LCOV - code coverage report
Current view: top level - include/linux - mmzone.h (source / functions) Hit Total Coverage
Test: fstests of 6.5.0-rc3-djwa @ Mon Jul 31 20:08:17 PDT 2023 Lines: 4 4 100.0 %
Date: 2023-07-31 20:08:17 Functions: 0 0 -

          Line data    Source code
       1             : /* SPDX-License-Identifier: GPL-2.0 */
       2             : #ifndef _LINUX_MMZONE_H
       3             : #define _LINUX_MMZONE_H
       4             : 
       5             : #ifndef __ASSEMBLY__
       6             : #ifndef __GENERATING_BOUNDS_H
       7             : 
       8             : #include <linux/spinlock.h>
       9             : #include <linux/list.h>
      10             : #include <linux/list_nulls.h>
      11             : #include <linux/wait.h>
      12             : #include <linux/bitops.h>
      13             : #include <linux/cache.h>
      14             : #include <linux/threads.h>
      15             : #include <linux/numa.h>
      16             : #include <linux/init.h>
      17             : #include <linux/seqlock.h>
      18             : #include <linux/nodemask.h>
      19             : #include <linux/pageblock-flags.h>
      20             : #include <linux/page-flags-layout.h>
      21             : #include <linux/atomic.h>
      22             : #include <linux/mm_types.h>
      23             : #include <linux/page-flags.h>
      24             : #include <linux/local_lock.h>
      25             : #include <asm/page.h>
      26             : 
      27             : /* Free memory management - zoned buddy allocator.  */
      28             : #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
      29             : #define MAX_ORDER 10
      30             : #else
      31             : #define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
      32             : #endif
      33             : #define MAX_ORDER_NR_PAGES (1 << MAX_ORDER)
      34             : 
      35             : #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
      36             : 
      37             : /*
      38             :  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
      39             :  * costly to service.  That is between allocation orders which should
      40             :  * coalesce naturally under reasonable reclaim pressure and those which
      41             :  * will not.
      42             :  */
      43             : #define PAGE_ALLOC_COSTLY_ORDER 3
      44             : 
      45             : enum migratetype {
      46             :         MIGRATE_UNMOVABLE,
      47             :         MIGRATE_MOVABLE,
      48             :         MIGRATE_RECLAIMABLE,
      49             :         MIGRATE_PCPTYPES,       /* the number of types on the pcp lists */
      50             :         MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
      51             : #ifdef CONFIG_CMA
      52             :         /*
      53             :          * MIGRATE_CMA migration type is designed to mimic the way
      54             :          * ZONE_MOVABLE works.  Only movable pages can be allocated
      55             :          * from MIGRATE_CMA pageblocks and page allocator never
      56             :          * implicitly change migration type of MIGRATE_CMA pageblock.
      57             :          *
      58             :          * The way to use it is to change migratetype of a range of
      59             :          * pageblocks to MIGRATE_CMA which can be done by
      60             :          * __free_pageblock_cma() function.
      61             :          */
      62             :         MIGRATE_CMA,
      63             : #endif
      64             : #ifdef CONFIG_MEMORY_ISOLATION
      65             :         MIGRATE_ISOLATE,        /* can't allocate from here */
      66             : #endif
      67             :         MIGRATE_TYPES
      68             : };
      69             : 
      70             : /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
      71             : extern const char * const migratetype_names[MIGRATE_TYPES];
      72             : 
      73             : #ifdef CONFIG_CMA
      74             : #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
      75             : #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
      76             : #else
      77             : #  define is_migrate_cma(migratetype) false
      78             : #  define is_migrate_cma_page(_page) false
      79             : #endif
      80             : 
      81             : static inline bool is_migrate_movable(int mt)
      82             : {
      83             :         return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
      84             : }
      85             : 
      86             : /*
      87             :  * Check whether a migratetype can be merged with another migratetype.
      88             :  *
      89             :  * It is only mergeable when it can fall back to other migratetypes for
      90             :  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
      91             :  */
      92             : static inline bool migratetype_is_mergeable(int mt)
      93             : {
      94             :         return mt < MIGRATE_PCPTYPES;
      95             : }
      96             : 
      97             : #define for_each_migratetype_order(order, type) \
      98             :         for (order = 0; order <= MAX_ORDER; order++) \
      99             :                 for (type = 0; type < MIGRATE_TYPES; type++)
     100             : 
     101             : extern int page_group_by_mobility_disabled;
     102             : 
     103             : #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
     104             : 
     105             : #define get_pageblock_migratetype(page)                                 \
     106             :         get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
     107             : 
     108             : #define folio_migratetype(folio)                                \
     109             :         get_pfnblock_flags_mask(&folio->page, folio_pfn(folio),          \
     110             :                         MIGRATETYPE_MASK)
     111             : struct free_area {
     112             :         struct list_head        free_list[MIGRATE_TYPES];
     113             :         unsigned long           nr_free;
     114             : };
     115             : 
     116             : struct pglist_data;
     117             : 
     118             : #ifdef CONFIG_NUMA
     119             : enum numa_stat_item {
     120             :         NUMA_HIT,               /* allocated in intended node */
     121             :         NUMA_MISS,              /* allocated in non intended node */
     122             :         NUMA_FOREIGN,           /* was intended here, hit elsewhere */
     123             :         NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
     124             :         NUMA_LOCAL,             /* allocation from local node */
     125             :         NUMA_OTHER,             /* allocation from other node */
     126             :         NR_VM_NUMA_EVENT_ITEMS
     127             : };
     128             : #else
     129             : #define NR_VM_NUMA_EVENT_ITEMS 0
     130             : #endif
     131             : 
     132             : enum zone_stat_item {
     133             :         /* First 128 byte cacheline (assuming 64 bit words) */
     134             :         NR_FREE_PAGES,
     135             :         NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
     136             :         NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
     137             :         NR_ZONE_ACTIVE_ANON,
     138             :         NR_ZONE_INACTIVE_FILE,
     139             :         NR_ZONE_ACTIVE_FILE,
     140             :         NR_ZONE_UNEVICTABLE,
     141             :         NR_ZONE_WRITE_PENDING,  /* Count of dirty, writeback and unstable pages */
     142             :         NR_MLOCK,               /* mlock()ed pages found and moved off LRU */
     143             :         /* Second 128 byte cacheline */
     144             :         NR_BOUNCE,
     145             : #if IS_ENABLED(CONFIG_ZSMALLOC)
     146             :         NR_ZSPAGES,             /* allocated in zsmalloc */
     147             : #endif
     148             :         NR_FREE_CMA_PAGES,
     149             : #ifdef CONFIG_UNACCEPTED_MEMORY
     150             :         NR_UNACCEPTED,
     151             : #endif
     152             :         NR_VM_ZONE_STAT_ITEMS };
     153             : 
     154             : enum node_stat_item {
     155             :         NR_LRU_BASE,
     156             :         NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
     157             :         NR_ACTIVE_ANON,         /*  "     "     "   "       "         */
     158             :         NR_INACTIVE_FILE,       /*  "     "     "   "       "         */
     159             :         NR_ACTIVE_FILE,         /*  "     "     "   "       "         */
     160             :         NR_UNEVICTABLE,         /*  "     "     "   "       "         */
     161             :         NR_SLAB_RECLAIMABLE_B,
     162             :         NR_SLAB_UNRECLAIMABLE_B,
     163             :         NR_ISOLATED_ANON,       /* Temporary isolated pages from anon lru */
     164             :         NR_ISOLATED_FILE,       /* Temporary isolated pages from file lru */
     165             :         WORKINGSET_NODES,
     166             :         WORKINGSET_REFAULT_BASE,
     167             :         WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
     168             :         WORKINGSET_REFAULT_FILE,
     169             :         WORKINGSET_ACTIVATE_BASE,
     170             :         WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
     171             :         WORKINGSET_ACTIVATE_FILE,
     172             :         WORKINGSET_RESTORE_BASE,
     173             :         WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
     174             :         WORKINGSET_RESTORE_FILE,
     175             :         WORKINGSET_NODERECLAIM,
     176             :         NR_ANON_MAPPED, /* Mapped anonymous pages */
     177             :         NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
     178             :                            only modified from process context */
     179             :         NR_FILE_PAGES,
     180             :         NR_FILE_DIRTY,
     181             :         NR_WRITEBACK,
     182             :         NR_WRITEBACK_TEMP,      /* Writeback using temporary buffers */
     183             :         NR_SHMEM,               /* shmem pages (included tmpfs/GEM pages) */
     184             :         NR_SHMEM_THPS,
     185             :         NR_SHMEM_PMDMAPPED,
     186             :         NR_FILE_THPS,
     187             :         NR_FILE_PMDMAPPED,
     188             :         NR_ANON_THPS,
     189             :         NR_VMSCAN_WRITE,
     190             :         NR_VMSCAN_IMMEDIATE,    /* Prioritise for reclaim when writeback ends */
     191             :         NR_DIRTIED,             /* page dirtyings since bootup */
     192             :         NR_WRITTEN,             /* page writings since bootup */
     193             :         NR_THROTTLED_WRITTEN,   /* NR_WRITTEN while reclaim throttled */
     194             :         NR_KERNEL_MISC_RECLAIMABLE,     /* reclaimable non-slab kernel pages */
     195             :         NR_FOLL_PIN_ACQUIRED,   /* via: pin_user_page(), gup flag: FOLL_PIN */
     196             :         NR_FOLL_PIN_RELEASED,   /* pages returned via unpin_user_page() */
     197             :         NR_KERNEL_STACK_KB,     /* measured in KiB */
     198             : #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
     199             :         NR_KERNEL_SCS_KB,       /* measured in KiB */
     200             : #endif
     201             :         NR_PAGETABLE,           /* used for pagetables */
     202             :         NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */
     203             : #ifdef CONFIG_SWAP
     204             :         NR_SWAPCACHE,
     205             : #endif
     206             : #ifdef CONFIG_NUMA_BALANCING
     207             :         PGPROMOTE_SUCCESS,      /* promote successfully */
     208             :         PGPROMOTE_CANDIDATE,    /* candidate pages to promote */
     209             : #endif
     210             :         NR_VM_NODE_STAT_ITEMS
     211             : };
     212             : 
     213             : /*
     214             :  * Returns true if the item should be printed in THPs (/proc/vmstat
     215             :  * currently prints number of anon, file and shmem THPs. But the item
     216             :  * is charged in pages).
     217             :  */
     218             : static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
     219             : {
     220             :         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
     221             :                 return false;
     222             : 
     223             :         return item == NR_ANON_THPS ||
     224             :                item == NR_FILE_THPS ||
     225             :                item == NR_SHMEM_THPS ||
     226             :                item == NR_SHMEM_PMDMAPPED ||
     227             :                item == NR_FILE_PMDMAPPED;
     228             : }
     229             : 
     230             : /*
     231             :  * Returns true if the value is measured in bytes (most vmstat values are
     232             :  * measured in pages). This defines the API part, the internal representation
     233             :  * might be different.
