Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-or-later
2 : /*
3 : * Copyright (C) 2018-2023 Oracle. All Rights Reserved.
4 : * Author: Darrick J. Wong <djwong@kernel.org>
5 : */
6 : #include "xfs.h"
7 : #include "xfs_fs.h"
8 : #include "xfs_shared.h"
9 : #include "xfs_format.h"
10 : #include "xfs_trans_resv.h"
11 : #include "xfs_mount.h"
12 : #include "xfs_btree.h"
13 : #include "xfs_log_format.h"
14 : #include "xfs_trans.h"
15 : #include "xfs_sb.h"
16 : #include "xfs_inode.h"
17 : #include "xfs_alloc.h"
18 : #include "xfs_alloc_btree.h"
19 : #include "xfs_ialloc.h"
20 : #include "xfs_ialloc_btree.h"
21 : #include "xfs_rmap.h"
22 : #include "xfs_rmap_btree.h"
23 : #include "xfs_refcount_btree.h"
24 : #include "xfs_extent_busy.h"
25 : #include "xfs_ag.h"
26 : #include "xfs_ag_resv.h"
27 : #include "xfs_quota.h"
28 : #include "xfs_qm.h"
29 : #include "scrub/scrub.h"
30 : #include "scrub/common.h"
31 : #include "scrub/trace.h"
32 : #include "scrub/repair.h"
33 : #include "scrub/bitmap.h"
34 :
35 : /*
36 : * Attempt to repair some metadata, if the metadata is corrupt and userspace
37 : * told us to fix it. This function returns -EAGAIN to mean "re-run scrub",
38 : * and will set *fixed to true if it thinks it repaired anything.
39 : */
40 : int
41 277881321 : xrep_attempt(
42 : struct xfs_scrub *sc)
43 : {
44 277881321 : int error = 0;
45 :
46 277881321 : trace_xrep_attempt(XFS_I(file_inode(sc->file)), sc->sm, error);
47 :
48 277895098 : xchk_ag_btcur_free(&sc->sa);
49 :
50 : /* Repair whatever's broken. */
51 277868102 : ASSERT(sc->ops->repair);
52 277868102 : error = sc->ops->repair(sc);
53 277897520 : trace_xrep_done(XFS_I(file_inode(sc->file)), sc->sm, error);
54 277901197 : switch (error) {
55 896614 : case 0:
56 : /*
57 : * Repair succeeded. Commit the fixes and perform a second
58 : * scrub so that we can tell userspace if we fixed the problem.
59 : */
60 896614 : sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
61 896614 : sc->flags |= XREP_ALREADY_FIXED;
62 896614 : return -EAGAIN;
63 0 : case -ECHRNG:
64 0 : sc->flags |= XCHK_NEED_DRAIN;
65 0 : return -EAGAIN;
66 0 : case -EDEADLOCK:
67 : /* Tell the caller to try again having grabbed all the locks. */
68 0 : if (!(sc->flags & XCHK_TRY_HARDER)) {
69 0 : sc->flags |= XCHK_TRY_HARDER;
70 0 : return -EAGAIN;
71 : }
72 : /*
73 : * We tried harder but still couldn't grab all the resources
74 : * we needed to fix it. The corruption has not been fixed,
75 : * so exit to userspace with the scan's output flags unchanged.
76 : */
77 : return 0;
78 277004583 : default:
79 : /*
80 : * EAGAIN tells the caller to re-scrub, so we cannot return
81 : * that here.
82 : */
83 277004583 : ASSERT(error != -EAGAIN);
84 : return error;
85 : }
86 : }
87 :
88 : /*
89 : * Complain about unfixable problems in the filesystem. We don't log
90 : * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
91 : * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
92 : * administrator isn't running xfs_scrub in no-repairs mode.
93 : *
94 : * Use this helper function because _ratelimited silently declares a static
95 : * structure to track rate limiting information.
96 : */
97 : void
98 276954640 : xrep_failure(
99 : struct xfs_mount *mp)
100 : {
101 276954640 : xfs_alert_ratelimited(mp,
102 : "Corruption not fixed during online repair. Unmount and run xfs_repair.");
103 276986507 : }
104 :
105 : /*
106 : * Repair probe -- userspace uses this to probe if we're willing to repair a
107 : * given mountpoint.
108 : */
109 : int
110 53250 : xrep_probe(
111 : struct xfs_scrub *sc)
112 : {
113 53250 : int error = 0;
114 :
115 53250 : if (xchk_should_terminate(sc, &error))
116 0 : return error;
117 :
118 : return 0;
119 : }
120 :
121 : /*
122 : * Roll a transaction, keeping the AG headers locked and reinitializing
123 : * the btree cursors.
124 : */
125 : int
126 184859 : xrep_roll_ag_trans(
127 : struct xfs_scrub *sc)
128 : {
129 184859 : int error;
130 :
131 : /*
132 : * Keep the AG header buffers locked while we roll the transaction.
