LCOV - code coverage report
Current view: top level - include/linux - math64.h (source / functions) Hit Total Coverage
Test: fstests of 6.5.0-rc3-djwa @ Mon Jul 31 20:08:17 PDT 2023 Lines: 10 13 76.9 %
Date: 2023-07-31 20:08:17 Functions: 2 3 66.7 %

          Line data    Source code
       1             : /* SPDX-License-Identifier: GPL-2.0 */
       2             : #ifndef _LINUX_MATH64_H
       3             : #define _LINUX_MATH64_H
       4             : 
       5             : #include <linux/types.h>
       6             : #include <linux/math.h>
       7             : #include <vdso/math64.h>
       8             : #include <asm/div64.h>
       9             : 
      10             : #if BITS_PER_LONG == 64
      11             : 
      12             : #define div64_long(x, y) div64_s64((x), (y))
      13             : #define div64_ul(x, y)   div64_u64((x), (y))
      14             : 
      15             : /**
      16             :  * div_u64_rem - unsigned 64bit divide with 32bit divisor with remainder
      17             :  * @dividend: unsigned 64bit dividend
      18             :  * @divisor: unsigned 32bit divisor
      19             :  * @remainder: pointer to unsigned 32bit remainder
      20             :  *
      21             :  * Return: sets ``*remainder``, then returns dividend / divisor
      22             :  *
      23             :  * This is commonly provided by 32bit archs to provide an optimized 64bit
      24             :  * divide.
      25             :  */
      26    93969780 : static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
      27             : {
      28  2822369722 :         *remainder = dividend % divisor;
      29  2822369722 :         return dividend / divisor;
      30             : }
      31             : 
      32             : /**
      33             :  * div_s64_rem - signed 64bit divide with 32bit divisor with remainder
      34             :  * @dividend: signed 64bit dividend
      35             :  * @divisor: signed 32bit divisor
      36             :  * @remainder: pointer to signed 32bit remainder
      37             :  *
      38             :  * Return: sets ``*remainder``, then returns dividend / divisor
      39             :  */
      40      203072 : static inline s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
      41             : {
      42      203072 :         *remainder = dividend % divisor;
      43      203072 :         return dividend / divisor;
      44             : }
      45             : 
      46             : /**
      47             :  * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
      48             :  * @dividend: unsigned 64bit dividend
      49             :  * @divisor: unsigned 64bit divisor
      50             :  * @remainder: pointer to unsigned 64bit remainder
      51             :  *
      52             :  * Return: sets ``*remainder``, then returns dividend / divisor
      53             :  */
      54           0 : static inline u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
      55             : {
      56           0 :         *remainder = dividend % divisor;
      57           0 :         return dividend / divisor;
      58             : }
      59             : 
      60             : /**
      61             :  * div64_u64 - unsigned 64bit divide with 64bit divisor
      62             :  * @dividend: unsigned 64bit dividend
      63             :  * @divisor: unsigned 64bit divisor
      64             :  *
      65             :  * Return: dividend / divisor
      66             :  */
      67             : static inline u64 div64_u64(u64 dividend, u64 divisor)
      68             : {
      69     4355857 :         return dividend / divisor;
      70             : }
      71             : 
      72             : /**
      73             :  * div64_s64 - signed 64bit divide with 64bit divisor
      74             :  * @dividend: signed 64bit dividend
      75             :  * @divisor: signed 64bit divisor
      76             :  *
      77             :  * Return: dividend / divisor
      78             :  */
      79             : static inline s64 div64_s64(s64 dividend, s64 divisor)
      80             : {
      81      124970 :         return dividend / divisor;
      82             : }
      83             : 
      84             : #elif BITS_PER_LONG == 32
      85             : 
      86             : #define div64_long(x, y) div_s64((x), (y))
      87             : #define div64_ul(x, y)   div_u64((x), (y))
      88             : 
      89             : #ifndef div_u64_rem
      90             : static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
      91             : {
      92             :         *remainder = do_div(dividend, divisor);
      93             :         return dividend;
      94             : }
      95             : #endif
      96             : 
      97             : #ifndef div_s64_rem
      98             : extern s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder);
      99             : #endif
     100             : 
     101             : #ifndef div64_u64_rem
     102             : extern u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder);
     103             : #endif
     104             : 
     105             : #ifndef div64_u64
     106             : extern u64 div64_u64(u64 dividend, u64 divisor);
     107             : #endif
     108             : 
     109             : #ifndef div64_s64
     110             : extern s64 div64_s64(s64 dividend, s64 divisor);
     111             : #endif
     112             : 
     113             : #endif /* BITS_PER_LONG */
     114             : 
     115             : /**
     116             :  * div_u64 - unsigned 64bit divide with 32bit divisor
     117             :  * @dividend: unsigned 64bit dividend
     118             :  * @divisor: unsigned 32bit divisor
     119             :  *
     120             :  * This is the most common 64bit divide and should be used if possible,
     121             :  * as many 32bit archs can optimize this variant better than a full 64bit
     122             :  * divide.