     234             :  */
     235             : static __always_inline bool vmstat_item_in_bytes(int idx)
     236             : {
     237             :         /*
     238             :          * Global and per-node slab counters track slab pages.
     239             :          * It's expected that changes are multiples of PAGE_SIZE.
     240             :          * Internally values are stored in pages.
     241             :          *
     242             :          * Per-memcg and per-lruvec counters track memory, consumed
     243             :          * by individual slab objects. These counters are actually
     244             :          * byte-precise.
     245             :          */
     246    65920668 :         return (idx == NR_SLAB_RECLAIMABLE_B ||
     247             :                 idx == NR_SLAB_UNRECLAIMABLE_B);
     248             : }
     249             : 
     250             : /*
     251             :  * We do arithmetic on the LRU lists in various places in the code,
     252             :  * so it is important to keep the active lists LRU_ACTIVE higher in
     253             :  * the array than the corresponding inactive lists, and to keep
     254             :  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
     255             :  *
     256             :  * This has to be kept in sync with the statistics in zone_stat_item
     257             :  * above and the descriptions in vmstat_text in mm/vmstat.c
     258             :  */
     259             : #define LRU_BASE 0
     260             : #define LRU_ACTIVE 1
     261             : #define LRU_FILE 2
     262             : 
     263             : enum lru_list {
     264             :         LRU_INACTIVE_ANON = LRU_BASE,
     265             :         LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
     266             :         LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
     267             :         LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
     268             :         LRU_UNEVICTABLE,
     269             :         NR_LRU_LISTS
     270             : };
     271             : 
     272             : enum vmscan_throttle_state {
     273             :         VMSCAN_THROTTLE_WRITEBACK,
     274             :         VMSCAN_THROTTLE_ISOLATED,
     275             :         VMSCAN_THROTTLE_NOPROGRESS,
     276             :         VMSCAN_THROTTLE_CONGESTED,
     277             :         NR_VMSCAN_THROTTLE,
     278             : };
     279             : 
     280             : #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
     281             : 
     282             : #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
     283             : 
     284             : static inline bool is_file_lru(enum lru_list lru)
     285             : {
     286             :         return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
     287             : }
     288             : 
     289             : static inline bool is_active_lru(enum lru_list lru)
     290             : {
     291             :         return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
     292             : }
     293             : 
     294             : #define WORKINGSET_ANON 0
     295             : #define WORKINGSET_FILE 1
     296             : #define ANON_AND_FILE 2
     297             : 
     298             : enum lruvec_flags {
     299             :         /*
     300             :          * An lruvec has many dirty pages backed by a congested BDI:
     301             :          * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
     302             :          *    It can be cleared by cgroup reclaim or kswapd.
     303             :          * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
     304             :          *    It can only be cleared by kswapd.
     305             :          *
     306             :          * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
     307             :          * reclaim, but not vice versa. This only applies to the root cgroup.
     308             :          * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
     309             :          * memory.reclaim) to unthrottle an unbalanced node (that was throttled
     310             :          * by kswapd).
     311             :          */
     312             :         LRUVEC_CGROUP_CONGESTED,
     313             :         LRUVEC_NODE_CONGESTED,
     314             : };
     315             : 
     316             : #endif /* !__GENERATING_BOUNDS_H */
     317             : 
     318             : /*
     319             :  * Evictable pages are divided into multiple generations. The youngest and the
     320             :  * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
     321             :  * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
     322             :  * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
     323             :  * corresponding generation. The gen counter in folio->flags stores gen+1 while
     324             :  * a page is on one of lrugen->folios[]. Otherwise it stores 0.
     325             :  *
     326             :  * A page is added to the youngest generation on faulting. The aging needs to
     327             :  * check the accessed bit at least twice before handing this page over to the
     328             :  * eviction. The first check takes care of the accessed bit set on the initial
     329             :  * fault; the second check makes sure this page hasn't been used since then.
     330             :  * This process, AKA second chance, requires a minimum of two generations,
     331             :  * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
     332             :  * LRU, e.g., /proc/vmstat, these two generations are considered active; the
     333             :  * rest of generations, if they exist, are considered inactive. See
     334             :  * lru_gen_is_active().
     335             :  *
     336             :  * PG_active is always cleared while a page is on one of lrugen->folios[] so
     337             :  * that the aging needs not to worry about it. And it's set again when a page
     338             :  * considered active is isolated for non-reclaiming purposes, e.g., migration.
     339             :  * See lru_gen_add_folio() and lru_gen_del_folio().
     340             :  *
     341             :  * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
     342             :  * number of categories of the active/inactive LRU when keeping track of
     343             :  * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
     344             :  * in folio->flags.
     345             :  */
     346             : #define MIN_NR_GENS             2U
     347             : #define MAX_NR_GENS             4U
     348             : 
     349             : /*
     350             :  * Each generation is divided into multiple tiers. A page accessed N times
     351             :  * through file descriptors is in tier order_base_2(N). A page in the first tier
     352             :  * (N=0,1) is marked by PG_referenced unless it was faulted in through page
     353             :  * tables or read ahead. A page in any other tier (N>1) is marked by
     354             :  * PG_referenced and PG_workingset. This implies a minimum of two tiers is
     355             :  * supported without using additional bits in folio->flags.
     356             :  *
     357             :  * In contrast to moving across generations which requires the LRU lock, moving
     358             :  * across tiers only involves atomic operations on folio->flags and therefore
     359             :  * has a negligible cost in the buffered access path. In the eviction path,
     360             :  * comparisons of refaulted/(evicted+protected) from the first tier and the
     361             :  * rest infer whether pages accessed multiple times through file descriptors
     362             :  * are statistically hot and thus worth protecting.
     363             :  *
     364             :  * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
     365             :  * number of categories of the active/inactive LRU when keeping track of
     366             :  * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
     367             :  * folio->flags.
     368             :  */
     369             : #define MAX_NR_TIERS            4U
     370             : 
     371             : #ifndef __GENERATING_BOUNDS_H
     372             : 
     373             : struct lruvec;
     374             : struct page_vma_mapped_walk;
     375             : 
     376             : #define LRU_GEN_MASK            ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
     377             : #define LRU_REFS_MASK           ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
     378             : 
     379             : #ifdef CONFIG_LRU_GEN
     380             : 
     381             : enum {
     382             :         LRU_GEN_ANON,
     383             :         LRU_GEN_FILE,
     384             : };
     385             : 
     386             : enum {
     387             :         LRU_GEN_CORE,
     388             :         LRU_GEN_MM_WALK,
     389             :         LRU_GEN_NONLEAF_YOUNG,
     390             :         NR_LRU_GEN_CAPS
     391             : };
     392             : 
     393             : #define MIN_LRU_BATCH           BITS_PER_LONG
     394             : #define MAX_LRU_BATCH           (MIN_LRU_BATCH * 64)
     395             : 
     396             : /* whether to keep historical stats from evicted generations */
     397             : #ifdef CONFIG_LRU_GEN_STATS
     398             : #define NR_HIST_GENS            MAX_NR_GENS
     399             : #else
     400             : #define NR_HIST_GENS            1U
     401             : #endif
     402             : 
     403             : /*
     404             :  * The youngest generation number is stored in max_seq for both anon and file
     405             :  * types as they are aged on an equal footing. The oldest generation numbers are
     406             :  * stored in min_seq[] separately for anon and file types as clean file pages
     407             :  * can be evicted regardless of swap constraints.
     408             :  *
     409             :  * Normally anon and file min_seq are in sync. But if swapping is constrained,
     410             :  * e.g., out of swap space, file min_seq is allowed to advance and leave anon
     411             :  * min_seq behind.
     412             :  *
     413             :  * The number of pages in each generation is eventually consistent and therefore
     414             :  * can be transiently negative when reset_batch_size() is pending.
     415             :  */
     416             : struct lru_gen_folio {
     417             :         /* the aging increments the youngest generation number */
     418             :         unsigned long max_seq;
     419             :         /* the eviction increments the oldest generation numbers */
     420             :         unsigned long min_seq[ANON_AND_FILE];
     421             :         /* the birth time of each generation in jiffies */
     422             :         unsigned long timestamps[MAX_NR_GENS];
     423             :         /* the multi-gen LRU lists, lazily sorted on eviction */
     424             :         struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
     425             :         /* the multi-gen LRU sizes, eventually consistent */
     426             :         long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
     427             :         /* the exponential moving average of refaulted */
     428             :         unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
     429             :         /* the exponential moving average of evicted+protected */
     430             :         unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
     431             :         /* the first tier doesn't need protection, hence the minus one */
     432             :         unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
     433             :         /* can be modified without holding the LRU lock */
     434             :         atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
     435             :         atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
     436             :         /* whether the multi-gen LRU is enabled */
     437             :         bool enabled;
     438             : #ifdef CONFIG_MEMCG
     439             :         /* the memcg generation this lru_gen_folio belongs to */
     440             :         u8 gen;
     441             :         /* the list segment this lru_gen_folio belongs to */
     442             :         u8 seg;
     443             :         /* per-node lru_gen_folio list for global reclaim */
     444             :         struct hlist_nulls_node list;
     445             : #endif
     446             : };
     447             : 
     448             : enum {
     449             :         MM_LEAF_TOTAL,          /* total leaf entries */
     450             :         MM_LEAF_OLD,            /* old leaf entries */
     451             :         MM_LEAF_YOUNG,          /* young leaf entries */
     452             :         MM_NONLEAF_TOTAL,       /* total non-leaf entries */
     453             :         MM_NONLEAF_FOUND,       /* non-leaf entries found in Bloom filters */
     454             :         MM_NONLEAF_ADDED,       /* non-leaf entries added to Bloom filters */
     455             :         NR_MM_STATS
     456             : };
     457             : 
     458             : /* double-buffering Bloom filters */
     459             : #define NR_BLOOM_FILTERS        2
     460             : 
     461             : struct lru_gen_mm_state {
     462             :         /* set to max_seq after each iteration */
     463             :         unsigned long seq;
     464             :         /* where the current iteration continues after */
     465             :         struct list_head *head;
     466             :         /* where the last iteration ended before */
     467             :         struct list_head *tail;
     468             :         /* Bloom filters flip after each iteration */
     469             :         unsigned long *filters[NR_BLOOM_FILTERS];
     470             :         /* the mm stats for debugging */
     471             :         unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
     472             : };
     473             : 
     474             : struct lru_gen_mm_walk {
     475             :         /* the lruvec under reclaim */
     476             :         struct lruvec *lruvec;
     477             :         /* unstable max_seq from lru_gen_folio */
     478             :         unsigned long max_seq;
     479             :         /* the next address within an mm to scan */
     480             :         unsigned long next_addr;
     481             :         /* to batch promoted pages */
     482             :         int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
     483             :         /* to batch the mm stats */
     484             :         int mm_stats[NR_MM_STATS];
     485             :         /* total batched items */
     486             :         int batched;
     487             :         bool can_swap;
     488             :         bool force_scan;
     489             : };
     490             : 
     491             : void lru_gen_init_lruvec(struct lruvec *lruvec);
     492             : void lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
     493             : 
     494             : #ifdef CONFIG_MEMCG
     495             : 
     496             : /*
     497             :  * For each node, memcgs are divided into two generations: the old and the
     498             :  * young. For each generation, memcgs are randomly sharded into multiple bins
     499             :  * to improve scalability. For each bin, the hlist_nulls is virtually divided
     500             :  * into three segments: the head, the tail and the default.
