.
902 : */
903 352462 : be32_add_cpu(&agi->agi_count, newlen);
904 352462 : be32_add_cpu(&agi->agi_freecount, newlen);
905 352462 : pag->pagi_freecount += newlen;
906 352462 : pag->pagi_count += newlen;
907 352462 : agi->agi_newino = cpu_to_be32(newino);
908 :
909 : /*
910 : * Log allocation group header fields
911 : */
912 352462 : xfs_ialloc_log_agi(tp, agbp,
913 : XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
914 : /*
915 : * Modify/log superblock values for inode count and inode free count.
916 : */
917 352462 : xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
918 352462 : xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
919 352462 : return 0;
920 : }
921 :
922 : /*
923 : * Try to retrieve the next record to the left/right from the current one.
924 : */
925 : STATIC int
926 12 : xfs_ialloc_next_rec(
927 : struct xfs_btree_cur *cur,
928 : xfs_inobt_rec_incore_t *rec,
929 : int *done,
930 : int left)
931 : {
932 12 : int error;
933 12 : int i;
934 :
935 12 : if (left)
936 6 : error = xfs_btree_decrement(cur, 0, &i);
937 : else
938 6 : error = xfs_btree_increment(cur, 0, &i);
939 :
940 12 : if (error)
941 : return error;
942 12 : *done = !i;
943 12 : if (i) {
944 6 : error = xfs_inobt_get_rec(cur, rec, &i);
945 6 : if (error)
946 : return error;
947 6 : if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
948 0 : return -EFSCORRUPTED;
949 : }
950 :
951 : return 0;
952 : }
953 :
954 : STATIC int
955 160 : xfs_ialloc_get_rec(
956 : struct xfs_btree_cur *cur,
957 : xfs_agino_t agino,
958 : xfs_inobt_rec_incore_t *rec,
959 : int *done)
960 : {
961 160 : int error;
962 160 : int i;
963 :
964 160 : error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
965 160 : if (error)
966 : return error;
967 160 : *done = !i;
968 160 : if (i) {
969 80 : error = xfs_inobt_get_rec(cur, rec, &i);
970 80 : if (error)
971 : return error;
972 80 : if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
973 0 : return -EFSCORRUPTED;
974 : }
975 :
976 : return 0;
977 : }
978 :
979 : /*
980 : * Return the offset of the first free inode in the record. If the inode chunk
981 : * is sparsely allocated, we convert the record holemask to inode granularity
982 : * and mask off the unallocated regions from the inode free mask.
983 : */
984 : STATIC int
985 47345582 : xfs_inobt_first_free_inode(
986 : struct xfs_inobt_rec_incore *rec)
987 : {
988 47345582 : xfs_inofree_t realfree;
989 :
990 : /* if there are no holes, return the first available offset */
991 47345582 : if (!xfs_inobt_issparse(rec->ir_holemask))
992 30063932 : return xfs_lowbit64(rec->ir_free);
993 :
994 17281650 : realfree = xfs_inobt_irec_to_allocmask(rec);
995 17281879 : realfree &= rec->ir_free;
996 :
997 34563758 : return xfs_lowbit64(realfree);
998 : }
999 :
1000 : /*
1001 : * Allocate an inode using the inobt-only algorithm.
1002 : */
1003 : STATIC int
1004 392 : xfs_dialloc_ag_inobt(
1005 : struct xfs_perag *pag,
1006 : struct xfs_trans *tp,
1007 : struct xfs_buf *agbp,
1008 : xfs_ino_t parent,
1009 : xfs_ino_t *inop)
1010 : {
1011 392 : struct xfs_mount *mp = tp->t_mountp;
1012 392 : struct xfs_agi *agi = agbp->b_addr;
1013 392 : xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1014 392 : xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1015 392 : struct xfs_btree_cur *cur, *tcur;
1016 392 : struct xfs_inobt_rec_incore rec, trec;
1017 392 : xfs_ino_t ino;
1018 392 : int error;
1019 392 : int offset;
1020 392 : int i, j;
1021 392 : int searchdistance = 10;
1022 :
1023 784 : ASSERT(xfs_perag_initialised_agi(pag));
1024 784 : ASSERT(xfs_perag_allows_inodes(pag));
1025 392 : ASSERT(pag->pagi_freecount > 0);
1026 :
1027 392 : restart_pagno:
1028 392 : cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
1029 : /*
1030 : * If pagino is 0 (this is the root inode allocation) use newino.
1031 : * This must work because we've just allocated some.
1032 : */
1033 392 : if (!pagino)
1034 22 : pagino = be32_to_cpu(agi->agi_newino);
1035 :
1036 392 : error = xfs_check_agi_freecount(cur);
1037 392 : if (error)
1038 0 : goto error0;
1039 :
1040 : /*
1041 : * If in the same AG as the parent, try to get near the parent.
1042 : */
1043 392 : if (pagno == pag->pag_agno) {
1044 392 : int doneleft; /* done, to the left */
1045 392 : int doneright; /* done, to the right */
1046 :
1047 392 : error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1048 392 : if (error)
1049 0 : goto error0;
1050 392 : if (XFS_IS_CORRUPT(mp, i != 1)) {
1051 0 : error = -EFSCORRUPTED;
1052 0 : goto error0;
1053 : }
1054 :
1055 392 : error = xfs_inobt_get_rec(cur, &rec, &j);
1056 392 : if (error)
1057 0 : goto error0;
1058 392 : if (XFS_IS_CORRUPT(mp, j != 1)) {
1059 0 : error = -EFSCORRUPTED;
1060 0 : goto error0;
1061 : }
1062 :
1063 392 : if (rec.ir_freecount > 0) {
1064 : /*
1065 : * Found a free inode in the same chunk
1066 : * as the parent, done.
1067 : */
1068 392 : goto alloc_inode;
1069 : }
1070 :
1071 :
1072 : /*
1073 : * In the same AG as parent, but parent's chunk is full.
1074 : */
1075 :
1076 : /* duplicate the cursor, search left & right simultaneously */
1077 86 : error = xfs_btree_dup_cursor(cur, &tcur);
1078 86 : if (error)
1079 0 : goto error0;
1080 :
1081 : /*
1082 : * Skip to last blocks looked up if same parent inode.
1083 : */
1084 86 : if (pagino != NULLAGINO &&
1085 86 : pag->pagl_pagino == pagino &&
1086 80 : pag->pagl_leftrec != NULLAGINO &&
1087 80 : pag->pagl_rightrec != NULLAGINO) {
1088 80 : error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1089 : &trec, &doneleft);
1090 80 : if (error)
1091 0 : goto error1;
1092 :
1093 80 : error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1094 : &rec, &doneright);
1095 80 : if (error)
1096 0 : goto error1;
1097 : } else {
1098 : /* search left with tcur, back up 1 record */
1099 6 : error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1100 6 : if (error)
1101 0 : goto error1;
1102 :
1103 : /* search right with cur, go forward 1 record. */
1104 6 : error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1105 6 : if (error)
1106 0 : goto error1;
1107 : }
1108 :
1109 : /*
1110 : * Loop until we find an inode chunk with a free inode.
1111 : */
1112 86 : while (--searchdistance > 0 && (!doneleft || !doneright)) {
1113 86 : int useleft; /* using left inode chunk this time */
1114 :
1115 : /* figure out the closer block if both are valid. */
1116 86 : if (!doneleft && !doneright) {
1117 0 : useleft = pagino -
1118 0 : (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1119 0 : rec.ir_startino - pagino;
1120 : } else {
1121 86 : useleft = !doneleft;
1122 : }
1123 :
1124 : /* free inodes to the left? */
1125 86 : if (useleft && trec.ir_freecount) {
1126 0 : xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1127 0 : cur = tcur;
1128 :
1129 0 : pag->pagl_leftrec = trec.ir_startino;
1130 0 : pag->pagl_rightrec = rec.ir_startino;
1131 0 : pag->pagl_pagino = pagino;
1132 0 : rec = trec;
1133 0 : goto alloc_inode;
1134 : }
1135 :
1136 : /* free inodes to the right? */
1137 86 : if (!useleft && rec.ir_freecount) {
1138 86 : xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1139 :
1140 86 : pag->pagl_leftrec = trec.ir_startino;
1141 86 : pag->pagl_rightrec = rec.ir_startino;
1142 86 : pag->pagl_pagino = pagino;
1143 86 : goto alloc_inode;
1144 : }
1145 :
1146 : /* get next record to check */
1147 0 : if (useleft) {
1148 0 : error = xfs_ialloc_next_rec(tcur, &trec,
1149 : &doneleft, 1);
1150 : } else {
1151 0 : error = xfs_ialloc_next_rec(cur, &rec,
1152 : &doneright, 0);
1153 : }
1154 0 : if (error)
1155 0 : goto error1;
1156 : }
1157 :
1158 0 : if (searchdistance <= 0) {
1159 : /*
1160 : * Not in range - save last search
1161 : * location and allocate a new inode
1162 : */
1163 0 : xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1164 0 : pag->pagl_leftrec = trec.ir_startino;
1165 0 : pag->pagl_rightrec = rec.ir_startino;
1166 0 : pag->pagl_pagino = pagino;
1167 :
1168 : } else {
1169 : /*
1170 : * We've reached the end of the btree. because
1171 : * we are only searching a small chunk of the
1172 : * btree each search, there is obviously free
1173 : * inodes closer to the parent inode than we
1174 : * are now. restart the search again.
1175 : */
1176 0 : pag->pagl_pagino = NULLAGINO;
1177 0 : pag->pagl_leftrec = NULLAGINO;
1178 0 : pag->pagl_rightrec = NULLAGINO;
1179 0 : xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1180 0 : xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1181 0 : goto restart_pagno;
1182 : }
1183 : }
1184 :
1185 : /*
1186 : * In a different AG from the parent.