133 : * Ensure that both AG buffers are dirty and held when we roll the
134 : * transaction so that they move forward in the log without losing the
135 : * bli (and hence the bli type) when the transaction commits.
136 : *
137 : * Normal code would never hold clean buffers across a roll, but repair
138 : * needs both buffers to maintain a total lock on the AG.
139 : */
140 184859 : if (sc->sa.agi_bp) {
141 184859 : xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM);
142 184866 : xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
143 : }
144 :
145 184852 : if (sc->sa.agf_bp) {
146 184852 : xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM);
147 184857 : xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
148 : }
149 :
150 : /*
151 : * Roll the transaction. We still hold the AG header buffers locked
152 : * regardless of whether or not that succeeds. On failure, the buffers
153 : * will be released during teardown on our way out of the kernel. If
154 : * successful, join the buffers to the new transaction and move on.
155 : */
156 184870 : error = xfs_trans_roll(&sc->tp);
157 184901 : if (error)
158 : return error;
159 :
160 : /* Join the AG headers to the new transaction. */
161 184901 : if (sc->sa.agi_bp)
162 184901 : xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
163 184900 : if (sc->sa.agf_bp)
164 184900 : xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
165 :
166 : return 0;
167 : }
168 :
169 : /*
170 : * Does the given AG have enough space to rebuild a btree? Neither AG
171 : * reservation can be critical, and we must have enough space (factoring
172 : * in AG reservations) to construct a whole btree.
173 : */
174 : bool
175 0 : xrep_ag_has_space(
176 : struct xfs_perag *pag,
177 : xfs_extlen_t nr_blocks,
178 : enum xfs_ag_resv_type type)
179 : {
180 0 : return !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
181 0 : !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
182 0 : pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
183 : }
184 :
185 : /*
186 : * Figure out how many blocks to reserve for an AG repair. We calculate the
187 : * worst case estimate for the number of blocks we'd need to rebuild one of
188 : * any type of per-AG btree.
189 : */
190 : xfs_extlen_t
191 10365044 : xrep_calc_ag_resblks(
192 : struct xfs_scrub *sc)
193 : {
194 10365044 : struct xfs_mount *mp = sc->mp;
195 10365044 : struct xfs_scrub_metadata *sm = sc->sm;
196 10365044 : struct xfs_perag *pag;
197 10365044 : struct xfs_buf *bp;
198 10365044 : xfs_agino_t icount = NULLAGINO;
199 10365044 : xfs_extlen_t aglen = NULLAGBLOCK;
200 10365044 : xfs_extlen_t usedlen;
201 10365044 : xfs_extlen_t freelen;
202 10365044 : xfs_extlen_t bnobt_sz;
203 10365044 : xfs_extlen_t inobt_sz;
204 10365044 : xfs_extlen_t rmapbt_sz;
205 10365044 : xfs_extlen_t refcbt_sz;
206 10365044 : int error;
207 :
208 10365044 : if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
209 : return 0;
210 :
211 3310369 : pag = xfs_perag_get(mp, sm->sm_agno);
212 6620820 : if (xfs_perag_initialised_agi(pag)) {
213 : /* Use in-core icount if possible. */
214 3310410 : icount = pag->pagi_count;
215 : } else {
216 : /* Try to get the actual counters from disk. */
217 0 : error = xfs_ialloc_read_agi(pag, NULL, &bp);
218 0 : if (!error) {
219 0 : icount = pag->pagi_count;
220 0 : xfs_buf_relse(bp);
221 : }
222 : }
223 :
224 : /* Now grab the block counters from the AGF. */
225 3310410 : error = xfs_alloc_read_agf(pag, NULL, 0, &bp);
226 3310384 : if (error) {
227 0 : aglen = pag->block_count;
228 0 : freelen = aglen;
229 0 : usedlen = aglen;
230 : } else {
231 3310384 : struct xfs_agf *agf = bp->b_addr;
232 :
233 3310384 : aglen = be32_to_cpu(agf->agf_length);
234 3310384 : freelen = be32_to_cpu(agf->agf_freeblks);
235 3310384 : usedlen = aglen - freelen;
236 3310384 : xfs_buf_relse(bp);
237 : }
238 :
239 : /* If the icount is impossible, make some worst-case assumptions. */
240 3310457 : if (icount == NULLAGINO ||
241 : !xfs_verify_agino(pag, icount)) {
242 1755068 : icount = pag->agino_max - pag->agino_min + 1;
243 : }
244 :
245 : /* If the block counts are impossible, make worst-case assumptions. */
246 3310457 : if (aglen == NULLAGBLOCK ||
247 3310457 : aglen != pag->block_count ||
248 : freelen >= aglen) {
249 0 : aglen = pag->block_count;
250 0 : freelen = aglen;
251 0 : usedlen = aglen;
252 : }
253 3310457 : xfs_perag_put(pag);
254 :
255 3310422 : trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
256 : freelen, usedlen);
257 :
258 : /*
259 : * Figure out how many blocks we'd need worst case to rebuild
260 : * each type of btree. Note that we can only rebuild the
261 : * bnobt/cntbt or inobt/finobt as pairs.