     501             :  *
     502             :  * An onlining memcg is added to the tail of a random bin in the old generation.
     503             :  * The eviction starts at the head of a random bin in the old generation. The
     504             :  * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
     505             :  * the old generation, is incremented when all its bins become empty.
     506             :  *
     507             :  * There are four operations:
     508             :  * 1. MEMCG_LRU_HEAD, which moves an memcg to the head of a random bin in its
     509             :  *    current generation (old or young) and updates its "seg" to "head";
     510             :  * 2. MEMCG_LRU_TAIL, which moves an memcg to the tail of a random bin in its
     511             :  *    current generation (old or young) and updates its "seg" to "tail";
     512             :  * 3. MEMCG_LRU_OLD, which moves an memcg to the head of a random bin in the old
     513             :  *    generation, updates its "gen" to "old" and resets its "seg" to "default";
     514             :  * 4. MEMCG_LRU_YOUNG, which moves an memcg to the tail of a random bin in the
     515             :  *    young generation, updates its "gen" to "young" and resets its "seg" to
     516             :  *    "default".
     517             :  *
     518             :  * The events that trigger the above operations are:
     519             :  * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
     520             :  * 2. The first attempt to reclaim an memcg below low, which triggers
     521             :  *    MEMCG_LRU_TAIL;
     522             :  * 3. The first attempt to reclaim an memcg below reclaimable size threshold,
     523             :  *    which triggers MEMCG_LRU_TAIL;
     524             :  * 4. The second attempt to reclaim an memcg below reclaimable size threshold,
     525             :  *    which triggers MEMCG_LRU_YOUNG;
     526             :  * 5. Attempting to reclaim an memcg below min, which triggers MEMCG_LRU_YOUNG;
     527             :  * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
     528             :  * 7. Offlining an memcg, which triggers MEMCG_LRU_OLD.
     529             :  *
     530             :  * Note that memcg LRU only applies to global reclaim, and the round-robin
     531             :  * incrementing of their max_seq counters ensures the eventual fairness to all
     532             :  * eligible memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
     533             :  */
     534             : #define MEMCG_NR_GENS   2
     535             : #define MEMCG_NR_BINS   8
     536             : 
     537             : struct lru_gen_memcg {
     538             :         /* the per-node memcg generation counter */
     539             :         unsigned long seq;
     540             :         /* each memcg has one lru_gen_folio per node */
     541             :         unsigned long nr_memcgs[MEMCG_NR_GENS];
     542             :         /* per-node lru_gen_folio list for global reclaim */
     543             :         struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
     544             :         /* protects the above */
     545             :         spinlock_t lock;
     546             : };
     547             : 
     548             : void lru_gen_init_pgdat(struct pglist_data *pgdat);
     549             : 
     550             : void lru_gen_init_memcg(struct mem_cgroup *memcg);
     551             : void lru_gen_exit_memcg(struct mem_cgroup *memcg);
     552             : void lru_gen_online_memcg(struct mem_cgroup *memcg);
     553             : void lru_gen_offline_memcg(struct mem_cgroup *memcg);
     554             : void lru_gen_release_memcg(struct mem_cgroup *memcg);
     555             : void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
     556             : 
     557             : #else /* !CONFIG_MEMCG */
     558             : 
     559             : #define MEMCG_NR_GENS   1
     560             : 
     561             : struct lru_gen_memcg {
     562             : };
     563             : 
     564             : static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
     565             : {
     566             : }
     567             : 
     568             : #endif /* CONFIG_MEMCG */
     569             : 
     570             : #else /* !CONFIG_LRU_GEN */
     571             : 
     572             : static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
     573             : {
     574             : }
     575             : 
     576             : static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
     577             : {
     578             : }
     579             : 
     580             : static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
     581             : {
     582             : }
     583             : 
     584             : #ifdef CONFIG_MEMCG
     585             : 
     586             : static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
     587             : {
     588             : }
     589             : 
     590             : static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
     591             : {
     592             : }
     593             : 
     594             : static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
     595             : {
     596             : }
     597             : 
     598             : static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
     599             : {
     600             : }
     601             : 
     602             : static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
     603             : {
     604             : }
     605             : 
     606             : static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
     607             : {
     608             : }
     609             : 
     610             : #endif /* CONFIG_MEMCG */
     611             : 
     612             : #endif /* CONFIG_LRU_GEN */
     613             : 
     614             : struct lruvec {
     615             :         struct list_head                lists[NR_LRU_LISTS];
     616             :         /* per lruvec lru_lock for memcg */
     617             :         spinlock_t                      lru_lock;
     618             :         /*
     619             :          * These track the cost of reclaiming one LRU - file or anon -
     620             :          * over the other. As the observed cost of reclaiming one LRU
     621             :          * increases, the reclaim scan balance tips toward the other.
     622             :          */
     623             :         unsigned long                   anon_cost;
     624             :         unsigned long                   file_cost;
     625             :         /* Non-resident age, driven by LRU movement */
     626             :         atomic_long_t                   nonresident_age;
     627             :         /* Refaults at the time of last reclaim cycle */
     628             :         unsigned long                   refaults[ANON_AND_FILE];
     629             :         /* Various lruvec state flags (enum lruvec_flags) */
     630             :         unsigned long                   flags;
     631             : #ifdef CONFIG_LRU_GEN
     632             :         /* evictable pages divided into generations */
     633             :         struct lru_gen_folio            lrugen;
     634             :         /* to concurrently iterate lru_gen_mm_list */
     635             :         struct lru_gen_mm_state         mm_state;
     636             : #endif
     637             : #ifdef CONFIG_MEMCG
     638             :         struct pglist_data *pgdat;
     639             : #endif
     640             : };
     641             : 
     642             : /* Isolate unmapped pages */
     643             : #define ISOLATE_UNMAPPED        ((__force isolate_mode_t)0x2)
     644             : /* Isolate for asynchronous migration */
     645             : #define ISOLATE_ASYNC_MIGRATE   ((__force isolate_mode_t)0x4)
     646             : /* Isolate unevictable pages */
     647             : #define ISOLATE_UNEVICTABLE     ((__force isolate_mode_t)0x8)
     648             : 
     649             : /* LRU Isolation modes. */
     650             : typedef unsigned __bitwise isolate_mode_t;
     651             : 
     652             : enum zone_watermarks {
     653             :         WMARK_MIN,
     654             :         WMARK_LOW,
     655             :         WMARK_HIGH,
     656             :         WMARK_PROMO,
     657             :         NR_WMARK
     658             : };
     659             : 
     660             : /*
     661             :  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list
     662             :  * for THP which will usually be GFP_MOVABLE. Even if it is another type,
     663             :  * it should not contribute to serious fragmentation causing THP allocation
     664             :  * failures.
     665             :  */
     666             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     667             : #define NR_PCP_THP 1
     668             : #else
     669             : #define NR_PCP_THP 0
     670             : #endif
     671             : #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
     672             : #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
     673             : 
     674             : #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
     675             : #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
     676             : #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
     677             : #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
     678             : 
     679             : /* Fields and list protected by pagesets local_lock in page_alloc.c */
     680             : struct per_cpu_pages {
     681             :         spinlock_t lock;        /* Protects lists field */
     682             :         int count;              /* number of pages in the list */
     683             :         int high;               /* high watermark, emptying needed */
     684             :         int batch;              /* chunk size for buddy add/remove */
     685             :         short free_factor;      /* batch scaling factor during free */
     686             : #ifdef CONFIG_NUMA
     687             :         short expire;           /* When 0, remote pagesets are drained */
     688             : #endif
     689             : 
     690             :         /* Lists of pages, one per migrate type stored on the pcp-lists */
     691             :         struct list_head lists[NR_PCP_LISTS];
     692             : } ____cacheline_aligned_in_smp;
     693             : 
     694             : struct per_cpu_zonestat {
     695             : #ifdef CONFIG_SMP
     696             :         s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
     697             :         s8 stat_threshold;
     698             : #endif
     699             : #ifdef CONFIG_NUMA
     700             :         /*
     701             :          * Low priority inaccurate counters that are only folded
     702             :          * on demand. Use a large type to avoid the overhead of
     703             :          * folding during refresh_cpu_vm_stats.
     704             :          */
     705             :         unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
     706             : #endif
     707             : };
     708             : 
     709             : struct per_cpu_nodestat {
     710             :         s8 stat_threshold;
     711             :         s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
     712             : };
     713             : 
     714             : #endif /* !__GENERATING_BOUNDS.H */
     715             : 
     716             : enum zone_type {
     717             :         /*
     718             :          * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
     719             :          * to DMA to all of the addressable memory (ZONE_NORMAL).
     720             :          * On architectures where this area covers the whole 32 bit address
     721             :          * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
     722             :          * DMA addressing constraints. This distinction is important as a 32bit
     723             :          * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
     724             :          * platforms may need both zones as they support peripherals with
     725             :          * different DMA addressing limitations.
     726             :          */
     727             : #ifdef CONFIG_ZONE_DMA
     728             :         ZONE_DMA,
     729             : #endif
     730             : #ifdef CONFIG_ZONE_DMA32
     731             :         ZONE_DMA32,
     732             : #endif
     733             :         /*
     734             :          * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
     735             :          * performed on pages in ZONE_NORMAL if the DMA devices support
     736             :          * transfers to all addressable memory.
     737             :          */
     738             :         ZONE_NORMAL,
     739             : #ifdef CONFIG_HIGHMEM
     740             :         /*
     741             :          * A memory area that is only addressable by the kernel through
     742             :          * mapping portions into its own address space. This is for example
     743             :          * used by i386 to allow the kernel to address the memory beyond
     744             :          * 900MB. The kernel will set up special mappings (page
     745             :          * table entries on i386) for each page that the kernel needs to
     746             :          * access.