1187 : * See if the most recently allocated block has any free.
1188 : */
1189 0 : if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1190 0 : error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1191 : XFS_LOOKUP_EQ, &i);
1192 0 : if (error)
1193 0 : goto error0;
1194 :
1195 0 : if (i == 1) {
1196 0 : error = xfs_inobt_get_rec(cur, &rec, &j);
1197 0 : if (error)
1198 0 : goto error0;
1199 :
1200 0 : if (j == 1 && rec.ir_freecount > 0) {
1201 : /*
1202 : * The last chunk allocated in the group
1203 : * still has a free inode.
1204 : */
1205 0 : goto alloc_inode;
1206 : }
1207 : }
1208 : }
1209 :
1210 : /*
1211 : * None left in the last group, search the whole AG
1212 : */
1213 0 : error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1214 0 : if (error)
1215 0 : goto error0;
1216 0 : if (XFS_IS_CORRUPT(mp, i != 1)) {
1217 0 : error = -EFSCORRUPTED;
1218 0 : goto error0;
1219 : }
1220 :
1221 0 : for (;;) {
1222 0 : error = xfs_inobt_get_rec(cur, &rec, &i);
1223 0 : if (error)
1224 0 : goto error0;
1225 0 : if (XFS_IS_CORRUPT(mp, i != 1)) {
1226 0 : error = -EFSCORRUPTED;
1227 0 : goto error0;
1228 : }
1229 0 : if (rec.ir_freecount > 0)
1230 : break;
1231 0 : error = xfs_btree_increment(cur, 0, &i);
1232 0 : if (error)
1233 0 : goto error0;
1234 0 : if (XFS_IS_CORRUPT(mp, i != 1)) {
1235 0 : error = -EFSCORRUPTED;
1236 0 : goto error0;
1237 : }
1238 : }
1239 :
1240 0 : alloc_inode:
1241 392 : offset = xfs_inobt_first_free_inode(&rec);
1242 392 : ASSERT(offset >= 0);
1243 392 : ASSERT(offset < XFS_INODES_PER_CHUNK);
1244 392 : ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1245 : XFS_INODES_PER_CHUNK) == 0);
1246 392 : ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1247 392 : rec.ir_free &= ~XFS_INOBT_MASK(offset);
1248 392 : rec.ir_freecount--;
1249 392 : error = xfs_inobt_update(cur, &rec);
1250 392 : if (error)
1251 0 : goto error0;
1252 392 : be32_add_cpu(&agi->agi_freecount, -1);
1253 392 : xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1254 392 : pag->pagi_freecount--;
1255 :
1256 392 : error = xfs_check_agi_freecount(cur);
1257 392 : if (error)
1258 0 : goto error0;
1259 :
1260 392 : xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1261 392 : xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1262 392 : *inop = ino;
1263 392 : return 0;
1264 : error1:
1265 0 : xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1266 0 : error0:
1267 0 : xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1268 0 : return error;
1269 : }
1270 :
1271 : /*
1272 : * Use the free inode btree to allocate an inode based on distance from the
1273 : * parent. Note that the provided cursor may be deleted and replaced.
1274 : */
1275 : STATIC int
1276 44609919 : xfs_dialloc_ag_finobt_near(
1277 : xfs_agino_t pagino,
1278 : struct xfs_btree_cur **ocur,
1279 : struct xfs_inobt_rec_incore *rec)
1280 : {
1281 44609919 : struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1282 44609919 : struct xfs_btree_cur *rcur; /* right search cursor */
1283 44609919 : struct xfs_inobt_rec_incore rrec;
1284 44609919 : int error;
1285 44609919 : int i, j;
1286 :
1287 44609919 : error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1288 44612828 : if (error)
1289 : return error;
1290 :
1291 44612828 : if (i == 1) {
1292 4463856 : error = xfs_inobt_get_rec(lcur, rec, &i);
1293 4463860 : if (error)
1294 : return error;
1295 4463860 : if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1))
1296 0 : return -EFSCORRUPTED;
1297 :
1298 : /*
1299 : * See if we've landed in the parent inode record. The finobt
1300 : * only tracks chunks with at least one free inode, so record
1301 : * existence is enough.
1302 : */
1303 4463860 : if (pagino >= rec->ir_startino &&
1304 4463859 : pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1305 : return 0;
1306 : }
1307 :
1308 42643840 : error = xfs_btree_dup_cursor(lcur, &rcur);
1309 42643773 : if (error)
1310 : return error;
1311 :
1312 42644543 : error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1313 42642796 : if (error)
1314 0 : goto error_rcur;
1315 42642796 : if (j == 1) {
1316 41355041 : error = xfs_inobt_get_rec(rcur, &rrec, &j);
1317 41355118 : if (error)
1318 0 : goto error_rcur;
1319 41355118 : if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1320 0 : error = -EFSCORRUPTED;
1321 0 : goto error_rcur;
1322 : }
1323 : }
1324 :
1325 42642873 : if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1326 0 : error = -EFSCORRUPTED;
1327 0 : goto error_rcur;
1328 : }
1329 42642873 : if (i == 1 && j == 1) {
1330 : /*
1331 : * Both the left and right records are valid. Choose the closer
1332 : * inode chunk to the target.
1333 : */
1334 1205974 : if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1335 1205974 : (rrec.ir_startino - pagino)) {
1336 511216 : *rec = rrec;
1337 511216 : xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1338 511216 : *ocur = rcur;
1339 : } else {
1340 694758 : xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1341 : }
1342 41436899 : } else if (j == 1) {
1343 : /* only the right record is valid */
1344 40148002 : *rec = rrec;
1345 40148002 : xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1346 40148867 : *ocur = rcur;
1347 1288897 : } else if (i == 1) {
1348 : /* only the left record is valid */
1349 1288896 : xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1350 : }
1351 :
1352 : return 0;
1353 :
1354 0 : error_rcur:
1355 0 : xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1356 0 : return error;
1357 : }
1358 :
1359 : /*
1360 : * Use the free inode btree to find a free inode based on a newino hint. If
1361 : * the hint is NULL, find the first free inode in the AG.
1362 : */
1363 : STATIC int
1364 2731902 : xfs_dialloc_ag_finobt_newino(
1365 : struct xfs_agi *agi,
1366 : struct xfs_btree_cur *cur,
1367 : struct xfs_inobt_rec_incore *rec)
1368 : {
1369 2731902 : int error;
1370 2731902 : int i;
1371 :
1372 2731902 : if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1373 2686452 : error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1374 : XFS_LOOKUP_EQ, &i);
1375 2686466 : if (error)
1376 : return error;
1377 2686466 : if (i == 1) {
1378 2633105 : error = xfs_inobt_get_rec(cur, rec, &i);
1379 2633107 : if (error)
1380 : return error;
1381 2633107 : if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1382 0 : return -EFSCORRUPTED;
1383 : return 0;
1384 : }
1385 : }
1386 :
1387 : /*
1388 : * Find the first inode available in the AG.
1389 : */
1390 98811 : error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1391 98809 : if (error)
1392 : return error;
1393 98809 : if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1394 0 : return -EFSCORRUPTED;
1395 :
1396 98809 : error = xfs_inobt_get_rec(cur, rec, &i);
1397 98809 : if (error)
1398 : return error;
1399 98809 : if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1400 0 : return -EFSCORRUPTED;
1401 :
1402 : return 0;
1403 : }
1404 :
1405 : /*
1406 : * Update the inobt based on a modification made to the finobt. Also ensure that
1407 : * the records from both trees are equivalent post-modification.
1408 : */
1409 : STATIC int
1410 47339327 : xfs_dialloc_ag_update_inobt(
1411 : struct xfs_btree_cur *cur, /* inobt cursor */
1412 : struct xfs_inobt_rec_incore *frec, /* finobt record */
1413 : int offset) /* inode offset */
1414 : {
1415 47339327 : struct xfs_inobt_rec_incore rec;
1416 47339327 : int error;
1417 47339327 : int i;
1418 :
1419 47339327 : error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1420 47344831 : if (error)
1421 : return error;
1422 47344706 : if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1423 0 : return -EFSCORRUPTED;
1424 :
1425 47344706 : error = xfs_inobt_get_rec(cur, &rec, &i);
1426 47343944 : if (error)
1427 : return error;
1428 47343944 : if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1429 0 : return -EFSCORRUPTED;
1430 47343944 : ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1431 : XFS_INODES_PER_CHUNK) == 0);
1432 :
1433 47343944 : rec.ir_free &= ~XFS_INOBT_MASK(offset);
1434 47343944 : rec.ir_freecount--;
1435 :
1436 47343944 : if (XFS_IS_CORRUPT(cur->bc_mp,
1437 : rec.ir_free != frec->ir_free ||
1438 : rec.ir_freecount != frec->ir_freecount))
1439 0 : return -EFSCORRUPTED;
1440 :
1441 47343944 : return xfs_inobt_update(cur, &rec);
1442 : }
1443 :
1444 : /*
1445 : * Allocate an inode using the free inode btree, if available. Otherwise, fall
1446 : * back to the inobt search algorithm.
1447 : *
1448 : * The caller selected an AG for us, and made sure that free inodes are
1449 : * available.
1450 : */
1451 : static int
1452 47344553 : xfs_dialloc_ag(
1453 : struct xfs_perag *pag,
1454 : struct xfs_trans *tp,
1455 : struct xfs_buf *agbp,
1456 : xfs_ino_t parent,
1457 : xfs_ino_t *inop)
1458 : {
1459 47344553 : struct xfs_mount *mp = tp->t_mountp;
1460 47344553 : struct xfs_agi *agi = agbp->b_addr;
1461 47344553 : xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1462 47344553 : xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1463 47344553 : struct xfs_btree_cur *cur; /* finobt cursor */
1464 47344553 : struct xfs_btree_cur *icur; /* inobt cursor */
1465 47344553 : struct xfs_inobt_rec_incore rec;
1466 47344553 : xfs_ino_t ino;
1467 47344553 : int error;
1468 47344553 : int offset;
1469 47344553 : int i;
1470 :
1471 47344553 : if (!xfs_has_finobt(mp))
1472 392 : return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop);
1473 :
1474 : /*
1475 : * If pagino is 0 (this is the root inode allocation) use newino.