262 : */
263 3310452 : bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
264 3310402 : if (xfs_has_sparseinodes(mp))
265 3310402 : inobt_sz = xfs_iallocbt_calc_size(mp, icount /
266 : XFS_INODES_PER_HOLEMASK_BIT);
267 : else
268 0 : inobt_sz = xfs_iallocbt_calc_size(mp, icount /
269 : XFS_INODES_PER_CHUNK);
270 3310433 : if (xfs_has_finobt(mp))
271 3310427 : inobt_sz *= 2;
272 3310433 : if (xfs_has_reflink(mp))
273 2439471 : refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
274 : else
275 : refcbt_sz = 0;
276 3310412 : if (xfs_has_rmapbt(mp)) {
277 : /*
278 : * Guess how many blocks we need to rebuild the rmapbt.
279 : * For non-reflink filesystems we can't have more records than
280 : * used blocks. However, with reflink it's possible to have
281 : * more than one rmap record per AG block. We don't know how
282 : * many rmaps there could be in the AG, so we start off with
283 : * what we hope is an generous over-estimation.
284 : */
285 2439455 : if (xfs_has_reflink(mp))
286 2439455 : rmapbt_sz = xfs_rmapbt_calc_size(mp,
287 2439455 : (unsigned long long)aglen * 2);
288 : else
289 0 : rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
290 : } else {
291 : rmapbt_sz = 0;
292 : }
293 :
294 3310428 : trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
295 : inobt_sz, rmapbt_sz, refcbt_sz);
296 :
297 3310423 : return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
298 : }
299 :
300 : /* Allocate a block in an AG. */
301 : int
302 0 : xrep_alloc_ag_block(
303 : struct xfs_scrub *sc,
304 : const struct xfs_owner_info *oinfo,
305 : xfs_fsblock_t *fsbno,
306 : enum xfs_ag_resv_type resv)
307 : {
308 0 : struct xfs_alloc_arg args = {0};
309 0 : xfs_agblock_t bno;
310 0 : int error;
311 :
312 0 : switch (resv) {
313 0 : case XFS_AG_RESV_AGFL:
314 : case XFS_AG_RESV_RMAPBT:
315 0 : error = xfs_alloc_get_freelist(sc->sa.pag, sc->tp,
316 : sc->sa.agf_bp, &bno, 1);
317 0 : if (error)
318 : return error;
319 0 : if (bno == NULLAGBLOCK)
320 : return -ENOSPC;
321 0 : xfs_extent_busy_reuse(sc->mp, sc->sa.pag, bno, 1, false);
322 0 : *fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.pag->pag_agno, bno);
323 0 : if (resv == XFS_AG_RESV_RMAPBT)
324 0 : xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.pag->pag_agno);
325 : return 0;
326 : default:
327 0 : break;
328 : }
329 :
330 0 : args.tp = sc->tp;
331 0 : args.mp = sc->mp;
332 0 : args.pag = sc->sa.pag;
333 0 : args.oinfo = *oinfo;
334 0 : args.minlen = 1;
335 0 : args.maxlen = 1;
336 0 : args.prod = 1;
337 0 : args.resv = resv;
338 :
339 0 : error = xfs_alloc_vextent_this_ag(&args, sc->sa.pag->pag_agno);
340 0 : if (error)
341 : return error;
342 0 : if (args.fsbno == NULLFSBLOCK)
343 : return -ENOSPC;
344 0 : ASSERT(args.len == 1);
345 0 : *fsbno = args.fsbno;
346 :
347 0 : return 0;
348 : }
349 :
350 : /* Initialize a new AG btree root block with zero entries. */
351 : int
352 0 : xrep_init_btblock(
353 : struct xfs_scrub *sc,
354 : xfs_fsblock_t fsb,
355 : struct xfs_buf **bpp,
356 : xfs_btnum_t btnum,
357 : const struct xfs_buf_ops *ops)
358 : {
359 0 : struct xfs_trans *tp = sc->tp;
360 0 : struct xfs_mount *mp = sc->mp;
361 0 : struct xfs_buf *bp;
362 0 : int error;
363 :
364 0 : trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb),
365 0 : XFS_FSB_TO_AGBNO(mp, fsb), btnum);
366 :
367 0 : ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.pag->pag_agno);
368 0 : error = xfs_trans_get_buf(tp, mp->m_ddev_targp,
369 0 : XFS_FSB_TO_DADDR(mp, fsb), XFS_FSB_TO_BB(mp, 1), 0,
370 : &bp);
371 0 : if (error)
372 : return error;
373 0 : xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
374 0 : xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.pag->pag_agno);
375 0 : xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF);
376 0 : xfs_trans_log_buf(tp, bp, 0, BBTOB(bp->b_length) - 1);
377 0 : bp->b_ops = ops;
378 0 : *bpp = bp;
379 :
380 0 : return 0;
381 : }
382 :
383 : /*
384 : * Reconstructing per-AG Btrees
385 : *
386 : * When a space btree is corrupt, we don't bother trying to fix it. Instead,
387 : * we scan secondary space metadata to derive the records that should be in
388 : * the damaged btree, initialize a fresh btree root, and insert the records.