     747             :          */
     748             :         ZONE_HIGHMEM,
     749             : #endif
     750             :         /*
     751             :          * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
     752             :          * movable pages with few exceptional cases described below. Main use
     753             :          * cases for ZONE_MOVABLE are to make memory offlining/unplug more
     754             :          * likely to succeed, and to locally limit unmovable allocations - e.g.,
     755             :          * to increase the number of THP/huge pages. Notable special cases are:
     756             :          *
     757             :          * 1. Pinned pages: (long-term) pinning of movable pages might
     758             :          *    essentially turn such pages unmovable. Therefore, we do not allow
     759             :          *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
     760             :          *    faulted, they come from the right zone right away. However, it is
     761             :          *    still possible that address space already has pages in
     762             :          *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
     763             :          *    touches that memory before pinning). In such case we migrate them
     764             :          *    to a different zone. When migration fails - pinning fails.
     765             :          * 2. memblock allocations: kernelcore/movablecore setups might create
     766             :          *    situations where ZONE_MOVABLE contains unmovable allocations
     767             :          *    after boot. Memory offlining and allocations fail early.
     768             :          * 3. Memory holes: kernelcore/movablecore setups might create very rare
     769             :          *    situations where ZONE_MOVABLE contains memory holes after boot,
     770             :          *    for example, if we have sections that are only partially
     771             :          *    populated. Memory offlining and allocations fail early.
     772             :          * 4. PG_hwpoison pages: while poisoned pages can be skipped during
     773             :          *    memory offlining, such pages cannot be allocated.
     774             :          * 5. Unmovable PG_offline pages: in paravirtualized environments,
     775             :          *    hotplugged memory blocks might only partially be managed by the
     776             :          *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
     777             :          *    parts not manged by the buddy are unmovable PG_offline pages. In
     778             :          *    some cases (virtio-mem), such pages can be skipped during
     779             :          *    memory offlining, however, cannot be moved/allocated. These
     780             :          *    techniques might use alloc_contig_range() to hide previously
     781             :          *    exposed pages from the buddy again (e.g., to implement some sort
     782             :          *    of memory unplug in virtio-mem).
     783             :          * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
     784             :          *    situations where ZERO_PAGE(0) which is allocated differently
     785             :          *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
     786             :          *    cannot be migrated.
     787             :          * 7. Memory-hotplug: when using memmap_on_memory and onlining the
     788             :          *    memory to the MOVABLE zone, the vmemmap pages are also placed in
     789             :          *    such zone. Such pages cannot be really moved around as they are
     790             :          *    self-stored in the range, but they are treated as movable when
     791             :          *    the range they describe is about to be offlined.
     792             :          *
     793             :          * In general, no unmovable allocations that degrade memory offlining
     794             :          * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
     795             :          * have to expect that migrating pages in ZONE_MOVABLE can fail (even
     796             :          * if has_unmovable_pages() states that there are no unmovable pages,
     797             :          * there can be false negatives).
     798             :          */
     799             :         ZONE_MOVABLE,
     800             : #ifdef CONFIG_ZONE_DEVICE
     801             :         ZONE_DEVICE,
     802             : #endif
     803             :         __MAX_NR_ZONES
     804             : 
     805             : };
     806             : 
     807             : #ifndef __GENERATING_BOUNDS_H
     808             : 
     809             : #define ASYNC_AND_SYNC 2
     810             : 
     811             : struct zone {
     812             :         /* Read-mostly fields */
     813             : 
     814             :         /* zone watermarks, access with *_wmark_pages(zone) macros */
     815             :         unsigned long _watermark[NR_WMARK];
     816             :         unsigned long watermark_boost;
     817             : 
     818             :         unsigned long nr_reserved_highatomic;
     819             : 
     820             :         /*
     821             :          * We don't know if the memory that we're going to allocate will be
     822             :          * freeable or/and it will be released eventually, so to avoid totally
     823             :          * wasting several GB of ram we must reserve some of the lower zone
     824             :          * memory (otherwise we risk to run OOM on the lower zones despite
     825             :          * there being tons of freeable ram on the higher zones).  This array is
     826             :          * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
     827             :          * changes.
     828             :          */
     829             :         long lowmem_reserve[MAX_NR_ZONES];
     830             : 
     831             : #ifdef CONFIG_NUMA
     832             :         int node;
     833             : #endif
     834             :         struct pglist_data      *zone_pgdat;
     835             :         struct per_cpu_pages    __percpu *per_cpu_pageset;
     836             :         struct per_cpu_zonestat __percpu *per_cpu_zonestats;
     837             :         /*
     838             :          * the high and batch values are copied to individual pagesets for
     839             :          * faster access
     840             :          */
     841             :         int pageset_high;
     842             :         int pageset_batch;
     843             : 
     844             : #ifndef CONFIG_SPARSEMEM
     845             :         /*
     846             :          * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
     847             :          * In SPARSEMEM, this map is stored in struct mem_section
     848             :          */
     849             :         unsigned long           *pageblock_flags;
     850             : #endif /* CONFIG_SPARSEMEM */
     851             : 
     852             :         /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
     853             :         unsigned long           zone_start_pfn;
     854             : 
     855             :         /*
     856             :          * spanned_pages is the total pages spanned by the zone, including
     857             :          * holes, which is calculated as:
     858             :          *      spanned_pages = zone_end_pfn - zone_start_pfn;
     859             :          *
     860             :          * present_pages is physical pages existing within the zone, which
     861             :          * is calculated as:
     862             :          *      present_pages = spanned_pages - absent_pages(pages in holes);
     863             :          *
     864             :          * present_early_pages is present pages existing within the zone
     865             :          * located on memory available since early boot, excluding hotplugged
     866             :          * memory.
     867             :          *
     868             :          * managed_pages is present pages managed by the buddy system, which
     869             :          * is calculated as (reserved_pages includes pages allocated by the
     870             :          * bootmem allocator):
     871             :          *      managed_pages = present_pages - reserved_pages;
     872             :          *
     873             :          * cma pages is present pages that are assigned for CMA use
     874             :          * (MIGRATE_CMA).
     875             :          *
     876             :          * So present_pages may be used by memory hotplug or memory power
     877             :          * management logic to figure out unmanaged pages by checking
     878             :          * (present_pages - managed_pages). And managed_pages should be used
     879             :          * by page allocator and vm scanner to calculate all kinds of watermarks
     880             :          * and thresholds.
     881             :          *
     882             :          * Locking rules:
     883             :          *
     884             :          * zone_start_pfn and spanned_pages are protected by span_seqlock.
     885             :          * It is a seqlock because it has to be read outside of zone->lock,
     886             :          * and it is done in the main allocator path.  But, it is written
     887             :          * quite infrequently.
     888             :          *
     889             :          * The span_seq lock is declared along with zone->lock because it is
     890             :          * frequently read in proximity to zone->lock.  It's good to
     891             :          * give them a chance of being in the same cacheline.
     892             :          *
     893             :          * Write access to present_pages at runtime should be protected by
     894             :          * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
     895             :          * present_pages should use get_online_mems() to get a stable value.
     896             :          */
     897             :         atomic_long_t           managed_pages;
     898             :         unsigned long           spanned_pages;
     899             :         unsigned long           present_pages;
     900             : #if defined(CONFIG_MEMORY_HOTPLUG)
     901             :         unsigned long           present_early_pages;
     902             : #endif
     903             : #ifdef CONFIG_CMA
     904             :         unsigned long           cma_pages;
     905             : #endif
     906             : 
     907             :         const char              *name;
     908             : 
     909             : #ifdef CONFIG_MEMORY_ISOLATION
     910             :         /*
     911             :          * Number of isolated pageblock. It is used to solve incorrect
     912             :          * freepage counting problem due to racy retrieving migratetype
     913             :          * of pageblock. Protected by zone->lock.
     914             :          */
     915             :         unsigned long           nr_isolate_pageblock;
     916             : #endif
     917             : 
     918             : #ifdef CONFIG_MEMORY_HOTPLUG
     919             :         /* see spanned/present_pages for more description */
     920             :         seqlock_t               span_seqlock;
     921             : #endif
     922             : 
     923             :         int initialized;
     924             : 
     925             :         /* Write-intensive fields used from the page allocator */
     926             :         CACHELINE_PADDING(_pad1_);
     927             : 
     928             :         /* free areas of different sizes */
     929             :         struct free_area        free_area[MAX_ORDER + 1];
     930             : 
     931             : #ifdef CONFIG_UNACCEPTED_MEMORY
     932             :         /* Pages to be accepted. All pages on the list are MAX_ORDER */
     933             :         struct list_head        unaccepted_pages;
     934             : #endif
     935             : 
     936             :         /* zone flags, see below */
     937             :         unsigned long           flags;
     938             : 
     939             :         /* Primarily protects free_area */
     940             :         spinlock_t              lock;
     941             : 
     942             :         /* Write-intensive fields used by compaction and vmstats. */
     943             :         CACHELINE_PADDING(_pad2_);
     944             : 
     945             :         /*
     946             :          * When free pages are below this point, additional steps are taken
     947             :          * when reading the number of free pages to avoid per-cpu counter
     948             :          * drift allowing watermarks to be breached
     949             :          */
     950             :         unsigned long percpu_drift_mark;
     951             : 
     952             : #if defined CONFIG_COMPACTION || defined CONFIG_CMA
     953             :         /* pfn where compaction free scanner should start */
     954             :         unsigned long           compact_cached_free_pfn;
     955             :         /* pfn where compaction migration scanner should start */
     956             :         unsigned long           compact_cached_migrate_pfn[ASYNC_AND_SYNC];
     957             :         unsigned long           compact_init_migrate_pfn;
     958             :         unsigned long           compact_init_free_pfn;
     959             : #endif
     960             : 
     961             : #ifdef CONFIG_COMPACTION
     962             :         /*
     963             :          * On compaction failure, 1<<compact_defer_shift compactions
     964             :          * are skipped before trying again. The number attempted since
     965             :          * last failure is tracked with compact_considered.
     966             :          * compact_order_failed is the minimum compaction failed order.
     967             :          */
     968             :         unsigned int            compact_considered;
     969             :         unsigned int            compact_defer_shift;
     970             :         int                     compact_order_failed;
     971             : #endif
     972             : 
     973             : #if defined CONFIG_COMPACTION || defined CONFIG_CMA
     974             :         /* Set to true when the PG_migrate_skip bits should be cleared */
     975             :         bool                    compact_blockskip_flush;
     976             : #endif
     977             : 
     978             :         bool                    contiguous;
     979             : 
     980             :         CACHELINE_PADDING(_pad3_);
     981             :         /* Zone statistics */
     982             :         atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
     983             :         atomic_long_t           vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
     984             : } ____cacheline_internodealigned_in_smp;
     985             : 
     986             : enum pgdat_flags {
     987             :         PGDAT_DIRTY,                    /* reclaim scanning has recently found
     988             :                                          * many dirty file pages at the tail
     989             :                                          * of the LRU.