1476 : * This must work because we've just allocated some.
1477 : */
1478 47344161 : if (!pagino)
1479 8067 : pagino = be32_to_cpu(agi->agi_newino);
1480 :
1481 47344161 : cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_FINO);
1482 :
1483 47345228 : error = xfs_check_agi_freecount(cur);
1484 47344307 : if (error)
1485 304 : goto error_cur;
1486 :
1487 : /*
1488 : * The search algorithm depends on whether we're in the same AG as the
1489 : * parent. If so, find the closest available inode to the parent. If
1490 : * not, consider the agi hint or find the first free inode in the AG.
1491 : */
1492 47344003 : if (pag->pag_agno == pagno)
1493 44612094 : error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1494 : else
1495 2731909 : error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1496 47344478 : if (error)
1497 0 : goto error_cur;
1498 :
1499 47344478 : offset = xfs_inobt_first_free_inode(&rec);
1500 47343265 : ASSERT(offset >= 0);
1501 47343265 : ASSERT(offset < XFS_INODES_PER_CHUNK);
1502 47343265 : ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1503 : XFS_INODES_PER_CHUNK) == 0);
1504 47343265 : ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1505 :
1506 : /*
1507 : * Modify or remove the finobt record.
1508 : */
1509 47343265 : rec.ir_free &= ~XFS_INOBT_MASK(offset);
1510 47343265 : rec.ir_freecount--;
1511 47343265 : if (rec.ir_freecount)
1512 37638506 : error = xfs_inobt_update(cur, &rec);
1513 : else
1514 9704759 : error = xfs_btree_delete(cur, &i);
1515 47344554 : if (error)
1516 0 : goto error_cur;
1517 :
1518 : /*
1519 : * The finobt has now been updated appropriately. We haven't updated the
1520 : * agi and superblock yet, so we can create an inobt cursor and validate
1521 : * the original freecount. If all is well, make the equivalent update to
1522 : * the inobt using the finobt record and offset information.
1523 : */
1524 47344554 : icur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
1525 :
1526 47343717 : error = xfs_check_agi_freecount(icur);
1527 47344712 : if (error)
1528 26 : goto error_icur;
1529 :
1530 47344686 : error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1531 47341854 : if (error)
1532 125 : goto error_icur;
1533 :
1534 : /*
1535 : * Both trees have now been updated. We must update the perag and
1536 : * superblock before we can check the freecount for each btree.
1537 : */
1538 47341729 : be32_add_cpu(&agi->agi_freecount, -1);
1539 47341878 : xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1540 47344639 : pag->pagi_freecount--;
1541 :
1542 47344639 : xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1543 :
1544 47345080 : error = xfs_check_agi_freecount(icur);
1545 47344010 : if (error)
1546 0 : goto error_icur;
1547 47344010 : error = xfs_check_agi_freecount(cur);
1548 47344807 : if (error)
1549 0 : goto error_icur;
1550 :
1551 47344807 : xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1552 47342785 : xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1553 47340600 : *inop = ino;
1554 47340600 : return 0;
1555 :
1556 151 : error_icur:
1557 151 : xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1558 455 : error_cur:
1559 455 : xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1560 455 : return error;
1561 : }
1562 :
1563 : static int
1564 352462 : xfs_dialloc_roll(
1565 : struct xfs_trans **tpp,
1566 : struct xfs_buf *agibp)
1567 : {
1568 352462 : struct xfs_trans *tp = *tpp;
1569 352462 : struct xfs_dquot_acct *dqinfo;
1570 352462 : int error;
1571 :
1572 : /*
1573 : * Hold to on to the agibp across the commit so no other allocation can
1574 : * come in and take the free inodes we just allocated for our caller.
1575 : */
1576 352462 : xfs_trans_bhold(tp, agibp);
1577 :
1578 : /*
1579 : * We want the quota changes to be associated with the next transaction,
1580 : * NOT this one. So, detach the dqinfo from this and attach it to the
1581 : * next transaction.
1582 : */
1583 352462 : dqinfo = tp->t_dqinfo;
1584 352462 : tp->t_dqinfo = NULL;
1585 :
1586 352462 : error = xfs_trans_roll(&tp);
1587 :
1588 : /* Re-attach the quota info that we detached from prev trx. */
1589 352462 : tp->t_dqinfo = dqinfo;
1590 :
1591 : /*
1592 : * Join the buffer even on commit error so that the buffer is released
1593 : * when the caller cancels the transaction and doesn't have to handle
1594 : * this error case specially.
1595 : */
1596 352462 : xfs_trans_bjoin(tp, agibp);
1597 352462 : *tpp = tp;
1598 352462 : return error;
1599 : }
1600 :
1601 : static bool
1602 48973439 : xfs_dialloc_good_ag(
1603 : struct xfs_perag *pag,
1604 : struct xfs_trans *tp,
1605 : umode_t mode,
1606 : int flags,
1607 : bool ok_alloc)
1608 : {
1609 48973439 : struct xfs_mount *mp = tp->t_mountp;
1610 48973439 : xfs_extlen_t ineed;
1611 48973439 : xfs_extlen_t longest = 0;
1612 48973439 : int needspace;
1613 48973439 : int error;
1614 :
1615 48973439 : if (!pag)
1616 : return false;
1617 97946878 : if (!xfs_perag_allows_inodes(pag))
1618 : return false;
1619 :
1620 97946878 : if (!xfs_perag_initialised_agi(pag)) {
1621 76 : error = xfs_ialloc_read_agi(pag, tp, NULL);
1622 76 : if (error)
1623 : return false;
1624 : }
1625 :
1626 48973439 : if (pag->pagi_freecount)
1627 : return true;
1628 1981410 : if (!ok_alloc)
1629 : return false;
1630 :
1631 1389812 : if (!xfs_perag_initialised_agf(pag)) {
1632 13 : error = xfs_alloc_read_agf(pag, tp, flags, NULL);
1633 13 : if (error)
1634 : return false;
1635 : }
1636 :
1637 : /*
1638 : * Check that there is enough free space for the file plus a chunk of
1639 : * inodes if we need to allocate some. If this is the first pass across
1640 : * the AGs, take into account the potential space needed for alignment
1641 : * of inode chunks when checking the longest contiguous free space in
1642 : * the AG - this prevents us from getting ENOSPC because we have free
1643 : * space larger than ialloc_blks but alignment constraints prevent us
1644 : * from using it.
1645 : *
1646 : * If we can't find an AG with space for full alignment slack to be
1647 : * taken into account, we must be near ENOSPC in all AGs. Hence we
1648 : * don't include alignment for the second pass and so if we fail
1649 : * allocation due to alignment issues then it is most likely a real
1650 : * ENOSPC condition.
1651 : *
1652 : * XXX(dgc): this calculation is now bogus thanks to the per-ag
1653 : * reservations that xfs_alloc_fix_freelist() now does via
1654 : * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1655 : * be more than large enough for the check below to succeed, but
1656 : * xfs_alloc_space_available() will fail because of the non-zero
1657 : * metadata reservation and hence we won't actually be able to allocate
1658 : * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1659 : * because of this.
1660 : */
1661 694893 : ineed = M_IGEO(mp)->ialloc_min_blks;
1662 694893 : if (flags && ineed > 1)
1663 685346 : ineed += M_IGEO(mp)->cluster_align;
1664 694893 : longest = pag->pagf_longest;
1665 694893 : if (!longest)
1666 40 : longest = pag->pagf_flcount > 0;
1667 694893 : needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1668 :
1669 694893 : if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1670 52049 : return false;
1671 : return true;
1672 : }
1673 :
1674 : static int
1675 47634801 : xfs_dialloc_try_ag(
1676 : struct xfs_perag *pag,
1677 : struct xfs_trans **tpp,
1678 : xfs_ino_t parent,
1679 : xfs_ino_t *new_ino,
1680 : bool ok_alloc)
1681 : {
1682 47634801 : struct xfs_buf *agbp;
1683 47634801 : xfs_ino_t ino;
1684 47634801 : int error;
1685 :
1686 : /*
1687 : * Then read in the AGI buffer and recheck with the AGI buffer
1688 : * lock held.
1689 : */
1690 47634801 : error = xfs_ialloc_read_agi(pag, *tpp, &agbp);
1691 47634639 : if (error)
1692 : return error;
1693 :
1694 47634595 : if (!pag->pagi_freecount) {
1695 641444 : if (!ok_alloc) {
1696 2928 : error = -EAGAIN;
1697 2928 : goto out_release;
1698 : }
1699 :
1700 638516 : error = xfs_ialloc_ag_alloc(pag, *tpp, agbp);
1701 638511 : if (error < 0)
1702 286055 : goto out_release;
1703 :
1704 : /*
1705 : * We successfully allocated space for an inode cluster in this
1706 : * AG. Roll the transaction so that we can allocate one of the
1707 : * new inodes.
1708 : */
1709 352456 : ASSERT(pag->pagi_freecount > 0);
1710 352456 : error = xfs_dialloc_roll(tpp, agbp);
1711 352462 : if (error)
1712 0 : goto out_release;
1713 : }
1714 :
1715 : /* Allocate an inode in the found AG */
1716 47345613 : error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino);
1717 47344078 : if (!error)
1718 47345353 : *new_ino = ino;
1719 : return error;
1720 :
1721 288983 : out_release:
1722 288983 : xfs_trans_brelse(*tpp, agbp);
1723 288983 : return error;
1724 : }
1725 :
1726 : /*
1727 : * Allocate an on-disk inode.