389 : * Note that for rebuilding the rmapbt we scan all the primary data to
390 : * generate the new records.
391 : *
392 : * However, that leaves the matter of removing all the metadata describing the
393 : * old broken structure. For primary metadata we use the rmap data to collect
394 : * every extent with a matching rmap owner (bitmap); we then iterate all other
395 : * metadata structures with the same rmap owner to collect the extents that
396 : * cannot be removed (sublist). We then subtract sublist from bitmap to
397 : * derive the blocks that were used by the old btree. These blocks can be
398 : * reaped.
399 : *
400 : * For rmapbt reconstructions we must use different tactics for extent
401 : * collection. First we iterate all primary metadata (this excludes the old
402 : * rmapbt, obviously) to generate new rmap records. The gaps in the rmap
403 : * records are collected as bitmap. The bnobt records are collected as
404 : * sublist. As with the other btrees we subtract sublist from bitmap, and the
405 : * result (since the rmapbt lives in the free space) are the blocks from the
406 : * old rmapbt.
407 : *
408 : * Disposal of Blocks from Old per-AG Btrees
409 : *
410 : * Now that we've constructed a new btree to replace the damaged one, we want
411 : * to dispose of the blocks that (we think) the old btree was using.
412 : * Previously, we used the rmapbt to collect the extents (bitmap) with the
413 : * rmap owner corresponding to the tree we rebuilt, collected extents for any
414 : * blocks with the same rmap owner that are owned by another data structure
415 : * (sublist), and subtracted sublist from bitmap. In theory the extents
416 : * remaining in bitmap are the old btree's blocks.
417 : *
418 : * Unfortunately, it's possible that the btree was crosslinked with other
419 : * blocks on disk. The rmap data can tell us if there are multiple owners, so
420 : * if the rmapbt says there is an owner of this block other than @oinfo, then
421 : * the block is crosslinked. Remove the reverse mapping and continue.
422 : *
423 : * If there is one rmap record, we can free the block, which removes the
424 : * reverse mapping but doesn't add the block to the free space. Our repair
425 : * strategy is to hope the other metadata objects crosslinked on this block
426 : * will be rebuilt (atop different blocks), thereby removing all the cross
427 : * links.
428 : *
429 : * If there are no rmap records at all, we also free the block. If the btree
430 : * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
431 : * supposed to be a rmap record and everything is ok. For other btrees there
432 : * had to have been an rmap entry for the block to have ended up on @bitmap,
433 : * so if it's gone now there's something wrong and the fs will shut down.
434 : *
435 : * Note: If there are multiple rmap records with only the same rmap owner as
436 : * the btree we're trying to rebuild and the block is indeed owned by another
437 : * data structure with the same rmap owner, then the block will be in sublist
438 : * and therefore doesn't need disposal. If there are multiple rmap records
439 : * with only the same rmap owner but the block is not owned by something with
440 : * the same rmap owner, the block will be freed.
441 : *
442 : * The caller is responsible for locking the AG headers for the entire rebuild
443 : * operation so that nothing else can sneak in and change the AG state while
444 : * we're not looking. We also assume that the caller already invalidated any
445 : * buffers associated with @bitmap.
446 : */
447 :
448 : static int
449 0 : xrep_invalidate_block(
450 : uint64_t fsbno,
451 : void *priv)
452 : {
453 0 : struct xfs_scrub *sc = priv;
454 0 : struct xfs_buf *bp;
455 0 : int error;
456 :
457 : /* Skip AG headers and post-EOFS blocks */
458 0 : if (!xfs_verify_fsbno(sc->mp, fsbno))
459 : return 0;
460 :
461 0 : error = xfs_buf_incore(sc->mp->m_ddev_targp,
462 0 : XFS_FSB_TO_DADDR(sc->mp, fsbno),
463 0 : XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK, &bp);
464 0 : if (error)
465 : return 0;
466 :
467 0 : xfs_trans_bjoin(sc->tp, bp);
468 0 : xfs_trans_binval(sc->tp, bp);
469 0 : return 0;
470 : }
471 :
472 : /*
473 : * Invalidate buffers for per-AG btree blocks we're dumping. This function
474 : * is not intended for use with file data repairs; we have bunmapi for that.
475 : */
476 : int
477 0 : xrep_invalidate_blocks(
478 : struct xfs_scrub *sc,
479 : struct xbitmap *bitmap)
480 : {
481 : /*
482 : * For each block in each extent, see if there's an incore buffer for
483 : * exactly that block; if so, invalidate it. The buffer cache only
484 : * lets us look for one buffer at a time, so we have to look one block
485 : * at a time. Avoid invalidating AG headers and post-EOFS blocks
486 : * because we never own those; and if we can't TRYLOCK the buffer we
487 : * assume it's owned by someone else.