     990             :                                          */
     991             :         PGDAT_WRITEBACK,                /* reclaim scanning has recently found
     992             :                                          * many pages under writeback
     993             :                                          */
     994             :         PGDAT_RECLAIM_LOCKED,           /* prevents concurrent reclaim */
     995             : };
     996             : 
     997             : enum zone_flags {
     998             :         ZONE_BOOSTED_WATERMARK,         /* zone recently boosted watermarks.
     999             :                                          * Cleared when kswapd is woken.
    1000             :                                          */
    1001             :         ZONE_RECLAIM_ACTIVE,            /* kswapd may be scanning the zone. */
    1002             : };
    1003             : 
    1004             : static inline unsigned long zone_managed_pages(struct zone *zone)
    1005             : {
    1006             :         return (unsigned long)atomic_long_read(&zone->managed_pages);
    1007             : }
    1008             : 
    1009             : static inline unsigned long zone_cma_pages(struct zone *zone)
    1010             : {
    1011             : #ifdef CONFIG_CMA
    1012             :         return zone->cma_pages;
    1013             : #else
    1014             :         return 0;
    1015             : #endif
    1016             : }
    1017             : 
    1018             : static inline unsigned long zone_end_pfn(const struct zone *zone)
    1019             : {
    1020             :         return zone->zone_start_pfn + zone->spanned_pages;
    1021             : }
    1022             : 
    1023             : static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
    1024             : {
    1025             :         return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
    1026             : }
    1027             : 
    1028             : static inline bool zone_is_initialized(struct zone *zone)
    1029             : {
    1030             :         return zone->initialized;
    1031             : }
    1032             : 
    1033             : static inline bool zone_is_empty(struct zone *zone)
    1034             : {
    1035             :         return zone->spanned_pages == 0;
    1036             : }
    1037             : 
    1038             : #ifndef BUILD_VDSO32_64
    1039             : /*
    1040             :  * The zone field is never updated after free_area_init_core()
    1041             :  * sets it, so none of the operations on it need to be atomic.
    1042             :  */
    1043             : 
    1044             : /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
    1045             : #define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
    1046             : #define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
    1047             : #define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
    1048             : #define LAST_CPUPID_PGOFF       (ZONES_PGOFF - LAST_CPUPID_WIDTH)
    1049             : #define KASAN_TAG_PGOFF         (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
    1050             : #define LRU_GEN_PGOFF           (KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
    1051             : #define LRU_REFS_PGOFF          (LRU_GEN_PGOFF - LRU_REFS_WIDTH)
    1052             : 
    1053             : /*
    1054             :  * Define the bit shifts to access each section.  For non-existent
    1055             :  * sections we define the shift as 0; that plus a 0 mask ensures
    1056             :  * the compiler will optimise away reference to them.
    1057             :  */
    1058             : #define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
    1059             : #define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
    1060             : #define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
    1061             : #define LAST_CPUPID_PGSHIFT     (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
    1062             : #define KASAN_TAG_PGSHIFT       (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
    1063             : 
    1064             : /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
    1065             : #ifdef NODE_NOT_IN_PAGE_FLAGS
    1066             : #define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
    1067             : #define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF) ? \
    1068             :                                                 SECTIONS_PGOFF : ZONES_PGOFF)
    1069             : #else
    1070             : #define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
    1071             : #define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF) ? \
    1072             :                                                 NODES_PGOFF : ZONES_PGOFF)
    1073             : #endif
    1074             : 
    1075             : #define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
    1076             : 
    1077             : #define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
    1078             : #define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
    1079             : #define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
    1080             : #define LAST_CPUPID_MASK        ((1UL << LAST_CPUPID_SHIFT) - 1)
    1081             : #define KASAN_TAG_MASK          ((1UL << KASAN_TAG_WIDTH) - 1)
    1082             : #define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
    1083             : 
    1084             : static inline enum zone_type page_zonenum(const struct page *page)
    1085             : {
    1086   149445070 :         ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
    1087   149445070 :         return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
    1088             : }
    1089             : 
    1090             : static inline enum zone_type folio_zonenum(const struct folio *folio)
    1091             : {
    1092             :         return page_zonenum(&folio->page);
    1093             : }
    1094             : 
    1095             : #ifdef CONFIG_ZONE_DEVICE
    1096             : static inline bool is_zone_device_page(const struct page *page)
    1097             : {
    1098             :         return page_zonenum(page) == ZONE_DEVICE;
    1099             : }
    1100             : 
    1101             : /*
    1102             :  * Consecutive zone device pages should not be merged into the same sgl
    1103             :  * or bvec segment with other types of pages or if they belong to different
    1104             :  * pgmaps. Otherwise getting the pgmap of a given segment is not possible
    1105             :  * without scanning the entire segment. This helper returns true either if
    1106             :  * both pages are not zone device pages or both pages are zone device pages
    1107             :  * with the same pgmap.
    1108             :  */
    1109             : static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
    1110             :                                                      const struct page *b)
    1111             : {
    1112             :         if (is_zone_device_page(a) != is_zone_device_page(b))
    1113             :                 return false;
    1114             :         if (!is_zone_device_page(a))
    1115             :                 return true;
    1116             :         return a->pgmap == b->pgmap;
    1117             : }
    1118             : 
    1119             : extern void memmap_init_zone_device(struct zone *, unsigned long,
    1120             :                                     unsigned long, struct dev_pagemap *);
    1121             : #else
    1122             : static inline bool is_zone_device_page(const struct page *page)
    1123             : {
    1124             :         return false;
    1125             : }
    1126             : static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
    1127             :                                                      const struct page *b)
    1128             : {
    1129             :         return true;
    1130             : }
    1131             : #endif
    1132             : 
    1133             : static inline bool folio_is_zone_device(const struct folio *folio)
    1134             : {
    1135             :         return is_zone_device_page(&folio->page);
    1136             : }
    1137             : 
    1138             : static inline bool is_zone_movable_page(const struct page *page)
    1139             : {
    1140             :         return page_zonenum(page) == ZONE_MOVABLE;
    1141             : }
    1142             : 
    1143             : static inline bool folio_is_zone_movable(const struct folio *folio)
    1144             : {
    1145             :         return folio_zonenum(folio) == ZONE_MOVABLE;
    1146             : }
    1147             : #endif
    1148             : 
    1149             : /*
    1150             :  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
    1151             :  * intersection with the given zone
    1152             :  */
    1153             : static inline bool zone_intersects(struct zone *zone,
    1154             :                 unsigned long start_pfn, unsigned long nr_pages)
    1155             : {
    1156             :         if (zone_is_empty(zone))
    1157             :                 return false;
    1158             :         if (start_pfn >= zone_end_pfn(zone) ||
    1159             :             start_pfn + nr_pages <= zone->zone_start_pfn)
    1160             :                 return false;
    1161             : 
    1162             :         return true;
    1163             : }
    1164             : 
    1165             : /*
    1166             :  * The "priority" of VM scanning is how much of the queues we will scan in one
    1167             :  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
    1168             :  * queues ("queue_length >> 12") during an aging round.
    1169             :  */
    1170             : #define DEF_PRIORITY 12
    1171             : 
    1172             : /* Maximum number of zones on a zonelist */
    1173             : #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
    1174             : 
    1175             : enum {
    1176             :         ZONELIST_FALLBACK,      /* zonelist with fallback */
    1177             : #ifdef CONFIG_NUMA
    1178             :         /*
    1179             :          * The NUMA zonelists are doubled because we need zonelists that
    1180             :          * restrict the allocations to a single node for __GFP_THISNODE.
    1181             :          */
    1182             :         ZONELIST_NOFALLBACK,    /* zonelist without fallback (__GFP_THISNODE) */
    1183             : #endif
    1184             :         MAX_ZONELISTS
    1185             : };
    1186             : 
    1187             : /*
    1188             :  * This struct contains information about a zone in a zonelist. It is stored
    1189             :  * here to avoid dereferences into large structures and lookups of tables
    1190             :  */
    1191             : struct zoneref {
    1192             :         struct zone *zone;      /* Pointer to actual zone */
    1193             :         int zone_idx;           /* zone_idx(zoneref->zone) */
    1194             : };
    1195             : 
    1196             : /*
    1197             :  * One allocation request operates on a zonelist. A zonelist
    1198             :  * is a list of zones, the first one is the 'goal' of the
    1199             :  * allocation, the other zones are fallback zones, in decreasing
    1200             :  * priority.
    1201             :  *
    1202             :  * To speed the reading of the zonelist, the zonerefs contain the zone index
    1203             :  * of the entry being read. Helper functions to access information given
    1204             :  * a struct zoneref are
    1205             :  *
    1206             :  * zonelist_zone()      - Return the struct zone * for an entry in _zonerefs
    1207             :  * zonelist_zone_idx()  - Return the index of the zone for an entry
    1208             :  * zonelist_node_idx()  - Return the index of the node for an entry
    1209             :  */
    1210             : struct zonelist {
    1211             :         struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
    1212             : };
    1213             : 
    1214             : /*
    1215             :  * The array of struct pages for flatmem.
    1216             :  * It must be declared for SPARSEMEM as well because there are configurations
    1217             :  * that rely on that.
    1218             :  */
    1219             : extern struct page *mem_map;
    1220             : 
    1221             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    1222             : struct deferred_split {
    1223             :         spinlock_t split_queue_lock;
    1224             :         struct list_head split_queue;
    1225             :         unsigned long split_queue_len;
    1226             : };
    1227             : #endif
    1228             : 
    1229             : #ifdef CONFIG_MEMORY_FAILURE
    1230             : /*
    1231             :  * Per NUMA node memory failure handling statistics.
    1232             :  */
    1233             : struct memory_failure_stats {
    1234             :         /*
    1235             :          * Number of raw pages poisoned.
    1236             :          * Cases not accounted: memory outside kernel control, offline page,
    1237             :          * arch-specific memory_failure (SGX), hwpoison_filter() filtered
    1238             :          * error events, and unpoison actions from hwpoison_unpoison.
    1239             :          */
    1240             :         unsigned long total;
    1241             :         /*
    1242             :          * Recovery results of poisoned raw pages handled by memory_failure,
    1243             :          * in sync with mf_result.
    1244             :          * total = ignored + failed + delayed + recovered.
    1245             :          * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
    1246             :          */
    1247             :         unsigned long ignored;
    1248             :         unsigned long failed;
    1249             :         unsigned long delayed;
    1250             :         unsigned long recovered;
    1251             : };
    1252             : #endif
    1253             : 
    1254             : /*
    1255             :  * On NUMA machines, each NUMA node would have a pg_data_t to describe
    1256             :  * it's memory layout. On UMA machines there is a single pglist_data which
    1257             :  * describes the whole memory.