1728 : *
1729 : * Mode is used to tell whether the new inode is a directory and hence where to
1730 : * locate it. The on-disk inode that is allocated will be returned in @new_ino
1731 : * on success, otherwise an error will be set to indicate the failure (e.g.
1732 : * -ENOSPC).
1733 : */
1734 : int
1735 47488825 : xfs_dialloc(
1736 : struct xfs_trans **tpp,
1737 : xfs_ino_t parent,
1738 : umode_t mode,
1739 : xfs_ino_t *new_ino)
1740 : {
1741 47488825 : struct xfs_mount *mp = (*tpp)->t_mountp;
1742 47488825 : xfs_agnumber_t agno;
1743 47488825 : int error = 0;
1744 47488825 : xfs_agnumber_t start_agno;
1745 47488825 : struct xfs_perag *pag;
1746 47488825 : struct xfs_ino_geometry *igeo = M_IGEO(mp);
1747 47488825 : bool ok_alloc = true;
1748 47488825 : bool low_space = false;
1749 47488825 : int flags;
1750 47488825 : xfs_ino_t ino = NULLFSINO;
1751 :
1752 : /*
1753 : * Directories, symlinks, and regular files frequently allocate at least
1754 : * one block, so factor that potential expansion when we examine whether
1755 : * an AG has enough space for file creation.
1756 : */
1757 47488825 : if (S_ISDIR(mode))
1758 3252498 : start_agno = (atomic_inc_return(&mp->m_agirotor) - 1) %
1759 3252493 : mp->m_maxagi;
1760 : else {
1761 44236332 : start_agno = XFS_INO_TO_AGNO(mp, parent);
1762 44236332 : if (start_agno >= mp->m_maxagi)
1763 0 : start_agno = 0;
1764 : }
1765 :
1766 : /*
1767 : * If we have already hit the ceiling of inode blocks then clear
1768 : * ok_alloc so we scan all available agi structures for a free
1769 : * inode.
1770 : *
1771 : * Read rough value of mp->m_icount by percpu_counter_read_positive,
1772 : * which will sacrifice the preciseness but improve the performance.
1773 : */
1774 47488830 : if (igeo->maxicount &&
1775 47491760 : percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1776 : > igeo->maxicount) {
1777 146525 : ok_alloc = false;
1778 : }
1779 :
1780 : /*
1781 : * If we are near to ENOSPC, we want to prefer allocation from AGs that
1782 : * have free inodes in them rather than use up free space allocating new
1783 : * inode chunks. Hence we turn off allocation for the first non-blocking
1784 : * pass through the AGs if we are near ENOSPC to consume free inodes
1785 : * that we can immediately allocate, but then we allow allocation on the
1786 : * second pass if we fail to find an AG with free inodes in it.
1787 : */
1788 47488830 : if (percpu_counter_read_positive(&mp->m_fdblocks) <
1789 47488830 : mp->m_low_space[XFS_LOWSP_1_PCNT]) {
1790 233662 : ok_alloc = false;
1791 233662 : low_space = true;
1792 : }
1793 :
1794 : /*
1795 : * Loop until we find an allocation group that either has free inodes
1796 : * or in which we can allocate some inodes. Iterate through the
1797 : * allocation groups upward, wrapping at the end.
1798 : */
1799 47488830 : flags = XFS_ALLOC_FLAG_TRYLOCK;
1800 47641201 : retry:
1801 49262117 : for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) {
1802 48973877 : if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) {
1803 47634776 : error = xfs_dialloc_try_ag(pag, tpp, parent,
1804 : &ino, ok_alloc);
1805 47634293 : if (error != -EAGAIN)
1806 : break;
1807 : error = 0;
1808 : }
1809 :
1810 3241832 : if (xfs_is_shutdown(mp)) {
1811 : error = -EFSCORRUPTED;
1812 : break;
1813 : }
1814 : }
1815 47643781 : if (pag)
1816 47345551 : xfs_perag_rele(pag);
1817 47641490 : if (error)
1818 548 : return error;
1819 47640942 : if (ino == NULLFSINO) {
1820 295562 : if (flags) {
1821 152371 : flags = 0;
1822 152371 : if (low_space)
1823 5444 : ok_alloc = true;
1824 152371 : goto retry;
1825 : }
1826 : return -ENOSPC;
1827 : }
1828 47345380 : *new_ino = ino;
1829 47345380 : return 0;
1830 : }
1831 :
1832 : /*
1833 : * Free the blocks of an inode chunk. We must consider that the inode chunk
1834 : * might be sparse and only free the regions that are allocated as part of the
1835 : * chunk.
1836 : */
1837 : static int
1838 65666 : xfs_difree_inode_chunk(
1839 : struct xfs_trans *tp,
1840 : xfs_agnumber_t agno,
1841 : struct xfs_inobt_rec_incore *rec)
1842 : {
1843 65666 : struct xfs_mount *mp = tp->t_mountp;
1844 65666 : xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp,
1845 : rec->ir_startino);
1846 65666 : int startidx, endidx;
1847 65666 : int nextbit;
1848 65666 : xfs_agblock_t agbno;
1849 65666 : int contigblk;
1850 65666 : DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1851 :
1852 65666 : if (!xfs_inobt_issparse(rec->ir_holemask)) {
1853 : /* not sparse, calculate extent info directly */
1854 104466 : return xfs_free_extent_later(tp,
1855 52233 : XFS_AGB_TO_FSB(mp, agno, sagbno),
1856 52233 : M_IGEO(mp)->ialloc_blks, &XFS_RMAP_OINFO_INODES,
1857 : XFS_AG_RESV_NONE);
1858 : }
1859 :
1860 : /* holemask is only 16-bits (fits in an unsigned long) */
1861 13433 : ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1862 13433 : holemask[0] = rec->ir_holemask;
1863 :
1864 : /*
1865 : * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1866 : * holemask and convert the start/end index of each range to an extent.
1867 : * We start with the start and end index both pointing at the first 0 in
1868 : * the mask.
1869 : */
1870 13433 : startidx = endidx = find_first_zero_bit(holemask,
1871 : XFS_INOBT_HOLEMASK_BITS);
1872 13433 : nextbit = startidx + 1;
1873 120897 : while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1874 107464 : int error;
1875 :
1876 107464 : nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1877 : nextbit);
1878 : /*
1879 : * If the next zero bit is contiguous, update the end index of
1880 : * the current range and continue.
1881 : */
1882 107464 : if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1883 94031 : nextbit == endidx + 1) {
1884 94031 : endidx = nextbit;
1885 94031 : goto next;
1886 : }
1887 :
1888 : /*
1889 : * nextbit is not contiguous with the current end index. Convert
1890 : * the current start/end to an extent and add it to the free
1891 : * list.
1892 : */
1893 0 : agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1894 13433 : mp->m_sb.sb_inopblock;
1895 26866 : contigblk = ((endidx - startidx + 1) *
1896 0 : XFS_INODES_PER_HOLEMASK_BIT) /
1897 13433 : mp->m_sb.sb_inopblock;
1898 :
1899 13433 : ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1900 13433 : ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1901 26866 : error = xfs_free_extent_later(tp,
1902 13433 : XFS_AGB_TO_FSB(mp, agno, agbno), contigblk,
1903 : &XFS_RMAP_OINFO_INODES, XFS_AG_RESV_NONE);
1904 13433 : if (error)
1905 0 : return error;
1906 :
1907 : /* reset range to current bit and carry on... */
1908 : startidx = endidx = nextbit;
1909 :
1910 107464 : next:
1911 107464 : nextbit++;
1912 : }
1913 : return 0;
1914 : }
1915 :
1916 : STATIC int
1917 34311133 : xfs_difree_inobt(
1918 : struct xfs_perag *pag,
1919 : struct xfs_trans *tp,
1920 : struct xfs_buf *agbp,
1921 : xfs_agino_t agino,
1922 : struct xfs_icluster *xic,
1923 : struct xfs_inobt_rec_incore *orec)
1924 : {
1925 34311133 : struct xfs_mount *mp = pag->pag_mount;
1926 34311133 : struct xfs_agi *agi = agbp->b_addr;
1927 34311133 : struct xfs_btree_cur *cur;
1928 34311133 : struct xfs_inobt_rec_incore rec;
1929 34311133 : int ilen;
1930 34311133 : int error;
1931 34311133 : int i;
1932 34311133 : int off;
1933 :
1934 34311133 : ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1935 68622266 : ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1936 :
1937 : /*
1938 : * Initialize the cursor.
1939 : */
1940 34311133 : cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
1941 :
1942 34311129 : error = xfs_check_agi_freecount(cur);
1943 34310635 : if (error)
1944 5 : goto error0;
1945 :
1946 : /*
1947 : * Look for the entry describing this inode.
1948 : */
1949 34310630 : if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1950 1 : xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1951 : __func__, error);
1952 1 : goto error0;
1953 : }
1954 34311615 : if (XFS_IS_CORRUPT(mp, i != 1)) {
1955 0 : error = -EFSCORRUPTED;
1956 0 : goto error0;
1957 : }
1958 34311615 : error = xfs_inobt_get_rec(cur, &rec, &i);
1959 34311700 : if (error) {
1960 0 : xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1961 : __func__, error);
1962 0 : goto error0;
1963 : }
1964 34311700 : if (XFS_IS_CORRUPT(mp, i != 1)) {
1965 0 : error = -EFSCORRUPTED;
1966 0 : goto error0;
1967 : }
1968 : /*
1969 : * Get the offset in the inode chunk.
1970 : */
1971 34311700 : off = agino - rec.ir_startino;
1972 34311700 : ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1973 34311700 : ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1974 : /*
1975 : * Mark the inode free & increment the count.
