LCOV - code coverage report
Current view: top level - include/linux - pgtable.h (source / functions) Hit Total Coverage
Test: fstests of 6.5.0-rc3-djwa @ Mon Jul 31 20:08:17 PDT 2023 Lines: 0 1 0.0 %
Date: 2023-07-31 20:08:17 Functions: 0 0 -

          Line data    Source code
       1             : /* SPDX-License-Identifier: GPL-2.0 */
       2             : #ifndef _LINUX_PGTABLE_H
       3             : #define _LINUX_PGTABLE_H
       4             : 
       5             : #include <linux/pfn.h>
       6             : #include <asm/pgtable.h>
       7             : 
       8             : #ifndef __ASSEMBLY__
       9             : #ifdef CONFIG_MMU
      10             : 
      11             : #include <linux/mm_types.h>
      12             : #include <linux/bug.h>
      13             : #include <linux/errno.h>
      14             : #include <asm-generic/pgtable_uffd.h>
      15             : #include <linux/page_table_check.h>
      16             : 
      17             : #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
      18             :         defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
      19             : #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
      20             : #endif
      21             : 
      22             : /*
      23             :  * On almost all architectures and configurations, 0 can be used as the
      24             :  * upper ceiling to free_pgtables(): on many architectures it has the same
      25             :  * effect as using TASK_SIZE.  However, there is one configuration which
      26             :  * must impose a more careful limit, to avoid freeing kernel pgtables.
      27             :  */
      28             : #ifndef USER_PGTABLES_CEILING
      29             : #define USER_PGTABLES_CEILING   0UL
      30             : #endif
      31             : 
      32             : /*
      33             :  * This defines the first usable user address. Platforms
      34             :  * can override its value with custom FIRST_USER_ADDRESS
      35             :  * defined in their respective <asm/pgtable.h>.
      36             :  */
      37             : #ifndef FIRST_USER_ADDRESS
      38             : #define FIRST_USER_ADDRESS      0UL
      39             : #endif
      40             : 
      41             : /*
      42             :  * This defines the generic helper for accessing PMD page
      43             :  * table page. Although platforms can still override this
      44             :  * via their respective <asm/pgtable.h>.
      45             :  */
      46             : #ifndef pmd_pgtable
      47             : #define pmd_pgtable(pmd) pmd_page(pmd)
      48             : #endif
      49             : 
      50             : /*
      51             :  * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
      52             :  *
      53             :  * The pXx_index() functions return the index of the entry in the page
      54             :  * table page which would control the given virtual address
      55             :  *
      56             :  * As these functions may be used by the same code for different levels of
      57             :  * the page table folding, they are always available, regardless of
      58             :  * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
      59             :  * because in such cases PTRS_PER_PxD equals 1.
      60             :  */
      61             : 
      62             : static inline unsigned long pte_index(unsigned long address)
      63             : {
      64             :         return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
      65             : }
      66             : #define pte_index pte_index
      67             : 
      68             : #ifndef pmd_index
      69             : static inline unsigned long pmd_index(unsigned long address)
      70             : {
      71             :         return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
      72             : }
      73             : #define pmd_index pmd_index
      74             : #endif
      75             : 
      76             : #ifndef pud_index
      77             : static inline unsigned long pud_index(unsigned long address)
      78             : {
      79             :         return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
      80             : }
      81             : #define pud_index pud_index
      82             : #endif
      83             : 
      84             : #ifndef pgd_index
      85             : /* Must be a compile-time constant, so implement it as a macro */
      86             : #define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
      87             : #endif
      88             : 
      89             : #ifndef pte_offset_kernel
      90             : static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
      91             : {
      92             :         return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
      93             : }
      94             : #define pte_offset_kernel pte_offset_kernel
      95             : #endif
      96             : 
      97             : #ifdef CONFIG_HIGHPTE
      98             : #define __pte_map(pmd, address) \
      99             :         ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
     100             : #define pte_unmap(pte)  do {    \
     101             :         kunmap_local((pte));    \
     102             :         /* rcu_read_unlock() to be added later */       \
     103             : } while (0)
     104             : #else
     105             : static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
     106             : {
     107             :         return pte_offset_kernel(pmd, address);
     108             : }
     109             : static inline void pte_unmap(pte_t *pte)
     110             : {
     111             :         /* rcu_read_unlock() to be added later */
     112             : }
     113             : #endif
     114             : 
     115             : /* Find an entry in the second-level page table.. */
     116             : #ifndef pmd_offset
     117             : static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
     118             : {
     119             :         return pud_pgtable(*pud) + pmd_index(address);
     120             : }
     121             : #define pmd_offset pmd_offset