    1258             :  *
    1259             :  * Memory statistics and page replacement data structures are maintained on a
    1260             :  * per-zone basis.
    1261             :  */
    1262             : typedef struct pglist_data {
    1263             :         /*
    1264             :          * node_zones contains just the zones for THIS node. Not all of the
    1265             :          * zones may be populated, but it is the full list. It is referenced by
    1266             :          * this node's node_zonelists as well as other node's node_zonelists.
    1267             :          */
    1268             :         struct zone node_zones[MAX_NR_ZONES];
    1269             : 
    1270             :         /*
    1271             :          * node_zonelists contains references to all zones in all nodes.
    1272             :          * Generally the first zones will be references to this node's
    1273             :          * node_zones.
    1274             :          */
    1275             :         struct zonelist node_zonelists[MAX_ZONELISTS];
    1276             : 
    1277             :         int nr_zones; /* number of populated zones in this node */
    1278             : #ifdef CONFIG_FLATMEM   /* means !SPARSEMEM */
    1279             :         struct page *node_mem_map;
    1280             : #ifdef CONFIG_PAGE_EXTENSION
    1281             :         struct page_ext *node_page_ext;
    1282             : #endif
    1283             : #endif
    1284             : #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
    1285             :         /*
    1286             :          * Must be held any time you expect node_start_pfn,
    1287             :          * node_present_pages, node_spanned_pages or nr_zones to stay constant.
    1288             :          * Also synchronizes pgdat->first_deferred_pfn during deferred page
    1289             :          * init.
    1290             :          *
    1291             :          * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
    1292             :          * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
    1293             :          * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
    1294             :          *
    1295             :          * Nests above zone->lock and zone->span_seqlock
    1296             :          */
    1297             :         spinlock_t node_size_lock;
    1298             : #endif
    1299             :         unsigned long node_start_pfn;
    1300             :         unsigned long node_present_pages; /* total number of physical pages */
    1301             :         unsigned long node_spanned_pages; /* total size of physical page
    1302             :                                              range, including holes */
    1303             :         int node_id;
    1304             :         wait_queue_head_t kswapd_wait;
    1305             :         wait_queue_head_t pfmemalloc_wait;
    1306             : 
    1307             :         /* workqueues for throttling reclaim for different reasons. */
    1308             :         wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
    1309             : 
    1310             :         atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
    1311             :         unsigned long nr_reclaim_start; /* nr pages written while throttled
    1312             :                                          * when throttling started. */
    1313             : #ifdef CONFIG_MEMORY_HOTPLUG
    1314             :         struct mutex kswapd_lock;
    1315             : #endif
    1316             :         struct task_struct *kswapd;     /* Protected by kswapd_lock */
    1317             :         int kswapd_order;
    1318             :         enum zone_type kswapd_highest_zoneidx;
    1319             : 
    1320             :         int kswapd_failures;            /* Number of 'reclaimed == 0' runs */
    1321             : 
    1322             : #ifdef CONFIG_COMPACTION
    1323             :         int kcompactd_max_order;
    1324             :         enum zone_type kcompactd_highest_zoneidx;
    1325             :         wait_queue_head_t kcompactd_wait;
    1326             :         struct task_struct *kcompactd;
    1327             :         bool proactive_compact_trigger;
    1328             : #endif
    1329             :         /*
    1330             :          * This is a per-node reserve of pages that are not available
    1331             :          * to userspace allocations.
    1332             :          */
    1333             :         unsigned long           totalreserve_pages;
    1334             : 
    1335             : #ifdef CONFIG_NUMA
    1336             :         /*
    1337             :          * node reclaim becomes active if more unmapped pages exist.
    1338             :          */
    1339             :         unsigned long           min_unmapped_pages;
    1340             :         unsigned long           min_slab_pages;
    1341             : #endif /* CONFIG_NUMA */
    1342             : 
    1343             :         /* Write-intensive fields used by page reclaim */
    1344             :         CACHELINE_PADDING(_pad1_);
    1345             : 
    1346             : #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
    1347             :         /*
    1348             :          * If memory initialisation on large machines is deferred then this
    1349             :          * is the first PFN that needs to be initialised.
    1350             :          */
    1351             :         unsigned long first_deferred_pfn;
    1352             : #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
    1353             : 
    1354             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    1355             :         struct deferred_split deferred_split_queue;
    1356             : #endif
    1357             : 
    1358             : #ifdef CONFIG_NUMA_BALANCING
    1359             :         /* start time in ms of current promote rate limit period */
    1360             :         unsigned int nbp_rl_start;
    1361             :         /* number of promote candidate pages at start time of current rate limit period */
    1362             :         unsigned long nbp_rl_nr_cand;
    1363             :         /* promote threshold in ms */
    1364             :         unsigned int nbp_threshold;
    1365             :         /* start time in ms of current promote threshold adjustment period */
    1366             :         unsigned int nbp_th_start;
    1367             :         /*
    1368             :          * number of promote candidate pages at start time of current promote
    1369             :          * threshold adjustment period
    1370             :          */
    1371             :         unsigned long nbp_th_nr_cand;
    1372             : #endif
    1373             :         /* Fields commonly accessed by the page reclaim scanner */
    1374             : 
    1375             :         /*
    1376             :          * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
    1377             :          *
    1378             :          * Use mem_cgroup_lruvec() to look up lruvecs.
    1379             :          */
    1380             :         struct lruvec           __lruvec;
    1381             : 
    1382             :         unsigned long           flags;
    1383             : 
    1384             : #ifdef CONFIG_LRU_GEN
    1385             :         /* kswap mm walk data */
    1386             :         struct lru_gen_mm_walk mm_walk;
    1387             :         /* lru_gen_folio list */
    1388             :         struct lru_gen_memcg memcg_lru;
    1389             : #endif
    1390             : 
    1391             :         CACHELINE_PADDING(_pad2_);
    1392             : 
    1393             :         /* Per-node vmstats */
    1394             :         struct per_cpu_nodestat __percpu *per_cpu_nodestats;
    1395             :         atomic_long_t           vm_stat[NR_VM_NODE_STAT_ITEMS];
    1396             : #ifdef CONFIG_NUMA
    1397             :         struct memory_tier __rcu *memtier;
    1398             : #endif
    1399             : #ifdef CONFIG_MEMORY_FAILURE
    1400             :         struct memory_failure_stats mf_stats;
    1401             : #endif
    1402             : } pg_data_t;
    1403             : 
    1404             : #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
    1405             : #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
    1406             : 
    1407             : #define node_start_pfn(nid)     (NODE_DATA(nid)->node_start_pfn)
    1408             : #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
    1409             : 
    1410             : static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
    1411             : {
    1412             :         return pgdat->node_start_pfn + pgdat->node_spanned_pages;
    1413             : }
    1414             : 
    1415             : #include <linux/memory_hotplug.h>
    1416             : 
    1417             : void build_all_zonelists(pg_data_t *pgdat);
    1418             : void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
    1419             :                    enum zone_type highest_zoneidx);
    1420             : bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
    1421             :                          int highest_zoneidx, unsigned int alloc_flags,
    1422             :                          long free_pages);
    1423             : bool zone_watermark_ok(struct zone *z, unsigned int order,
    1424             :                 unsigned long mark, int highest_zoneidx,
    1425             :                 unsigned int alloc_flags);
    1426             : bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
    1427             :                 unsigned long mark, int highest_zoneidx);
    1428             : /*
    1429             :  * Memory initialization context, use to differentiate memory added by
    1430             :  * the platform statically or via memory hotplug interface.
    1431             :  */
    1432             : enum meminit_context {
    1433             :         MEMINIT_EARLY,
    1434             :         MEMINIT_HOTPLUG,
    1435             : };
    1436             : 
    1437             : extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
    1438             :                                      unsigned long size);
    1439             : 
    1440             : extern void lruvec_init(struct lruvec *lruvec);
    1441             : 
    1442             : static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
    1443             : {
    1444             : #ifdef CONFIG_MEMCG
    1445             :         return lruvec->pgdat;
    1446             : #else
    1447             :         return container_of(lruvec, struct pglist_data, __lruvec);
    1448             : #endif
    1449             : }
    1450             : 
    1451             : #ifdef CONFIG_HAVE_MEMORYLESS_NODES
    1452             : int local_memory_node(int node_id);
    1453             : #else
    1454             : static inline int local_memory_node(int node_id) { return node_id; };
    1455             : #endif
    1456             : 
    1457             : /*
    1458             :  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
    1459             :  */
    1460             : #define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
    1461             : 
    1462             : #ifdef CONFIG_ZONE_DEVICE
    1463             : static inline bool zone_is_zone_device(struct zone *zone)
    1464             : {
    1465             :         return zone_idx(zone) == ZONE_DEVICE;
    1466             : }
    1467             : #else
    1468             : static inline bool zone_is_zone_device(struct zone *zone)
    1469             : {
    1470             :         return false;
    1471             : }
    1472             : #endif
    1473             : 
    1474             : /*
    1475             :  * Returns true if a zone has pages managed by the buddy allocator.
    1476             :  * All the reclaim decisions have to use this function rather than
    1477             :  * populated_zone(). If the whole zone is reserved then we can easily
    1478             :  * end up with populated_zone() && !managed_zone().