1976 : */
1977 34311700 : rec.ir_free |= XFS_INOBT_MASK(off);
1978 34311700 : rec.ir_freecount++;
1979 :
1980 : /*
1981 : * When an inode chunk is free, it becomes eligible for removal. Don't
1982 : * remove the chunk if the block size is large enough for multiple inode
1983 : * chunks (that might not be free).
1984 : */
1985 34311700 : if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
1986 65666 : mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1987 65666 : xic->deleted = true;
1988 65666 : xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
1989 : rec.ir_startino);
1990 65666 : xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1991 :
1992 : /*
1993 : * Remove the inode cluster from the AGI B+Tree, adjust the
1994 : * AGI and Superblock inode counts, and mark the disk space
1995 : * to be freed when the transaction is committed.
1996 : */
1997 65666 : ilen = rec.ir_freecount;
1998 65666 : be32_add_cpu(&agi->agi_count, -ilen);
1999 65666 : be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
2000 65666 : xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
2001 65666 : pag->pagi_freecount -= ilen - 1;
2002 65666 : pag->pagi_count -= ilen;
2003 65666 : xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
2004 65666 : xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
2005 :
2006 65666 : if ((error = xfs_btree_delete(cur, &i))) {
2007 0 : xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
2008 : __func__, error);
2009 0 : goto error0;
2010 : }
2011 :
2012 65666 : error = xfs_difree_inode_chunk(tp, pag->pag_agno, &rec);
2013 65666 : if (error)
2014 0 : goto error0;
2015 : } else {
2016 34246034 : xic->deleted = false;
2017 :
2018 34246034 : error = xfs_inobt_update(cur, &rec);
2019 34245916 : if (error) {
2020 0 : xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2021 : __func__, error);
2022 0 : goto error0;
2023 : }
2024 :
2025 : /*
2026 : * Change the inode free counts and log the ag/sb changes.
2027 : */
2028 34245916 : be32_add_cpu(&agi->agi_freecount, 1);
2029 34245869 : xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2030 34244556 : pag->pagi_freecount++;
2031 34244556 : xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2032 : }
2033 :
2034 34310788 : error = xfs_check_agi_freecount(cur);
2035 34310251 : if (error)
2036 0 : goto error0;
2037 :
2038 34310251 : *orec = rec;
2039 34310251 : xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2040 34310251 : return 0;
2041 :
2042 6 : error0:
2043 6 : xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2044 6 : return error;
2045 : }
2046 :
2047 : /*
2048 : * Free an inode in the free inode btree.
2049 : */
2050 : STATIC int
2051 34311056 : xfs_difree_finobt(
2052 : struct xfs_perag *pag,
2053 : struct xfs_trans *tp,
2054 : struct xfs_buf *agbp,
2055 : xfs_agino_t agino,
2056 : struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2057 : {
2058 34311056 : struct xfs_mount *mp = pag->pag_mount;
2059 34311056 : struct xfs_btree_cur *cur;
2060 34311056 : struct xfs_inobt_rec_incore rec;
2061 34311056 : int offset = agino - ibtrec->ir_startino;
2062 34311056 : int error;
2063 34311056 : int i;
2064 :
2065 34311056 : cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_FINO);
2066 :
2067 34310980 : error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2068 34312125 : if (error)
2069 8 : goto error;
2070 34312117 : if (i == 0) {
2071 : /*
2072 : * If the record does not exist in the finobt, we must have just
2073 : * freed an inode in a previously fully allocated chunk. If not,
2074 : * something is out of sync.
2075 : */
2076 9424127 : if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2077 0 : error = -EFSCORRUPTED;
2078 0 : goto error;
2079 : }
2080 :
2081 9424127 : error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2082 : ibtrec->ir_count,
2083 : ibtrec->ir_freecount,
2084 : ibtrec->ir_free, &i);
2085 9423379 : if (error)
2086 0 : goto error;
2087 9423379 : ASSERT(i == 1);
2088 :
2089 9423379 : goto out;
2090 : }
2091 :
2092 : /*
2093 : * Read and update the existing record. We could just copy the ibtrec
2094 : * across here, but that would defeat the purpose of having redundant
2095 : * metadata. By making the modifications independently, we can catch
2096 : * corruptions that we wouldn't see if we just copied from one record
2097 : * to another.
2098 : */
2099 24887990 : error = xfs_inobt_get_rec(cur, &rec, &i);
2100 24887924 : if (error)
2101 0 : goto error;
2102 24887924 : if (XFS_IS_CORRUPT(mp, i != 1)) {
2103 0 : error = -EFSCORRUPTED;
2104 0 : goto error;
2105 : }
2106 :
2107 24887924 : rec.ir_free |= XFS_INOBT_MASK(offset);
2108 24887924 : rec.ir_freecount++;
2109 :
2110 24887924 : if (XFS_IS_CORRUPT(mp,
2111 : rec.ir_free != ibtrec->ir_free ||
2112 : rec.ir_freecount != ibtrec->ir_freecount)) {
2113 0 : error = -EFSCORRUPTED;
2114 0 : goto error;
2115 : }
2116 :
2117 : /*
2118 : * The content of inobt records should always match between the inobt
2119 : * and finobt. The lifecycle of records in the finobt is different from
2120 : * the inobt in that the finobt only tracks records with at least one
2121 : * free inode. Hence, if all of the inodes are free and we aren't
2122 : * keeping inode chunks permanently on disk, remove the record.
2123 : * Otherwise, update the record with the new information.
2124 : *
2125 : * Note that we currently can't free chunks when the block size is large
2126 : * enough for multiple chunks. Leave the finobt record to remain in sync
2127 : * with the inobt.
2128 : */
2129 24887924 : if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2130 65666 : mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2131 65666 : error = xfs_btree_delete(cur, &i);
2132 65666 : if (error)
2133 0 : goto error;
2134 65666 : ASSERT(i == 1);
2135 : } else {
2136 24822258 : error = xfs_inobt_update(cur, &rec);
2137 24822303 : if (error)
2138 0 : goto error;
2139 : }
2140 :
2141 24822303 : out:
2142 34311348 : error = xfs_check_agi_freecount(cur);
2143 34311101 : if (error)
2144 0 : goto error;
2145 :
2146 34311101 : xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2147 34311101 : return 0;
2148 :
2149 8 : error:
2150 8 : xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2151 8 : return error;
2152 : }
2153 :
2154 : /*
2155 : * Free disk inode. Carefully avoids touching the incore inode, all
2156 : * manipulations incore are the caller's responsibility.
2157 : * The on-disk inode is not changed by this operation, only the
2158 : * btree (free inode mask) is changed.
2159 : */
2160 : int
2161 34311312 : xfs_difree(
2162 : struct xfs_trans *tp,
2163 : struct xfs_perag *pag,
2164 : xfs_ino_t inode,
2165 : struct xfs_icluster *xic)
2166 : {
2167 : /* REFERENCED */
2168 34311312 : xfs_agblock_t agbno; /* block number containing inode */
2169 34311312 : struct xfs_buf *agbp; /* buffer for allocation group header */
2170 34311312 : xfs_agino_t agino; /* allocation group inode number */
2171 34311312 : int error; /* error return value */
2172 34311312 : struct xfs_mount *mp = tp->t_mountp;
2173 34311312 : struct xfs_inobt_rec_incore rec;/* btree record */
2174 :
2175 : /*
2176 : * Break up inode number into its components.
2177 : */
2178 34311312 : if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) {
2179 0 : xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).",
2180 : __func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno);
2181 0 : ASSERT(0);
2182 0 : return -EINVAL;
2183 : }
2184 34311312 : agino = XFS_INO_TO_AGINO(mp, inode);
2185 34311312 : if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2186 0 : xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2187 : __func__, (unsigned long long)inode,
2188 : (unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2189 0 : ASSERT(0);
2190 0 : return -EINVAL;
2191 : }
2192 34311312 : agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2193 34311312 : if (agbno >= mp->m_sb.sb_agblocks) {
2194 0 : xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2195 : __func__, agbno, mp->m_sb.sb_agblocks);
2196 0 : ASSERT(0);
2197 0 : return -EINVAL;
2198 : }
2199 : /*
2200 : * Get the allocation group header.
2201 : */
2202 34311312 : error = xfs_ialloc_read_agi(pag, tp, &agbp);
2203 34311527 : if (error) {
2204 144 : xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2205 : __func__, error);
2206 144 : return error;
2207 : }
2208 :
2209 : /*
2210 : * Fix up the inode allocation btree.
2211 : */
2212 34311383 : error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec);
2213 34311338 : if (error)
2214 6 : goto error0;
2215 :
2216 : /*
2217 : * Fix up the free inode btree.
2218 : */
2219 34311332 : if (xfs_has_finobt(mp)) {
2220 34311273 : error = xfs_difree_finobt(pag, tp, agbp, agino, &rec);
2221 34311524 : if (error)
2222 8 : goto error0;
2223 : }
2224 :
2225 : return 0;
2226 :
2227 : error0:
2228 : return error;
2229 : }
2230 :
2231 : STATIC int
2232 354492569 : xfs_imap_lookup(
2233 : struct xfs_perag *pag,
2234 : struct xfs_trans *tp,
2235 : xfs_agino_t agino,
2236 : xfs_agblock_t agbno,
2237 : xfs_agblock_t *chunk_agbno,
2238 : xfs_agblock_t *offset_agbno,
2239 : int flags)
2240 : {
2241 354492569 : struct xfs_mount *mp = pag->pag_mount;
2242 354492569 : struct xfs_inobt_rec_incore rec;
2243 354492569 : struct xfs_btree_cur *cur;
2244 354492569 : struct xfs_buf *agbp;
2245 354492569 : int error;
2246 354492569 : int i;
2247 :
2248 354492569 : error = xfs_ialloc_read_agi(pag, tp, &agbp);
2249 354540587 : if (error) {
2250 162 : xfs_alert(mp,
2251 : "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2252 : __func__, error, pag->pag_agno);
2253 162 : return error;
2254 : }
2255 :
2256 : /*
2257 : * Lookup the inode record for the given agino. If the record cannot be
2258 : * found, then it's an invalid inode number and we should abort. Once
2259 : * we have a record, we need to ensure it contains the inode number
2260 : * we are looking up.