488 : */
489 0 : return xbitmap_walk_bits(bitmap, xrep_invalidate_block, sc);
490 : }
491 :
492 : /* Ensure the freelist is the correct size. */
493 : int
494 0 : xrep_fix_freelist(
495 : struct xfs_scrub *sc,
496 : bool can_shrink)
497 : {
498 0 : struct xfs_alloc_arg args = {0};
499 :
500 0 : args.mp = sc->mp;
501 0 : args.tp = sc->tp;
502 0 : args.agno = sc->sa.pag->pag_agno;
503 0 : args.alignment = 1;
504 0 : args.pag = sc->sa.pag;
505 :
506 0 : return xfs_alloc_fix_freelist(&args,
507 : can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK);
508 : }
509 :
510 : /* Information about reaping extents after a repair. */
511 : struct xrep_reap_state {
512 : struct xfs_scrub *sc;
513 :
514 : /* Reverse mapping owner and metadata reservation type. */
515 : const struct xfs_owner_info *oinfo;
516 : enum xfs_ag_resv_type resv;
517 : };
518 :
519 : /*
520 : * Put a block back on the AGFL.
521 : */
522 : STATIC int
523 0 : xrep_put_freelist(
524 : struct xfs_scrub *sc,
525 : xfs_agblock_t agbno)
526 : {
527 0 : struct xfs_buf *agfl_bp;
528 0 : int error;
529 :
530 : /* Make sure there's space on the freelist. */
531 0 : error = xrep_fix_freelist(sc, true);
532 0 : if (error)
533 : return error;
534 :
535 : /*
536 : * Since we're "freeing" a lost block onto the AGFL, we have to
537 : * create an rmap for the block prior to merging it or else other
538 : * parts will break.
539 : */
540 0 : error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.pag, agbno, 1,
541 : &XFS_RMAP_OINFO_AG);
542 0 : if (error)
543 : return error;
544 :
545 : /* Put the block on the AGFL. */
546 0 : error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp);
547 0 : if (error)
548 : return error;
549 :
550 0 : error = xfs_alloc_put_freelist(sc->sa.pag, sc->tp, sc->sa.agf_bp,
551 : agfl_bp, agbno, 0);
552 0 : if (error)
553 : return error;
554 0 : xfs_extent_busy_insert(sc->tp, sc->sa.pag, agbno, 1,
555 : XFS_EXTENT_BUSY_SKIP_DISCARD);
556 :
557 0 : return 0;
558 : }
559 :
560 : /* Dispose of a single block. */
561 : STATIC int
562 0 : xrep_reap_block(
563 : uint64_t fsbno,
564 : void *priv)
565 : {
566 0 : struct xrep_reap_state *rs = priv;
567 0 : struct xfs_scrub *sc = rs->sc;
568 0 : struct xfs_btree_cur *cur;
569 0 : struct xfs_buf *agf_bp = NULL;
570 0 : xfs_agblock_t agbno;
571 0 : bool has_other_rmap;
572 0 : int error;
573 :
574 0 : ASSERT(sc->ip != NULL ||
575 : XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.pag->pag_agno);
576 0 : trace_xrep_dispose_btree_extent(sc->mp,
577 0 : XFS_FSB_TO_AGNO(sc->mp, fsbno),
578 0 : XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1);
579 :
580 0 : agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno);
581 0 : ASSERT(XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.pag->pag_agno);
582 :
583 : /*
584 : * If we are repairing per-inode metadata, we need to read in the AGF
585 : * buffer. Otherwise, we're repairing a per-AG structure, so reuse
586 : * the AGF buffer that the setup functions already grabbed.
587 : */
588 0 : if (sc->ip) {
589 0 : error = xfs_alloc_read_agf(sc->sa.pag, sc->tp, 0, &agf_bp);
590 0 : if (error)
591 : return error;
592 : } else {
593 0 : agf_bp = sc->sa.agf_bp;
594 : }
595 0 : cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, sc->sa.pag);
596 :
597 : /* Can we find any other rmappings? */
598 0 : error = xfs_rmap_has_other_keys(cur, agbno, 1, rs->oinfo,
599 : &has_other_rmap);
600 0 : xfs_btree_del_cursor(cur, error);
601 0 : if (error)
602 0 : goto out_free;
603 :
604 : /*
605 : * If there are other rmappings, this block is cross linked and must
606 : * not be freed. Remove the reverse mapping and move on. Otherwise,
607 : * we were the only owner of the block, so free the extent, which will
608 : * also remove the rmap.
609 : *
610 : * XXX: XFS doesn't support detecting the case where a single block
611 : * metadata structure is crosslinked with a multi-block structure
612 : * because the buffer cache doesn't detect aliasing problems, so we
613 : * can't fix 100% of crosslinking problems (yet). The verifiers will
614 : * blow on writeout, the filesystem will shut down, and the admin gets
615 : * to run xfs_repair.