    1479             :  */
    1480             : static inline bool managed_zone(struct zone *zone)
    1481             : {
    1482             :         return zone_managed_pages(zone);
    1483             : }
    1484             : 
    1485             : /* Returns true if a zone has memory */
    1486             : static inline bool populated_zone(struct zone *zone)
    1487             : {
    1488   129091756 :         return zone->present_pages;
    1489             : }
    1490             : 
    1491             : #ifdef CONFIG_NUMA
    1492             : static inline int zone_to_nid(struct zone *zone)
    1493             : {
    1494             :         return zone->node;
    1495             : }
    1496             : 
    1497             : static inline void zone_set_nid(struct zone *zone, int nid)
    1498             : {
    1499             :         zone->node = nid;
    1500             : }
    1501             : #else
    1502             : static inline int zone_to_nid(struct zone *zone)
    1503             : {
    1504             :         return 0;
    1505             : }
    1506             : 
    1507             : static inline void zone_set_nid(struct zone *zone, int nid) {}
    1508             : #endif
    1509             : 
    1510             : extern int movable_zone;
    1511             : 
    1512             : static inline int is_highmem_idx(enum zone_type idx)
    1513             : {
    1514             : #ifdef CONFIG_HIGHMEM
    1515             :         return (idx == ZONE_HIGHMEM ||
    1516             :                 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
    1517             : #else
    1518             :         return 0;
    1519             : #endif
    1520             : }
    1521             : 
    1522             : /**
    1523             :  * is_highmem - helper function to quickly check if a struct zone is a
    1524             :  *              highmem zone or not.  This is an attempt to keep references
    1525             :  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
    1526             :  * @zone: pointer to struct zone variable
    1527             :  * Return: 1 for a highmem zone, 0 otherwise
    1528             :  */
    1529             : static inline int is_highmem(struct zone *zone)
    1530             : {
    1531             :         return is_highmem_idx(zone_idx(zone));
    1532             : }
    1533             : 
    1534             : #ifdef CONFIG_ZONE_DMA
    1535             : bool has_managed_dma(void);
    1536             : #else
    1537             : static inline bool has_managed_dma(void)
    1538             : {
    1539             :         return false;
    1540             : }
    1541             : #endif
    1542             : 
    1543             : 
    1544             : #ifndef CONFIG_NUMA
    1545             : 
    1546             : extern struct pglist_data contig_page_data;
    1547             : static inline struct pglist_data *NODE_DATA(int nid)
    1548             : {
    1549             :         return &contig_page_data;
    1550             : }
    1551             : 
    1552             : #else /* CONFIG_NUMA */
    1553             : 
    1554             : #include <asm/mmzone.h>
    1555             : 
    1556             : #endif /* !CONFIG_NUMA */
    1557             : 
    1558             : extern struct pglist_data *first_online_pgdat(void);
    1559             : extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
    1560             : extern struct zone *next_zone(struct zone *zone);
    1561             : 
    1562             : /**
    1563             :  * for_each_online_pgdat - helper macro to iterate over all online nodes
    1564             :  * @pgdat: pointer to a pg_data_t variable
    1565             :  */
    1566             : #define for_each_online_pgdat(pgdat)                    \
    1567             :         for (pgdat = first_online_pgdat();              \
    1568             :              pgdat;                                     \
    1569             :              pgdat = next_online_pgdat(pgdat))
    1570             : /**
    1571             :  * for_each_zone - helper macro to iterate over all memory zones
    1572             :  * @zone: pointer to struct zone variable
    1573             :  *
    1574             :  * The user only needs to declare the zone variable, for_each_zone
    1575             :  * fills it in.
    1576             :  */
    1577             : #define for_each_zone(zone)                             \
    1578             :         for (zone = (first_online_pgdat())->node_zones; \
    1579             :              zone;                                      \
    1580             :              zone = next_zone(zone))
    1581             : 
    1582             : #define for_each_populated_zone(zone)                   \
    1583             :         for (zone = (first_online_pgdat())->node_zones; \
    1584             :              zone;                                      \
    1585             :              zone = next_zone(zone))                    \
    1586             :                 if (!populated_zone(zone))              \
    1587             :                         ; /* do nothing */              \
    1588             :                 else
    1589             : 
    1590             : static inline struct zone *zonelist_zone(struct zoneref *zoneref)
    1591             : {
    1592             :         return zoneref->zone;
    1593             : }
    1594             : 
    1595             : static inline int zonelist_zone_idx(struct zoneref *zoneref)
    1596             : {
    1597             :         return zoneref->zone_idx;
    1598             : }
    1599             : 
    1600             : static inline int zonelist_node_idx(struct zoneref *zoneref)
    1601             : {
    1602             :         return zone_to_nid(zoneref->zone);
    1603             : }
    1604             : 
    1605             : struct zoneref *__next_zones_zonelist(struct zoneref *z,
    1606             :                                         enum zone_type highest_zoneidx,
    1607             :                                         nodemask_t *nodes);
    1608             : 
    1609             : /**
    1610             :  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
    1611             :  * @z: The cursor used as a starting point for the search
    1612             :  * @highest_zoneidx: The zone index of the highest zone to return
    1613             :  * @nodes: An optional nodemask to filter the zonelist with
    1614             :  *
    1615             :  * This function returns the next zone at or below a given zone index that is
    1616             :  * within the allowed nodemask using a cursor as the starting point for the
    1617             :  * search. The zoneref returned is a cursor that represents the current zone
    1618             :  * being examined. It should be advanced by one before calling
    1619             :  * next_zones_zonelist again.
    1620             :  *
    1621             :  * Return: the next zone at or below highest_zoneidx within the allowed
    1622             :  * nodemask using a cursor within a zonelist as a starting point
    1623             :  */
    1624             : static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
    1625             :                                         enum zone_type highest_zoneidx,
    1626             :                                         nodemask_t *nodes)
    1627             : {
    1628             :         if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
    1629             :                 return z;
    1630             :         return __next_zones_zonelist(z, highest_zoneidx, nodes);
    1631             : }
    1632             : 
    1633             : /**
    1634             :  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
    1635             :  * @zonelist: The zonelist to search for a suitable zone
    1636             :  * @highest_zoneidx: The zone index of the highest zone to return
    1637             :  * @nodes: An optional nodemask to filter the zonelist with
    1638             :  *
    1639             :  * This function returns the first zone at or below a given zone index that is
    1640             :  * within the allowed nodemask. The zoneref returned is a cursor that can be
    1641             :  * used to iterate the zonelist with next_zones_zonelist by advancing it by
    1642             :  * one before calling.
    1643             :  *
    1644             :  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
    1645             :  * never NULL). This may happen either genuinely, or due to concurrent nodemask
    1646             :  * update due to cpuset modification.
    1647             :  *
    1648             :  * Return: Zoneref pointer for the first suitable zone found
    1649             :  */
    1650             : static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
    1651             :                                         enum zone_type highest_zoneidx,
    1652             :                                         nodemask_t *nodes)
    1653             : {
    1654             :         return next_zones_zonelist(zonelist->_zonerefs,
    1655             :                                                         highest_zoneidx, nodes);
    1656             : }
    1657             : 
    1658             : /**
    1659             :  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
    1660             :  * @zone: The current zone in the iterator
    1661             :  * @z: The current pointer within zonelist->_zonerefs being iterated
    1662             :  * @zlist: The zonelist being iterated
    1663             :  * @highidx: The zone index of the highest zone to return
    1664             :  * @nodemask: Nodemask allowed by the allocator
    1665             :  *
    1666             :  * This iterator iterates though all zones at or below a given zone index and
    1667             :  * within a given nodemask
    1668             :  */
    1669             : #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
    1670             :         for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);       \
    1671             :                 zone;                                                   \
    1672             :                 z = next_zones_zonelist(++z, highidx, nodemask),        \
    1673             :                         zone = zonelist_zone(z))
    1674             : 
    1675             : #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
    1676             :         for (zone = z->zone; \
    1677             :                 zone;                                                   \
    1678             :                 z = next_zones_zonelist(++z, highidx, nodemask),        \
    1679             :                         zone = zonelist_zone(z))
    1680             : 
    1681             : 
    1682             : /**
    1683             :  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
    1684             :  * @zone: The current zone in the iterator
    1685             :  * @z: The current pointer within zonelist->zones being iterated
    1686             :  * @zlist: The zonelist being iterated
    1687             :  * @highidx: The zone index of the highest zone to return
    1688             :  *
    1689             :  * This iterator iterates though all zones at or below a given zone index.
    1690             :  */
    1691             : #define for_each_zone_zonelist(zone, z, zlist, highidx) \
    1692             :         for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
    1693             : 
    1694             : /* Whether the 'nodes' are all movable nodes */
    1695             : static inline bool movable_only_nodes(nodemask_t *nodes)
    1696             : {
    1697             :         struct zonelist *zonelist;
    1698             :         struct zoneref *z;
    1699             :         int nid;
    1700             : 
    1701             :         if (nodes_empty(*nodes))
    1702             :                 return false;
    1703             : 
    1704             :         /*
    1705             :          * We can chose arbitrary node from the nodemask to get a
    1706             :          * zonelist as they are interlinked. We just need to find
    1707             :          * at least one zone that can satisfy kernel allocations.
    1708             :          */
    1709             :         nid = first_node(*nodes);
    1710             :         zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
    1711             :         z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes);
    1712             :         return (!z->zone) ? true : false;
    1713             : }
    1714             : 
    1715             : 
    1716             : #ifdef CONFIG_SPARSEMEM
    1717             : #include <asm/sparsemem.h>
    1718             : #endif
    1719             : 
    1720             : #ifdef CONFIG_FLATMEM
    1721             : #define pfn_to_nid(pfn)         (0)
    1722             : #endif
    1723             : 
    1724             : #ifdef CONFIG_SPARSEMEM
    1725             : 
    1726             : /*
    1727             :  * PA_SECTION_SHIFT             physical address to/from section number
    1728             :  * PFN_SECTION_SHIFT            pfn to/from section number
    1729             :  */
    1730             : #define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
    1731             : #define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
    1732             : 
    1733             : #define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
    1734             : 
    1735             : #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
    1736             : #define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
    1737             : 
    1738             : #define SECTION_BLOCKFLAGS_BITS \
    1739             :         ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
    1740             : 
    1741             : #if (MAX_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
    1742             : #error Allocator MAX_ORDER exceeds SECTION_SIZE
    1743             : #endif
    1744             : 
    1745             : static inline unsigned long pfn_to_section_nr(unsigned long pfn)
    1746             : {
    1747             :         return pfn >> PFN_SECTION_SHIFT;
    1748             : }
    1749             : static inline unsigned long section_nr_to_pfn(unsigned long sec)
    1750             : {
    1751             :         return sec << PFN_SECTION_SHIFT;
    1752             : }
    1753             : 
    1754             : #define SECTION_ALIGN_UP(pfn)   (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
    1755             : #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
    1756             : 
    1757             : #define SUBSECTION_SHIFT 21
    1758             : #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
    1759             : 
    1760             : #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
    1761             : #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
    1762             : #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
    1763             : 
    1764             : #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
    1765             : #error Subsection size exceeds section size
    1766             : #else
    1767             : #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
    1768             : #endif
    1769             : 
    1770             : #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
    1771             : #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
    1772             : 
    1773             : struct mem_section_usage {
    1774             : #ifdef CONFIG_SPARSEMEM_VMEMMAP
    1775             :         DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
    1776             : #endif
    1777             :         /* See declaration of similar field in struct zone */
    1778             :         unsigned long pageblock_flags[0];
    1779             : };
    1780             : 
    1781             : void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
    1782             : 
    1783             : struct page;
    1784             : struct page_ext;
    1785             : struct mem_section {
    1786             :         /*
    1787             :          * This is, logically, a pointer to an array of struct
    1788             :          * pages.  However, it is stored with some other magic.
    1789             :          * (see sparse.c::sparse_init_one_section())
    1790             :          *
    1791             :          * Additionally during early boot we encode node id of
    1792             :          * the location of the section here to guide allocation.