2261 : */
2262 354540425 : cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
2263 354539105 : error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2264 354538344 : if (!error) {
2265 354540593 : if (i)
2266 354541089 : error = xfs_inobt_get_rec(cur, &rec, &i);
2267 354539279 : if (!error && i == 0)
2268 25 : error = -EINVAL;
2269 : }
2270 :
2271 354537030 : xfs_trans_brelse(tp, agbp);
2272 354541326 : xfs_btree_del_cursor(cur, error);
2273 354537618 : if (error)
2274 : return error;
2275 :
2276 : /* check that the returned record contains the required inode */
2277 354537584 : if (rec.ir_startino > agino ||
2278 354537584 : rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2279 : return -EINVAL;
2280 :
2281 : /* for untrusted inodes check it is allocated first */
2282 354504149 : if ((flags & XFS_IGET_UNTRUSTED) &&
2283 354500037 : (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2284 : return -EINVAL;
2285 :
2286 354503278 : *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2287 354503278 : *offset_agbno = agbno - *chunk_agbno;
2288 354503278 : return 0;
2289 : }
2290 :
2291 : /*
2292 : * Return the location of the inode in imap, for mapping it into a buffer.
2293 : */
2294 : int
2295 374804633 : xfs_imap(
2296 : struct xfs_perag *pag,
2297 : struct xfs_trans *tp,
2298 : xfs_ino_t ino, /* inode to locate */
2299 : struct xfs_imap *imap, /* location map structure */
2300 : uint flags) /* flags for inode btree lookup */
2301 : {
2302 374804633 : struct xfs_mount *mp = pag->pag_mount;
2303 374804633 : xfs_agblock_t agbno; /* block number of inode in the alloc group */
2304 374804633 : xfs_agino_t agino; /* inode number within alloc group */
2305 374804633 : xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2306 374804633 : xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2307 374804633 : int error; /* error code */
2308 374804633 : int offset; /* index of inode in its buffer */
2309 374804633 : xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2310 :
2311 374804633 : ASSERT(ino != NULLFSINO);
2312 :
2313 : /*
2314 : * Split up the inode number into its parts.
2315 : */
2316 374804633 : agino = XFS_INO_TO_AGINO(mp, ino);
2317 374804633 : agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2318 374804633 : if (agbno >= mp->m_sb.sb_agblocks ||
2319 374800149 : ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2320 13561 : error = -EINVAL;
2321 : #ifdef DEBUG
2322 : /*
2323 : * Don't output diagnostic information for untrusted inodes
2324 : * as they can be invalid without implying corruption.
2325 : */
2326 13561 : if (flags & XFS_IGET_UNTRUSTED)
2327 : return error;
2328 0 : if (agbno >= mp->m_sb.sb_agblocks) {
2329 0 : xfs_alert(mp,
2330 : "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2331 : __func__, (unsigned long long)agbno,
2332 : (unsigned long)mp->m_sb.sb_agblocks);
2333 : }
2334 0 : if (ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2335 0 : xfs_alert(mp,
2336 : "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2337 : __func__, ino,
2338 : XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2339 : }
2340 0 : xfs_stack_trace();
2341 : #endif /* DEBUG */
2342 0 : return error;
2343 : }
2344 :
2345 : /*
2346 : * For bulkstat and handle lookups, we have an untrusted inode number
2347 : * that we have to verify is valid. We cannot do this just by reading
2348 : * the inode buffer as it may have been unlinked and removed leaving
2349 : * inodes in stale state on disk. Hence we have to do a btree lookup
2350 : * in all cases where an untrusted inode number is passed.
2351 : */
2352 374791072 : if (flags & XFS_IGET_UNTRUSTED) {
2353 354516473 : error = xfs_imap_lookup(pag, tp, agino, agbno,
2354 : &chunk_agbno, &offset_agbno, flags);
2355 354528825 : if (error)
2356 : return error;
2357 354499379 : goto out_map;
2358 : }
2359 :
2360 : /*
2361 : * If the inode cluster size is the same as the blocksize or
2362 : * smaller we get to the buffer by simple arithmetics.
2363 : */
2364 20274599 : if (M_IGEO(mp)->blocks_per_cluster == 1) {
2365 2460 : offset = XFS_INO_TO_OFFSET(mp, ino);
2366 2460 : ASSERT(offset < mp->m_sb.sb_inopblock);
2367 :
2368 2460 : imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno);
2369 2460 : imap->im_len = XFS_FSB_TO_BB(mp, 1);
2370 0 : imap->im_boffset = (unsigned short)(offset <<
2371 2460 : mp->m_sb.sb_inodelog);
2372 2460 : return 0;
2373 : }
2374 :
2375 : /*
2376 : * If the inode chunks are aligned then use simple maths to
2377 : * find the location. Otherwise we have to do a btree
2378 : * lookup to find the location.
2379 : */
2380 20272139 : if (M_IGEO(mp)->inoalign_mask) {
2381 20272139 : offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2382 20272139 : chunk_agbno = agbno - offset_agbno;
2383 : } else {
2384 0 : error = xfs_imap_lookup(pag, tp, agino, agbno,
2385 : &chunk_agbno, &offset_agbno, flags);
2386 0 : if (error)
2387 : return error;
2388 : }
2389 :
2390 0 : out_map:
2391 374771518 : ASSERT(agbno >= chunk_agbno);
2392 749543036 : cluster_agbno = chunk_agbno +
2393 374771518 : ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2394 374771518 : M_IGEO(mp)->blocks_per_cluster);
2395 749543036 : offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2396 374771518 : XFS_INO_TO_OFFSET(mp, ino);
2397 :
2398 374771518 : imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno);
2399 374771518 : imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2400 374771518 : imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2401 :
2402 : /*
2403 : * If the inode number maps to a block outside the bounds
2404 : * of the file system then return NULL rather than calling
2405 : * read_buf and panicing when we get an error from the
2406 : * driver.
2407 : */
2408 749543036 : if ((imap->im_blkno + imap->im_len) >
2409 374771518 : XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2410 0 : xfs_alert(mp,
2411 : "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2412 : __func__, (unsigned long long) imap->im_blkno,
2413 : (unsigned long long) imap->im_len,
2414 : XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2415 0 : return -EINVAL;
2416 : }
2417 : return 0;
2418 : }
2419 :
2420 : /*
2421 : * Log specified fields for the ag hdr (inode section). The growth of the agi
2422 : * structure over time requires that we interpret the buffer as two logical
2423 : * regions delineated by the end of the unlinked list. This is due to the size
2424 : * of the hash table and its location in the middle of the agi.
2425 : *
2426 : * For example, a request to log a field before agi_unlinked and a field after
2427 : * agi_unlinked could cause us to log the entire hash table and use an excessive
2428 : * amount of log space. To avoid this behavior, log the region up through
2429 : * agi_unlinked in one call and the region after agi_unlinked through the end of
2430 : * the structure in another.
2431 : */
2432 : void
2433 82193495 : xfs_ialloc_log_agi(
2434 : struct xfs_trans *tp,
2435 : struct xfs_buf *bp,
2436 : uint32_t fields)
2437 : {
2438 82193495 : int first; /* first byte number */
2439 82193495 : int last; /* last byte number */
2440 82193495 : static const short offsets[] = { /* field starting offsets */
2441 : /* keep in sync with bit definitions */
2442 : offsetof(xfs_agi_t, agi_magicnum),
2443 : offsetof(xfs_agi_t, agi_versionnum),
2444 : offsetof(xfs_agi_t, agi_seqno),
2445 : offsetof(xfs_agi_t, agi_length),
2446 : offsetof(xfs_agi_t, agi_count),
2447 : offsetof(xfs_agi_t, agi_root),
2448 : offsetof(xfs_agi_t, agi_level),
2449 : offsetof(xfs_agi_t, agi_freecount),
2450 : offsetof(xfs_agi_t, agi_newino),
2451 : offsetof(xfs_agi_t, agi_dirino),
2452 : offsetof(xfs_agi_t, agi_unlinked),
2453 : offsetof(xfs_agi_t, agi_free_root),
2454 : offsetof(xfs_agi_t, agi_free_level),
2455 : offsetof(xfs_agi_t, agi_iblocks),
2456 : sizeof(xfs_agi_t)
2457 : };
2458 : #ifdef DEBUG
2459 82193495 : struct xfs_agi *agi = bp->b_addr;
2460 :
2461 82193495 : ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2462 : #endif
2463 :
2464 : /*
2465 : * Compute byte offsets for the first and last fields in the first
2466 : * region and log the agi buffer. This only logs up through
2467 : * agi_unlinked.
2468 : */
2469 82193495 : if (fields & XFS_AGI_ALL_BITS_R1) {
2470 82193786 : xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2471 : &first, &last);
2472 82189236 : xfs_trans_log_buf(tp, bp, first, last);
2473 : }
2474 :
2475 : /*
2476 : * Mask off the bits in the first region and calculate the first and
2477 : * last field offsets for any bits in the second region.