     123             :  *
     124             :  * Return: dividend / divisor
     125             :  */
     126             : #ifndef div_u64
     127             : static inline u64 div_u64(u64 dividend, u32 divisor)
     128             : {
     129      506028 :         u32 remainder;
     130      506028 :         return div_u64_rem(dividend, divisor, &remainder);
     131             : }
     132             : #endif
     133             : 
     134             : /**
     135             :  * div_s64 - signed 64bit divide with 32bit divisor
     136             :  * @dividend: signed 64bit dividend
     137             :  * @divisor: signed 32bit divisor
     138             :  *
     139             :  * Return: dividend / divisor
     140             :  */
     141             : #ifndef div_s64
     142             : static inline s64 div_s64(s64 dividend, s32 divisor)
     143             : {
     144             :         s32 remainder;
     145             :         return div_s64_rem(dividend, divisor, &remainder);
     146             : }
     147             : #endif
     148             : 
     149             : u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder);
     150             : 
     151             : #ifndef mul_u32_u32
     152             : /*
     153             :  * Many a GCC version messes this up and generates a 64x64 mult :-(
     154             :  */
     155             : static inline u64 mul_u32_u32(u32 a, u32 b)
     156             : {
     157             :         return (u64)a * b;
     158             : }
     159             : #endif
     160             : 
     161             : #if defined(CONFIG_ARCH_SUPPORTS_INT128) && defined(__SIZEOF_INT128__)
     162             : 
     163             : #ifndef mul_u64_u32_shr
     164             : static __always_inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
     165             : {
     166             :         return (u64)(((unsigned __int128)a * mul) >> shift);
     167             : }
     168             : #endif /* mul_u64_u32_shr */
     169             : 
     170             : #ifndef mul_u64_u64_shr
     171             : static __always_inline u64 mul_u64_u64_shr(u64 a, u64 mul, unsigned int shift)
     172             : {
     173             :         return (u64)(((unsigned __int128)a * mul) >> shift);
     174             : }
     175             : #endif /* mul_u64_u64_shr */
     176             : 
     177             : #else
     178             : 
     179             : #ifndef mul_u64_u32_shr
     180             : static __always_inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
     181             : {
     182             :         u32 ah, al;
     183             :         u64 ret;
     184             : 
     185             :         al = a;
     186             :         ah = a >> 32;
     187             : 
     188             :         ret = mul_u32_u32(al, mul) >> shift;
     189             :         if (ah)
     190             :                 ret += mul_u32_u32(ah, mul) << (32 - shift);
     191             : 
     192             :         return ret;
     193             : }
     194             : #endif /* mul_u64_u32_shr */
     195             : 
     196             : #ifndef mul_u64_u64_shr
     197             : static inline u64 mul_u64_u64_shr(u64 a, u64 b, unsigned int shift)
     198             : {
     199             :         union {
     200             :                 u64 ll;
     201             :                 struct {
     202             : #ifdef __BIG_ENDIAN
     203             :                         u32 high, low;
     204             : #else
     205             :                         u32 low, high;
     206             : #endif
     207             :                 } l;
     208             :         } rl, rm, rn, rh, a0, b0;
     209             :         u64 c;
     210             : 
     211             :         a0.ll = a;
     212             :         b0.ll = b;
     213             : 
     214             :         rl.ll = mul_u32_u32(a0.l.low, b0.l.low);
     215             :         rm.ll = mul_u32_u32(a0.l.low, b0.l.high);
     216             :         rn.ll = mul_u32_u32(a0.l.high, b0.l.low);
     217             :         rh.ll = mul_u32_u32(a0.l.high, b0.l.high);
     218             : 
     219             :         /*
     220             :          * Each of these lines computes a 64-bit intermediate result into "c",
     221             :          * starting at bits 32-95.  The low 32-bits go into the result of the
     222             :          * multiplication, the high 32-bits are carried into the next step.
     223             :          */
     224             :         rl.l.high = c = (u64)rl.l.high + rm.l.low + rn.l.low;
     225             :         rh.l.low = c = (c >> 32) + rm.l.high + rn.l.high + rh.l.low;
     226             :         rh.l.high = (c >> 32) + rh.l.high;
     227             : 
     228             :         /*
     229             :          * The 128-bit result of the multiplication is in rl.ll and rh.ll,
     230             :          * shift it right and throw away the high part of the result.
     231             :          */
     232             :         if (shift == 0)
     233             :                 return rl.ll;
     234             :         if (shift < 64)
     235             :                 return (rl.ll >> shift) | (rh.ll << (64 - shift));
     236             :         return rh.ll >> (shift & 63);
     237             : }
     238             : #endif /* mul_u64_u64_shr */
     239             : 
     240             : #endif
     241             : 
     242             : #ifndef mul_s64_u64_shr
     243             : static inline u64 mul_s64_u64_shr(s64 a, u64 b, unsigned int shift)
     244             : {
     245             :         u64 ret;
     246             : 
     247             :         /*
     248             :          * Extract the sign before the multiplication and put it back
     249             :          * afterwards if needed.