616 : */
617 0 : if (has_other_rmap)
618 0 : error = xfs_rmap_free(sc->tp, agf_bp, sc->sa.pag, agbno,
619 : 1, rs->oinfo);
620 0 : else if (rs->resv == XFS_AG_RESV_AGFL)
621 0 : error = xrep_put_freelist(sc, agbno);
622 : else
623 0 : error = xfs_free_extent(sc->tp, sc->sa.pag, agbno, 1, rs->oinfo,
624 : rs->resv);
625 0 : if (agf_bp != sc->sa.agf_bp)
626 0 : xfs_trans_brelse(sc->tp, agf_bp);
627 0 : if (error)
628 : return error;
629 :
630 0 : if (sc->ip)
631 0 : return xfs_trans_roll_inode(&sc->tp, sc->ip);
632 0 : return xrep_roll_ag_trans(sc);
633 :
634 : out_free:
635 0 : if (agf_bp != sc->sa.agf_bp)
636 0 : xfs_trans_brelse(sc->tp, agf_bp);
637 : return error;
638 : }
639 :
640 : /* Dispose of every block of every extent in the bitmap. */
641 : int
642 184895 : xrep_reap_extents(
643 : struct xfs_scrub *sc,
644 : struct xbitmap *bitmap,
645 : const struct xfs_owner_info *oinfo,
646 : enum xfs_ag_resv_type type)
647 : {
648 184895 : struct xrep_reap_state rs = {
649 : .sc = sc,
650 : .oinfo = oinfo,
651 : .resv = type,
652 : };
653 :
654 184895 : ASSERT(xfs_has_rmapbt(sc->mp));
655 :
656 184895 : return xbitmap_walk_bits(bitmap, xrep_reap_block, &rs);
657 : }
658 :
659 : /*
660 : * Finding per-AG Btree Roots for AGF/AGI Reconstruction
661 : *
662 : * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
663 : * the AG headers by using the rmap data to rummage through the AG looking for
664 : * btree roots. This is not guaranteed to work if the AG is heavily damaged
665 : * or the rmap data are corrupt.
666 : *
667 : * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL
668 : * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
669 : * AGI is being rebuilt. It must maintain these locks until it's safe for
670 : * other threads to change the btrees' shapes. The caller provides
671 : * information about the btrees to look for by passing in an array of
672 : * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
673 : * The (root, height) fields will be set on return if anything is found. The
674 : * last element of the array should have a NULL buf_ops to mark the end of the
675 : * array.
676 : *
677 : * For every rmapbt record matching any of the rmap owners in btree_info,
678 : * read each block referenced by the rmap record. If the block is a btree
679 : * block from this filesystem matching any of the magic numbers and has a
680 : * level higher than what we've already seen, remember the block and the
681 : * height of the tree required to have such a block. When the call completes,
682 : * we return the highest block we've found for each btree description; those
683 : * should be the roots.
684 : */
685 :
686 : struct xrep_findroot {
687 : struct xfs_scrub *sc;
688 : struct xfs_buf *agfl_bp;
689 : struct xfs_agf *agf;
690 : struct xrep_find_ag_btree *btree_info;
691 : };
692 :
693 : /* See if our block is in the AGFL. */
694 : STATIC int
695 465581464 : xrep_findroot_agfl_walk(
696 : struct xfs_mount *mp,
697 : xfs_agblock_t bno,
698 : void *priv)
699 : {
700 465581464 : xfs_agblock_t *agbno = priv;
701 :
702 465581464 : return (*agbno == bno) ? -ECANCELED : 0;
703 : }
704 :
705 : /* Does this block match the btree information passed in? */
706 : STATIC int
707 50316534 : xrep_findroot_block(
708 : struct xrep_findroot *ri,
709 : struct xrep_find_ag_btree *fab,
710 : uint64_t owner,
711 : xfs_agblock_t agbno,
712 : bool *done_with_block)
713 : {
714 50316534 : struct xfs_mount *mp = ri->sc->mp;
715 50316534 : struct xfs_buf *bp;
716 50316534 : struct xfs_btree_block *btblock;
717 50316534 : xfs_daddr_t daddr;
718 50316534 : int block_level;
719 50316534 : int error = 0;
720 :
721 50316534 : daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.pag->pag_agno, agbno);
722 :
723 : /*
724 : * Blocks in the AGFL have stale contents that might just happen to
725 : * have a matching magic and uuid. We don't want to pull these blocks
726 : * in as part of a tree root, so we have to filter out the AGFL stuff
727 : * here. If the AGFL looks insane we'll just refuse to repair.
728 : */
729 50316534 : if (owner == XFS_RMAP_OWN_AG) {
730 49455452 : error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
731 : xrep_findroot_agfl_walk, &agbno);
732 49455628 : if (error == -ECANCELED)
733 : return 0;
734 45668475 : if (error)
735 : return error;
736 : }
737 :
738 : /*
739 : * Read the buffer into memory so that we can see if it's a match for
740 : * our btree type. We have no clue if it is beforehand, and we want to
741 : * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which
742 : * will cause needless disk reads in subsequent calls to this function)
743 : * and logging metadata verifier failures.