2478 : */
2479 82188000 : fields &= ~XFS_AGI_ALL_BITS_R1;
2480 82188000 : if (fields) {
2481 1806 : xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2482 : &first, &last);
2483 1806 : xfs_trans_log_buf(tp, bp, first, last);
2484 : }
2485 82188000 : }
2486 :
2487 : static xfs_failaddr_t
2488 1871332 : xfs_agi_verify(
2489 : struct xfs_buf *bp)
2490 : {
2491 1871332 : struct xfs_mount *mp = bp->b_mount;
2492 1871332 : struct xfs_agi *agi = bp->b_addr;
2493 1871332 : xfs_failaddr_t fa;
2494 1871332 : uint32_t agi_seqno = be32_to_cpu(agi->agi_seqno);
2495 1871332 : uint32_t agi_length = be32_to_cpu(agi->agi_length);
2496 1871332 : int i;
2497 :
2498 1871332 : if (xfs_has_crc(mp)) {
2499 1868868 : if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2500 0 : return __this_address;
2501 1868914 : if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2502 0 : return __this_address;
2503 : }
2504 :
2505 : /*
2506 : * Validate the magic number of the agi block.
2507 : */
2508 1871381 : if (!xfs_verify_magic(bp, agi->agi_magicnum))
2509 0 : return __this_address;
2510 1871328 : if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2511 0 : return __this_address;
2512 :
2513 1871345 : fa = xfs_validate_ag_length(bp, agi_seqno, agi_length);
2514 1871295 : if (fa)
2515 : return fa;
2516 :
2517 1871332 : if (be32_to_cpu(agi->agi_level) < 1 ||
2518 3742664 : be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2519 71 : return __this_address;
2520 :
2521 1871262 : if (xfs_has_finobt(mp) &&
2522 3737758 : (be32_to_cpu(agi->agi_free_level) < 1 ||
2523 1868879 : be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2524 0 : return __this_address;
2525 :
2526 121621420 : for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2527 119750115 : if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2528 119434135 : continue;
2529 316023 : if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2530 0 : return __this_address;
2531 : }
2532 :
2533 : return NULL;
2534 : }
2535 :
2536 : static void
2537 244966 : xfs_agi_read_verify(
2538 : struct xfs_buf *bp)
2539 : {
2540 244966 : struct xfs_mount *mp = bp->b_mount;
2541 244966 : xfs_failaddr_t fa;
2542 :
2543 489816 : if (xfs_has_crc(mp) &&
2544 : !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2545 2 : xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2546 : else {
2547 244964 : fa = xfs_agi_verify(bp);
2548 244964 : if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2549 0 : xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2550 : }
2551 244966 : }
2552 :
2553 : static void
2554 479390 : xfs_agi_write_verify(
2555 : struct xfs_buf *bp)
2556 : {
2557 479390 : struct xfs_mount *mp = bp->b_mount;
2558 479390 : struct xfs_buf_log_item *bip = bp->b_log_item;
2559 479390 : struct xfs_agi *agi = bp->b_addr;
2560 479390 : xfs_failaddr_t fa;
2561 :
2562 479390 : fa = xfs_agi_verify(bp);
2563 479390 : if (fa) {
2564 0 : xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2565 0 : return;
2566 : }
2567 :
2568 479390 : if (!xfs_has_crc(mp))
2569 : return;
2570 :
2571 477094 : if (bip)
2572 471686 : agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2573 477094 : xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2574 : }
2575 :
2576 : const struct xfs_buf_ops xfs_agi_buf_ops = {
2577 : .name = "xfs_agi",
2578 : .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2579 : .verify_read = xfs_agi_read_verify,
2580 : .verify_write = xfs_agi_write_verify,
2581 : .verify_struct = xfs_agi_verify,
2582 : };
2583 :
2584 : /*
2585 : * Read in the allocation group header (inode allocation section)
2586 : */
2587 : int
2588 1464968922 : xfs_read_agi(
2589 : struct xfs_perag *pag,
2590 : struct xfs_trans *tp,
2591 : struct xfs_buf **agibpp)
2592 : {
2593 1464968922 : struct xfs_mount *mp = pag->pag_mount;
2594 1464968922 : int error;
2595 :
2596 1464968922 : trace_xfs_read_agi(pag->pag_mount, pag->pag_agno);
2597 :
2598 4395171891 : error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2599 1465057297 : XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)),
2600 1465057297 : XFS_FSS_TO_BB(mp, 1), 0, agibpp, &xfs_agi_buf_ops);
2601 1465254367 : if (error)
2602 : return error;
2603 1465247268 : if (tp)
2604 1464377857 : xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF);
2605 :
2606 1465286783 : xfs_buf_set_ref(*agibpp, XFS_AGI_REF);
2607 1465286783 : return 0;
2608 : }
2609 :
2610 : /*
2611 : * Read in the agi and initialise the per-ag data. If the caller supplies a
2612 : * @agibpp, return the locked AGI buffer to them, otherwise release it.
2613 : */
2614 : int
2615 1391824921 : xfs_ialloc_read_agi(
2616 : struct xfs_perag *pag,
2617 : struct xfs_trans *tp,
2618 : struct xfs_buf **agibpp)
2619 : {
2620 1391824921 : struct xfs_buf *agibp;
2621 1391824921 : struct xfs_agi *agi;
2622 1391824921 : int error;
2623 :
2624 1391824921 : trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno);
2625 :
2626 1391912858 : error = xfs_read_agi(pag, tp, &agibp);
2627 1392051136 : if (error)
2628 : return error;
2629 :
2630 1392044064 : agi = agibp->b_addr;
2631 2784088128 : if (!xfs_perag_initialised_agi(pag)) {
2632 124486 : pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2633 124486 : pag->pagi_count = be32_to_cpu(agi->agi_count);
2634 124486 : set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
2635 : }
2636 :
2637 : /*
2638 : * It's possible for these to be out of sync if
2639 : * we are in the middle of a forced shutdown.
2640 : */
2641 2784088128 : ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2642 : xfs_is_shutdown(pag->pag_mount));
2643 1392044064 : if (agibpp)
2644 1392002766 : *agibpp = agibp;
2645 : else
2646 41298 : xfs_trans_brelse(tp, agibp);
2647 : return 0;
2648 : }
2649 :
2650 : /* How many inodes are backed by inode clusters ondisk? */
2651 : STATIC int
2652 2109163832 : xfs_ialloc_count_ondisk(
2653 : struct xfs_btree_cur *cur,
2654 : xfs_agino_t low,
2655 : xfs_agino_t high,
2656 : unsigned int *allocated)
2657 : {
2658 2109163832 : struct xfs_inobt_rec_incore irec;
2659 2109163832 : unsigned int ret = 0;
2660 2109163832 : int has_record;
2661 2109163832 : int error;
2662 :
2663 2109163832 : error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2664 2108955279 : if (error)
2665 : return error;
2666 :
2667 3801768649 : while (has_record) {
2668 2639106064 : unsigned int i, hole_idx;
2669 :
2670 2639106064 : error = xfs_inobt_get_rec(cur, &irec, &has_record);
2671 2638087320 : if (error)
2672 0 : return error;
2673 2638087320 : if (irec.ir_startino > high)
2674 : break;
2675 :
2676 >10951*10^7 : for (i = 0; i < XFS_INODES_PER_CHUNK; i++) {
2677 >10783*10^7 : if (irec.ir_startino + i < low)
2678 >10735*10^7 : continue;
2679 480272421 : if (irec.ir_startino + i > high)
2680 : break;
2681 :
2682 467969045 : hole_idx = i / XFS_INODES_PER_HOLEMASK_BIT;
2683 467969045 : if (!(irec.ir_holemask & (1U << hole_idx)))
2684 306831950 : ret++;
2685 : }
2686 :
2687 1691661273 : error = xfs_btree_increment(cur, 0, &has_record);
2688 1692813370 : if (error)
2689 0 : return error;
2690 : }
2691 :
2692 2109088632 : *allocated = ret;
2693 2109088632 : return 0;
2694 : }
2695 :
2696 : /* Is there an inode record covering a given extent? */
2697 : int
2698 2109157320 : xfs_ialloc_has_inodes_at_extent(
2699 : struct xfs_btree_cur *cur,
2700 : xfs_agblock_t bno,
2701 : xfs_extlen_t len,
2702 : enum xbtree_recpacking *outcome)
2703 : {
2704 2109157320 : xfs_agino_t agino;
2705 2109157320 : xfs_agino_t last_agino;
2706 2109157320 : unsigned int allocated;
2707 2109157320 : int error;
2708 :
2709 2109157320 : agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2710 2109157320 : last_agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2711 :
2712 2109157320 : error = xfs_ialloc_count_ondisk(cur, agino, last_agino, &allocated);
2713 2109124237 : if (error)
2714 : return error;
2715 :
2716 2109124237 : if (allocated == 0)
2717 2104244100 : *outcome = XBTREE_RECPACKING_EMPTY;
2718 4880137 : else if (allocated == last_agino - agino + 1)
2719 4880137 : *outcome = XBTREE_RECPACKING_FULL;
2720 : else
2721 0 : *outcome = XBTREE_RECPACKING_SPARSE;
2722 : return 0;
2723 : }
2724 :
2725 : struct xfs_ialloc_count_inodes {
2726 : xfs_agino_t count;
2727 : xfs_agino_t freecount;
2728 : };
2729 :
2730 : /* Record inode counts across all inobt records. */
2731 : STATIC int
2732 118283325 : xfs_ialloc_count_inodes_rec(
2733 : struct xfs_btree_cur *cur,
2734 : const union xfs_btree_rec *rec,
2735 : void *priv)
2736 : {
2737 118283325 : struct xfs_inobt_rec_incore irec;
2738 118283325 : struct xfs_ialloc_count_inodes *ci = priv;
2739 118283325 : xfs_failaddr_t fa;
2740 :
2741 118283325 : xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2742 118283396 : fa = xfs_inobt_check_irec(cur, &irec);
2743 118283867 : if (fa)
2744 0 : return xfs_inobt_complain_bad_rec(cur, fa, &irec);
2745 :
2746 118283867 : ci->count += irec.ir_count;
2747 118283867 : ci->freecount += irec.ir_freecount;
2748 :
2749 118283867 : return 0;
2750 : }
2751 :
2752 : /* Count allocated and free inodes under an inobt. */
2753 : int
2754 1335291 : xfs_ialloc_count_inodes(
2755 : struct xfs_btree_cur *cur,
2756 : xfs_agino_t *count,
2757 : xfs_agino_t *freecount)
2758 : {
2759 1335291 : struct xfs_ialloc_count_inodes ci = {0};
2760 1335291 : int error;
2761 :
2762 1335291 : ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2763 1335291 : error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2764 1335329 : if (error)
2765 : return error;
2766 :
2767 1335329 : *count = ci.count;
2768 1335329 : *freecount = ci.freecount;
2769 1335329 : return 0;
2770 : }
2771 :
2772 : /*
2773 : * Initialize inode-related geometry information.