    1793             :          * (see sparse.c::memory_present())
    1794             :          *
    1795             :          * Making it a UL at least makes someone do a cast
    1796             :          * before using it wrong.
    1797             :          */
    1798             :         unsigned long section_mem_map;
    1799             : 
    1800             :         struct mem_section_usage *usage;
    1801             : #ifdef CONFIG_PAGE_EXTENSION
    1802             :         /*
    1803             :          * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
    1804             :          * section. (see page_ext.h about this.)
    1805             :          */
    1806             :         struct page_ext *page_ext;
    1807             :         unsigned long pad;
    1808             : #endif
    1809             :         /*
    1810             :          * WARNING: mem_section must be a power-of-2 in size for the
    1811             :          * calculation and use of SECTION_ROOT_MASK to make sense.
    1812             :          */
    1813             : };
    1814             : 
    1815             : #ifdef CONFIG_SPARSEMEM_EXTREME
    1816             : #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
    1817             : #else
    1818             : #define SECTIONS_PER_ROOT       1
    1819             : #endif
    1820             : 
    1821             : #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
    1822             : #define NR_SECTION_ROOTS        DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
    1823             : #define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
    1824             : 
    1825             : #ifdef CONFIG_SPARSEMEM_EXTREME
    1826             : extern struct mem_section **mem_section;
    1827             : #else
    1828             : extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
    1829             : #endif
    1830             : 
    1831             : static inline unsigned long *section_to_usemap(struct mem_section *ms)
    1832             : {
    1833             :         return ms->usage->pageblock_flags;
    1834             : }
    1835             : 
    1836             : static inline struct mem_section *__nr_to_section(unsigned long nr)
    1837             : {
    1838             :         unsigned long root = SECTION_NR_TO_ROOT(nr);
    1839             : 
    1840             :         if (unlikely(root >= NR_SECTION_ROOTS))
    1841             :                 return NULL;
    1842             : 
    1843             : #ifdef CONFIG_SPARSEMEM_EXTREME
    1844             :         if (!mem_section || !mem_section[root])
    1845             :                 return NULL;
    1846             : #endif
    1847             :         return &mem_section[root][nr & SECTION_ROOT_MASK];
    1848             : }
    1849             : extern size_t mem_section_usage_size(void);
    1850             : 
    1851             : /*
    1852             :  * We use the lower bits of the mem_map pointer to store
    1853             :  * a little bit of information.  The pointer is calculated
    1854             :  * as mem_map - section_nr_to_pfn(pnum).  The result is
    1855             :  * aligned to the minimum alignment of the two values:
    1856             :  *   1. All mem_map arrays are page-aligned.
    1857             :  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
    1858             :  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
    1859             :  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
    1860             :  *      worst combination is powerpc with 256k pages,
    1861             :  *      which results in PFN_SECTION_SHIFT equal 6.
    1862             :  * To sum it up, at least 6 bits are available on all architectures.
    1863             :  * However, we can exceed 6 bits on some other architectures except
    1864             :  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
    1865             :  * with the worst case of 64K pages on arm64) if we make sure the
    1866             :  * exceeded bit is not applicable to powerpc.
    1867             :  */
    1868             : enum {
    1869             :         SECTION_MARKED_PRESENT_BIT,
    1870             :         SECTION_HAS_MEM_MAP_BIT,
    1871             :         SECTION_IS_ONLINE_BIT,
    1872             :         SECTION_IS_EARLY_BIT,
    1873             : #ifdef CONFIG_ZONE_DEVICE
    1874             :         SECTION_TAINT_ZONE_DEVICE_BIT,
    1875             : #endif
    1876             :         SECTION_MAP_LAST_BIT,
    1877             : };
    1878             : 
    1879             : #define SECTION_MARKED_PRESENT          BIT(SECTION_MARKED_PRESENT_BIT)
    1880             : #define SECTION_HAS_MEM_MAP             BIT(SECTION_HAS_MEM_MAP_BIT)
    1881             : #define SECTION_IS_ONLINE               BIT(SECTION_IS_ONLINE_BIT)
    1882             : #define SECTION_IS_EARLY                BIT(SECTION_IS_EARLY_BIT)
    1883             : #ifdef CONFIG_ZONE_DEVICE
    1884             : #define SECTION_TAINT_ZONE_DEVICE       BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
    1885             : #endif
    1886             : #define SECTION_MAP_MASK                (~(BIT(SECTION_MAP_LAST_BIT) - 1))
    1887             : #define SECTION_NID_SHIFT               SECTION_MAP_LAST_BIT
    1888             : 
    1889             : static inline struct page *__section_mem_map_addr(struct mem_section *section)
    1890             : {
    1891             :         unsigned long map = section->section_mem_map;
    1892             :         map &= SECTION_MAP_MASK;
    1893             :         return (struct page *)map;
    1894             : }
    1895             : 
    1896             : static inline int present_section(struct mem_section *section)
    1897             : {
    1898             :         return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
    1899             : }
    1900             : 
    1901             : static inline int present_section_nr(unsigned long nr)
    1902             : {
    1903             :         return present_section(__nr_to_section(nr));
    1904             : }
    1905             : 
    1906             : static inline int valid_section(struct mem_section *section)
    1907             : {
    1908             :         return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
    1909             : }
    1910             : 
    1911             : static inline int early_section(struct mem_section *section)
    1912             : {
    1913             :         return (section && (section->section_mem_map & SECTION_IS_EARLY));
    1914             : }
    1915             : 
    1916             : static inline int valid_section_nr(unsigned long nr)
    1917             : {
    1918             :         return valid_section(__nr_to_section(nr));
    1919             : }
    1920             : 
    1921             : static inline int online_section(struct mem_section *section)
    1922             : {
    1923             :         return (section && (section->section_mem_map & SECTION_IS_ONLINE));
    1924             : }
    1925             : 
    1926             : #ifdef CONFIG_ZONE_DEVICE
    1927             : static inline int online_device_section(struct mem_section *section)
    1928             : {
    1929             :         unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
    1930             : 
    1931             :         return section && ((section->section_mem_map & flags) == flags);
    1932             : }
    1933             : #else
    1934             : static inline int online_device_section(struct mem_section *section)
    1935             : {
    1936             :         return 0;
    1937             : }
    1938             : #endif
    1939             : 
    1940             : static inline int online_section_nr(unsigned long nr)
    1941             : {
    1942             :         return online_section(__nr_to_section(nr));
    1943             : }
    1944             : 
    1945             : #ifdef CONFIG_MEMORY_HOTPLUG
    1946             : void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
    1947             : void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
    1948             : #endif
    1949             : 
    1950             : static inline struct mem_section *__pfn_to_section(unsigned long pfn)
    1951             : {
    1952             :         return __nr_to_section(pfn_to_section_nr(pfn));
    1953             : }
    1954             : 
    1955             : extern unsigned long __highest_present_section_nr;
    1956             : 
    1957             : static inline int subsection_map_index(unsigned long pfn)
    1958             : {
    1959             :         return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
    1960             : }
    1961             : 
    1962             : #ifdef CONFIG_SPARSEMEM_VMEMMAP
    1963             : static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
    1964             : {
    1965             :         int idx = subsection_map_index(pfn);
    1966             : 
    1967             :         return test_bit(idx, ms->usage->subsection_map);
    1968             : }
    1969             : #else
    1970             : static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
    1971             : {
    1972             :         return 1;
    1973             : }
    1974             : #endif
    1975             : 
    1976             : #ifndef CONFIG_HAVE_ARCH_PFN_VALID
    1977             : /**
    1978             :  * pfn_valid - check if there is a valid memory map entry for a PFN
    1979             :  * @pfn: the page frame number to check
    1980             :  *
    1981             :  * Check if there is a valid memory map entry aka struct page for the @pfn.
    1982             :  * Note, that availability of the memory map entry does not imply that
    1983             :  * there is actual usable memory at that @pfn. The struct page may
    1984             :  * represent a hole or an unusable page frame.
    1985             :  *
    1986             :  * Return: 1 for PFNs that have memory map entries and 0 otherwise
    1987             :  */
    1988             : static inline int pfn_valid(unsigned long pfn)
    1989             : {
    1990             :         struct mem_section *ms;
    1991             : 
    1992             :         /*
    1993             :          * Ensure the upper PAGE_SHIFT bits are clear in the
    1994             :          * pfn. Else it might lead to false positives when
    1995             :          * some of the upper bits are set, but the lower bits
    1996             :          * match a valid pfn.
    1997             :          */
    1998             :         if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
    1999             :                 return 0;
    2000             : 
    2001             :         if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
    2002             :                 return 0;
    2003             :         ms = __pfn_to_section(pfn);
    2004             :         if (!valid_section(ms))
    2005             :                 return 0;
    2006             :         /*
    2007             :          * Traditionally early sections always returned pfn_valid() for
    2008             :          * the entire section-sized span.
    2009             :          */
    2010             :         return early_section(ms) || pfn_section_valid(ms, pfn);
    2011             : }
    2012             : #endif
    2013             : 
    2014             : static inline int pfn_in_present_section(unsigned long pfn)
    2015             : {
    2016             :         if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
    2017             :                 return 0;
    2018             :         return present_section(__pfn_to_section(pfn));
    2019             : }
    2020             : 
    2021             : static inline unsigned long next_present_section_nr(unsigned long section_nr)
    2022             : {
    2023             :         while (++section_nr <= __highest_present_section_nr) {
    2024             :                 if (present_section_nr(section_nr))
    2025             :                         return section_nr;
    2026             :         }
    2027             : 
    2028             :         return -1;
    2029             : }
    2030             : 
    2031             : /*
    2032             :  * These are _only_ used during initialisation, therefore they
    2033             :  * can use __initdata ...  They could have names to indicate
    2034             :  * this restriction.
    2035             :  */
    2036             : #ifdef CONFIG_NUMA
    2037             : #define pfn_to_nid(pfn)                                                 \
    2038             : ({                                                                      \
    2039             :         unsigned long __pfn_to_nid_pfn = (pfn);                         \
    2040             :         page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
    2041             : })
    2042             : #else
    2043             : #define pfn_to_nid(pfn)         (0)
    2044             : #endif
    2045             : 
    2046             : void sparse_init(void);
    2047             : #else
    2048             : #define sparse_init()   do {} while (0)
    2049             : #define sparse_index_init(_sec, _nid)  do {} while (0)
    2050             : #define pfn_in_present_section pfn_valid
    2051             : #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
    2052             : #endif /* CONFIG_SPARSEMEM */
    2053             : 
    2054             : #endif /* !__GENERATING_BOUNDS.H */
    2055             : #endif /* !__ASSEMBLY__ */
    2056             : #endif /* _LINUX_MMZONE_H */

Generated by: LCOV version 1.14