744 : *
745 : * Therefore, pass in NULL buffer ops. If the buffer was already in
746 : * memory from some other caller it will already have b_ops assigned.
747 : * If it was in memory from a previous unsuccessful findroot_block
748 : * call, the buffer won't have b_ops but it should be clean and ready
749 : * for us to try to verify if the read call succeeds. The same applies
750 : * if the buffer wasn't in memory at all.
751 : *
752 : * Note: If we never match a btree type with this buffer, it will be
753 : * left in memory with NULL b_ops. This shouldn't be a problem unless
754 : * the buffer gets written.
755 : */
756 46529557 : error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
757 : mp->m_bsize, 0, &bp, NULL);
758 46529702 : if (error)
759 : return error;
760 :
761 : /* Ensure the block magic matches the btree type we're looking for. */
762 46529702 : btblock = XFS_BUF_TO_BLOCK(bp);
763 46529702 : ASSERT(fab->buf_ops->magic[1] != 0);
764 46529702 : if (btblock->bb_magic != fab->buf_ops->magic[1])
765 29956577 : goto out;
766 :
767 : /*
768 : * If the buffer already has ops applied and they're not the ones for
769 : * this btree type, we know this block doesn't match the btree and we
770 : * can bail out.
771 : *
772 : * If the buffer ops match ours, someone else has already validated
773 : * the block for us, so we can move on to checking if this is a root
774 : * block candidate.
775 : *
776 : * If the buffer does not have ops, nobody has successfully validated
777 : * the contents and the buffer cannot be dirty. If the magic, uuid,
778 : * and structure match this btree type then we'll move on to checking
779 : * if it's a root block candidate. If there is no match, bail out.
780 : */
781 16573125 : if (bp->b_ops) {
782 16573107 : if (bp->b_ops != fab->buf_ops)
783 0 : goto out;
784 : } else {
785 18 : ASSERT(!xfs_trans_buf_is_dirty(bp));
786 18 : if (!uuid_equal(&btblock->bb_u.s.bb_uuid,
787 18 : &mp->m_sb.sb_meta_uuid))
788 0 : goto out;
789 : /*
790 : * Read verifiers can reference b_ops, so we set the pointer
791 : * here. If the verifier fails we'll reset the buffer state
792 : * to what it was before we touched the buffer.
793 : */
794 18 : bp->b_ops = fab->buf_ops;
795 18 : fab->buf_ops->verify_read(bp);
796 18 : if (bp->b_error) {
797 0 : bp->b_ops = NULL;
798 0 : bp->b_error = 0;
799 0 : goto out;
800 : }
801 :
802 : /*
803 : * Some read verifiers will (re)set b_ops, so we must be
804 : * careful not to change b_ops after running the verifier.
805 : */
806 : }
807 :
808 : /*
809 : * This block passes the magic/uuid and verifier tests for this btree
810 : * type. We don't need the caller to try the other tree types.
811 : */
812 16573125 : *done_with_block = true;
813 :
814 : /*
815 : * Compare this btree block's level to the height of the current
816 : * candidate root block.
817 : *
818 : * If the level matches the root we found previously, throw away both
819 : * blocks because there can't be two candidate roots.
820 : *
821 : * If level is lower in the tree than the root we found previously,
822 : * ignore this block.
823 : */
824 16573125 : block_level = xfs_btree_get_level(btblock);
825 16573125 : if (block_level + 1 == fab->height) {
826 385228 : fab->root = NULLAGBLOCK;
827 385228 : goto out;
828 16187897 : } else if (block_level < fab->height) {
829 14863072 : goto out;
830 : }
831 :
832 : /*
833 : * This is the highest block in the tree that we've found so far.
834 : * Update the btree height to reflect what we've learned from this
835 : * block.
836 : */
837 1324825 : fab->height = block_level + 1;
838 :
839 : /*
840 : * If this block doesn't have sibling pointers, then it's the new root
841 : * block candidate. Otherwise, the root will be found farther up the
842 : * tree.
843 : */
844 1324825 : if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) &&
845 : btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
846 1099823 : fab->root = agbno;
847 : else
848 225002 : fab->root = NULLAGBLOCK;
849 :
850 1324825 : trace_xrep_findroot_block(mp, ri->sc->sa.pag->pag_agno, agbno,
851 1324825 : be32_to_cpu(btblock->bb_magic), fab->height - 1);
852 46529709 : out:
853 46529709 : xfs_trans_brelse(ri->sc->tp, bp);
854 46529709 : return error;
855 : }
856 :
857 : /*
858 : * Do any of the blocks in this rmap record match one of the btrees we're
859 : * looking for?