2774 : *
2775 : * Compute the inode btree min and max levels and set maxicount.
2776 : *
2777 : * Set the inode cluster size. This may still be overridden by the file
2778 : * system block size if it is larger than the chosen cluster size.
2779 : *
2780 : * For v5 filesystems, scale the cluster size with the inode size to keep a
2781 : * constant ratio of inode per cluster buffer, but only if mkfs has set the
2782 : * inode alignment value appropriately for larger cluster sizes.
2783 : *
2784 : * Then compute the inode cluster alignment information.
2785 : */
2786 : void
2787 22495 : xfs_ialloc_setup_geometry(
2788 : struct xfs_mount *mp)
2789 : {
2790 22495 : struct xfs_sb *sbp = &mp->m_sb;
2791 22495 : struct xfs_ino_geometry *igeo = M_IGEO(mp);
2792 22495 : uint64_t icount;
2793 22495 : uint inodes;
2794 :
2795 22495 : igeo->new_diflags2 = 0;
2796 22495 : if (xfs_has_bigtime(mp))
2797 22437 : igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2798 22495 : if (xfs_has_large_extent_counts(mp))
2799 22449 : igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64;
2800 :
2801 : /* Compute inode btree geometry. */
2802 22495 : igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2803 22495 : igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2804 22495 : igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2805 22495 : igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2806 22495 : igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2807 :
2808 22495 : igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2809 : sbp->sb_inopblock);
2810 22495 : igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2811 :
2812 22495 : if (sbp->sb_spino_align)
2813 22411 : igeo->ialloc_min_blks = sbp->sb_spino_align;
2814 : else
2815 84 : igeo->ialloc_min_blks = igeo->ialloc_blks;
2816 :
2817 : /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2818 22495 : inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2819 22495 : igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2820 : inodes);
2821 22495 : ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk());
2822 :
2823 : /*
2824 : * Set the maximum inode count for this filesystem, being careful not
2825 : * to use obviously garbage sb_inopblog/sb_inopblock values. Regular
2826 : * users should never get here due to failing sb verification, but
2827 : * certain users (xfs_db) need to be usable even with corrupt metadata.
2828 : */
2829 22495 : if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2830 : /*
2831 : * Make sure the maximum inode count is a multiple
2832 : * of the units we allocate inodes in.
2833 : */
2834 22495 : icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2835 22495 : do_div(icount, 100);
2836 22495 : do_div(icount, igeo->ialloc_blks);
2837 22495 : igeo->maxicount = XFS_FSB_TO_INO(mp,
2838 : icount * igeo->ialloc_blks);
2839 : } else {
2840 0 : igeo->maxicount = 0;
2841 : }
2842 :
2843 : /*
2844 : * Compute the desired size of an inode cluster buffer size, which
2845 : * starts at 8K and (on v5 filesystems) scales up with larger inode
2846 : * sizes.
2847 : *
2848 : * Preserve the desired inode cluster size because the sparse inodes
2849 : * feature uses that desired size (not the actual size) to compute the
2850 : * sparse inode alignment. The mount code validates this value, so we
2851 : * cannot change the behavior.
2852 : */
2853 22495 : igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2854 22495 : if (xfs_has_v3inodes(mp)) {
2855 22451 : int new_size = igeo->inode_cluster_size_raw;
2856 :
2857 22451 : new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2858 22451 : if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2859 22451 : igeo->inode_cluster_size_raw = new_size;
2860 : }
2861 :
2862 : /* Calculate inode cluster ratios. */
2863 22495 : if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2864 22284 : igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2865 : igeo->inode_cluster_size_raw);
2866 : else
2867 211 : igeo->blocks_per_cluster = 1;
2868 22495 : igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2869 22495 : igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2870 :
2871 : /* Calculate inode cluster alignment. */
2872 22495 : if (xfs_has_align(mp) &&
2873 22495 : mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2874 22475 : igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2875 : else
2876 20 : igeo->cluster_align = 1;
2877 22495 : igeo->inoalign_mask = igeo->cluster_align - 1;
2878 22495 : igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2879 :
2880 : /*
2881 : * If we are using stripe alignment, check whether
2882 : * the stripe unit is a multiple of the inode alignment
2883 : */
2884 22495 : if (mp->m_dalign && igeo->inoalign_mask &&
2885 16 : !(mp->m_dalign & igeo->inoalign_mask))
2886 10 : igeo->ialloc_align = mp->m_dalign;
2887 : else
2888 22485 : igeo->ialloc_align = 0;
2889 22495 : }
2890 :
2891 : /* Compute the location of the root directory inode that is laid out by mkfs. */
2892 : xfs_ino_t
2893 14 : xfs_ialloc_calc_rootino(
2894 : struct xfs_mount *mp,
2895 : int sunit)
2896 : {
2897 14 : struct xfs_ino_geometry *igeo = M_IGEO(mp);
2898 14 : xfs_agblock_t first_bno;
2899 :
2900 : /*
2901 : * Pre-calculate the geometry of AG 0. We know what it looks like
2902 : * because libxfs knows how to create allocation groups now.
2903 : *
2904 : * first_bno is the first block in which mkfs could possibly have
2905 : * allocated the root directory inode, once we factor in the metadata
2906 : * that mkfs formats before it. Namely, the four AG headers...
2907 : */
2908 14 : first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2909 :
2910 : /* ...the two free space btree roots... */
2911 14 : first_bno += 2;
2912 :
2913 : /* ...the inode btree root... */
2914 14 : first_bno += 1;
2915 :
2916 : /* ...the initial AGFL... */
2917 14 : first_bno += xfs_alloc_min_freelist(mp, NULL);
2918 :
2919 : /* ...the free inode btree root... */
2920 14 : if (xfs_has_finobt(mp))
2921 14 : first_bno++;
2922 :
2923 : /* ...the reverse mapping btree root... */
2924 14 : if (xfs_has_rmapbt(mp))
2925 14 : first_bno++;
2926 :
2927 : /* ...the reference count btree... */
2928 14 : if (xfs_has_reflink(mp))
2929 14 : first_bno++;
2930 :
2931 : /*
2932 : * ...and the log, if it is allocated in the first allocation group.
2933 : *
2934 : * This can happen with filesystems that only have a single
2935 : * allocation group, or very odd geometries created by old mkfs
2936 : * versions on very small filesystems.
2937 : */
2938 14 : if (xfs_ag_contains_log(mp, 0))
2939 0 : first_bno += mp->m_sb.sb_logblocks;
2940 :
2941 : /*
2942 : * Now round first_bno up to whatever allocation alignment is given
2943 : * by the filesystem or was passed in.
2944 : */
2945 14 : if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
2946 8 : first_bno = roundup(first_bno, sunit);
2947 6 : else if (xfs_has_align(mp) &&
2948 6 : mp->m_sb.sb_inoalignmt > 1)
2949 6 : first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
2950 :
2951 14 : return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
2952 : }
2953 :
2954 : /*
2955 : * Ensure there are not sparse inode clusters that cross the new EOAG.
2956 : *
2957 : * This is a no-op for non-spinode filesystems since clusters are always fully
2958 : * allocated and checking the bnobt suffices. However, a spinode filesystem
2959 : * could have a record where the upper inodes are free blocks. If those blocks
2960 : * were removed from the filesystem, the inode record would extend beyond EOAG,
2961 : * which will be flagged as corruption.
2962 : */
2963 : int
2964 204 : xfs_ialloc_check_shrink(
2965 : struct xfs_perag *pag,
2966 : struct xfs_trans *tp,
2967 : struct xfs_buf *agibp,
2968 : xfs_agblock_t new_length)
2969 : {
2970 204 : struct xfs_inobt_rec_incore rec;
2971 204 : struct xfs_btree_cur *cur;
2972 204 : xfs_agino_t agino;
2973 204 : int has;
2974 204 : int error;
2975 :
2976 204 : if (!xfs_has_sparseinodes(pag->pag_mount))
2977 : return 0;
2978 :
2979 204 : cur = xfs_inobt_init_cursor(pag, tp, agibp, XFS_BTNUM_INO);
2980 :
2981 : /* Look up the inobt record that would correspond to the new EOFS. */
2982 204 : agino = XFS_AGB_TO_AGINO(pag->pag_mount, new_length);
2983 204 : error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
2984 204 : if (error || !has)
2985 10 : goto out;
2986 :
2987 194 : error = xfs_inobt_get_rec(cur, &rec, &has);
2988 194 : if (error)
2989 0 : goto out;
2990 :
2991 194 : if (!has) {
2992 0 : error = -EFSCORRUPTED;
2993 0 : goto out;
2994 : }
2995 :
2996 : /* If the record covers inodes that would be beyond EOFS, bail out. */
2997 194 : if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
2998 121 : error = -ENOSPC;
2999 121 : goto out;
3000 : }
3001 73 : out:
3002 204 : xfs_btree_del_cursor(cur, error);
3003 204 : return error;
3004 : }
|