     250             :          */
     251             :         ret = mul_u64_u64_shr(abs(a), b, shift);
     252             : 
     253             :         if (a < 0)
     254             :                 ret = -((s64) ret);
     255             : 
     256             :         return ret;
     257             : }
     258             : #endif /* mul_s64_u64_shr */
     259             : 
     260             : #ifndef mul_u64_u32_div
     261             : static inline u64 mul_u64_u32_div(u64 a, u32 mul, u32 divisor)
     262             : {
     263             :         union {
     264             :                 u64 ll;
     265             :                 struct {
     266             : #ifdef __BIG_ENDIAN
     267             :                         u32 high, low;
     268             : #else
     269             :                         u32 low, high;
     270             : #endif
     271             :                 } l;
     272             :         } u, rl, rh;
     273             : 
     274             :         u.ll = a;
     275             :         rl.ll = mul_u32_u32(u.l.low, mul);
     276             :         rh.ll = mul_u32_u32(u.l.high, mul) + rl.l.high;
     277             : 
     278             :         /* Bits 32-63 of the result will be in rh.l.low. */
     279             :         rl.l.high = do_div(rh.ll, divisor);
     280             : 
     281             :         /* Bits 0-31 of the result will be in rl.l.low. */
     282             :         do_div(rl.ll, divisor);
     283             : 
     284             :         rl.l.high = rh.l.low;
     285             :         return rl.ll;
     286             : }
     287             : #endif /* mul_u64_u32_div */
     288             : 
     289             : u64 mul_u64_u64_div_u64(u64 a, u64 mul, u64 div);
     290             : 
     291             : /**
     292             :  * DIV64_U64_ROUND_UP - unsigned 64bit divide with 64bit divisor rounded up
     293             :  * @ll: unsigned 64bit dividend
     294             :  * @d: unsigned 64bit divisor
     295             :  *
     296             :  * Divide unsigned 64bit dividend by unsigned 64bit divisor
     297             :  * and round up.
     298             :  *
     299             :  * Return: dividend / divisor rounded up
     300             :  */
     301             : #define DIV64_U64_ROUND_UP(ll, d)       \
     302             :         ({ u64 _tmp = (d); div64_u64((ll) + _tmp - 1, _tmp); })
     303             : 
     304             : /**
     305             :  * DIV64_U64_ROUND_CLOSEST - unsigned 64bit divide with 64bit divisor rounded to nearest integer
     306             :  * @dividend: unsigned 64bit dividend
     307             :  * @divisor: unsigned 64bit divisor
     308             :  *
     309             :  * Divide unsigned 64bit dividend by unsigned 64bit divisor
     310             :  * and round to closest integer.
     311             :  *
     312             :  * Return: dividend / divisor rounded to nearest integer
     313             :  */
     314             : #define DIV64_U64_ROUND_CLOSEST(dividend, divisor)      \
     315             :         ({ u64 _tmp = (divisor); div64_u64((dividend) + _tmp / 2, _tmp); })
     316             : 
     317             : /**
     318             :  * DIV_U64_ROUND_CLOSEST - unsigned 64bit divide with 32bit divisor rounded to nearest integer
     319             :  * @dividend: unsigned 64bit dividend
     320             :  * @divisor: unsigned 32bit divisor
     321             :  *
     322             :  * Divide unsigned 64bit dividend by unsigned 32bit divisor
     323             :  * and round to closest integer.
     324             :  *
     325             :  * Return: dividend / divisor rounded to nearest integer
     326             :  */
     327             : #define DIV_U64_ROUND_CLOSEST(dividend, divisor)        \
     328             :         ({ u32 _tmp = (divisor); div_u64((u64)(dividend) + _tmp / 2, _tmp); })
     329             : 
     330             : /**
     331             :  * DIV_S64_ROUND_CLOSEST - signed 64bit divide with 32bit divisor rounded to nearest integer
     332             :  * @dividend: signed 64bit dividend
     333             :  * @divisor: signed 32bit divisor
     334             :  *
     335             :  * Divide signed 64bit dividend by signed 32bit divisor
     336             :  * and round to closest integer.
     337             :  *
     338             :  * Return: dividend / divisor rounded to nearest integer
     339             :  */
     340             : #define DIV_S64_ROUND_CLOSEST(dividend, divisor)(       \
     341             : {                                                       \
     342             :         s64 __x = (dividend);                           \
     343             :         s32 __d = (divisor);                            \
     344             :         ((__x > 0) == (__d > 0)) ?                        \
     345             :                 div_s64((__x + (__d / 2)), __d) :       \
     346             :                 div_s64((__x - (__d / 2)), __d);        \
     347             : }                                                       \
     348             : )
     349             : #endif /* _LINUX_MATH64_H */

Generated by: LCOV version 1.14