860 : */
861 : STATIC int
862 4297617913 : xrep_findroot_rmap(
863 : struct xfs_btree_cur *cur,
864 : const struct xfs_rmap_irec *rec,
865 : void *priv)
866 : {
867 4297617913 : struct xrep_findroot *ri = priv;
868 4297617913 : struct xrep_find_ag_btree *fab;
869 4297617913 : xfs_agblock_t b;
870 4297617913 : bool done;
871 4297617913 : int error = 0;
872 :
873 : /* Ignore anything that isn't AG metadata. */
874 4297617913 : if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
875 : return 0;
876 :
877 : /* Otherwise scan each block + btree type. */
878 1817853672 : for (b = 0; b < rec->rm_blockcount; b++) {
879 1748073807 : done = false;
880 6903647683 : for (fab = ri->btree_info; fab->buf_ops; fab++) {
881 5172115389 : if (rec->rm_owner != fab->rmap_owner)
882 5121830341 : continue;
883 50285048 : error = xrep_findroot_block(ri, fab,
884 50285048 : rec->rm_owner, rec->rm_startblock + b,
885 : &done);
886 50316671 : if (error)
887 0 : return error;
888 50316671 : if (done)
889 : break;
890 : }
891 : }
892 :
893 : return 0;
894 : }
895 :
896 : /* Find the roots of the per-AG btrees described in btree_info. */
897 : int
898 369138 : xrep_find_ag_btree_roots(
899 : struct xfs_scrub *sc,
900 : struct xfs_buf *agf_bp,
901 : struct xrep_find_ag_btree *btree_info,
902 : struct xfs_buf *agfl_bp)
903 : {
904 369138 : struct xfs_mount *mp = sc->mp;
905 369138 : struct xrep_findroot ri;
906 369138 : struct xrep_find_ag_btree *fab;
907 369138 : struct xfs_btree_cur *cur;
908 369138 : int error;
909 :
910 369138 : ASSERT(xfs_buf_islocked(agf_bp));
911 369138 : ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));
912 :
913 369138 : ri.sc = sc;
914 369138 : ri.btree_info = btree_info;
915 369138 : ri.agf = agf_bp->b_addr;
916 369138 : ri.agfl_bp = agfl_bp;
917 1468958 : for (fab = btree_info; fab->buf_ops; fab++) {
918 1099817 : ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
919 1099817 : ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
920 1099820 : fab->root = NULLAGBLOCK;
921 1099820 : fab->height = 0;
922 : }
923 :
924 369141 : cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
925 369142 : error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri);
926 369141 : xfs_btree_del_cursor(cur, error);
927 :
928 369129 : return error;
929 : }
930 :
931 : /* Force a quotacheck the next time we mount. */
932 : void
933 0 : xrep_force_quotacheck(
934 : struct xfs_scrub *sc,
935 : xfs_dqtype_t type)
936 : {
937 0 : uint flag;
938 :
939 0 : flag = xfs_quota_chkd_flag(type);
940 0 : if (!(flag & sc->mp->m_qflags))
941 : return;
942 :
943 0 : mutex_lock(&sc->mp->m_quotainfo->qi_quotaofflock);
944 0 : sc->mp->m_qflags &= ~flag;
945 0 : spin_lock(&sc->mp->m_sb_lock);
946 0 : sc->mp->m_sb.sb_qflags &= ~flag;
947 0 : spin_unlock(&sc->mp->m_sb_lock);
948 0 : xfs_log_sb(sc->tp);
949 0 : mutex_unlock(&sc->mp->m_quotainfo->qi_quotaofflock);
950 : }
951 :
952 : /*
953 : * Attach dquots to this inode, or schedule quotacheck to fix them.
954 : *
955 : * This function ensures that the appropriate dquots are attached to an inode.
956 : * We cannot allow the dquot code to allocate an on-disk dquot block here
957 : * because we're already in transaction context with the inode locked. The
958 : * on-disk dquot should already exist anyway. If the quota code signals
959 : * corruption or missing quota information, schedule quotacheck, which will
960 : * repair corruptions in the quota metadata.
961 : */
962 : int
963 0 : xrep_ino_dqattach(
964 : struct xfs_scrub *sc)
965 : {
966 0 : int error;
967 :
968 0 : error = xfs_qm_dqattach_locked(sc->ip, false);
969 0 : switch (error) {
970 0 : case -EFSBADCRC:
971 : case -EFSCORRUPTED:
972 : case -ENOENT:
973 0 : xfs_err_ratelimited(sc->mp,
974 : "inode %llu repair encountered quota error %d, quotacheck forced.",
975 : (unsigned long long)sc->ip->i_ino, error);
976 0 : if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
977 0 : xrep_force_quotacheck(sc, XFS_DQTYPE_USER);
978 0 : if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
979 0 : xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP);
980 0 : if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
981 0 : xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ);
982 : fallthrough;
983 : case -ESRCH:
984 : error = 0;
985 : break;
986 : default:
987 : break;
988 : }
989 :
990 0 : return error;
991 : }
|