     122             : #endif
     123             : 
     124             : #ifndef pud_offset
     125             : static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
     126             : {
     127             :         return p4d_pgtable(*p4d) + pud_index(address);
     128             : }
     129             : #define pud_offset pud_offset
     130             : #endif
     131             : 
     132             : static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
     133             : {
     134             :         return (pgd + pgd_index(address));
     135             : };
     136             : 
     137             : /*
     138             :  * a shortcut to get a pgd_t in a given mm
     139             :  */
     140             : #ifndef pgd_offset
     141             : #define pgd_offset(mm, address)         pgd_offset_pgd((mm)->pgd, (address))
     142             : #endif
     143             : 
     144             : /*
     145             :  * a shortcut which implies the use of the kernel's pgd, instead
     146             :  * of a process's
     147             :  */
     148             : #ifndef pgd_offset_k
     149             : #define pgd_offset_k(address)           pgd_offset(&init_mm, (address))
     150             : #endif
     151             : 
     152             : /*
     153             :  * In many cases it is known that a virtual address is mapped at PMD or PTE
     154             :  * level, so instead of traversing all the page table levels, we can get a
     155             :  * pointer to the PMD entry in user or kernel page table or translate a virtual
     156             :  * address to the pointer in the PTE in the kernel page tables with simple
     157             :  * helpers.
     158             :  */
     159             : static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
     160             : {
     161             :         return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
     162             : }
     163             : 
     164             : static inline pmd_t *pmd_off_k(unsigned long va)
     165             : {
     166             :         return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
     167             : }
     168             : 
     169             : static inline pte_t *virt_to_kpte(unsigned long vaddr)
     170             : {
     171             :         pmd_t *pmd = pmd_off_k(vaddr);
     172             : 
     173             :         return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
     174             : }
     175             : 
     176             : #ifndef pmd_young
     177             : static inline int pmd_young(pmd_t pmd)
     178             : {
     179             :         return 0;
     180             : }
     181             : #endif
     182             : 
     183             : #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
     184             : extern int ptep_set_access_flags(struct vm_area_struct *vma,
     185             :                                  unsigned long address, pte_t *ptep,
     186             :                                  pte_t entry, int dirty);
     187             : #endif
     188             : 
     189             : #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
     190             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     191             : extern int pmdp_set_access_flags(struct vm_area_struct *vma,
     192             :                                  unsigned long address, pmd_t *pmdp,
     193             :                                  pmd_t entry, int dirty);
     194             : extern int pudp_set_access_flags(struct vm_area_struct *vma,
     195             :                                  unsigned long address, pud_t *pudp,
     196             :                                  pud_t entry, int dirty);
     197             : #else
     198             : static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
     199             :                                         unsigned long address, pmd_t *pmdp,
     200             :                                         pmd_t entry, int dirty)
     201             : {
     202             :         BUILD_BUG();
     203             :         return 0;
     204             : }
     205             : static inline int pudp_set_access_flags(struct vm_area_struct *vma,
     206             :                                         unsigned long address, pud_t *pudp,
     207             :                                         pud_t entry, int dirty)
     208             : {
     209             :         BUILD_BUG();
     210             :         return 0;
     211             : }
     212             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
     213             : #endif
     214             : 
     215             : #ifndef ptep_get
     216             : static inline pte_t ptep_get(pte_t *ptep)
     217             : {
     218           0 :         return READ_ONCE(*ptep);
     219             : }
     220             : #endif
     221             : 
     222             : #ifndef pmdp_get
     223             : static inline pmd_t pmdp_get(pmd_t *pmdp)
     224             : {
     225             :         return READ_ONCE(*pmdp);
     226             : }
     227             : #endif
     228             : 
     229             : #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
     230             : static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
     231             :                                             unsigned long address,
     232             :                                             pte_t *ptep)
     233             : {
     234             :         pte_t pte = ptep_get(ptep);
     235             :         int r = 1;
     236             :         if (!pte_young(pte))
     237             :                 r = 0;
     238             :         else
     239             :                 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
     240             :         return r;
     241             : }
     242             : #endif
     243             : 
     244             : #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
     245             : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
     246             : static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
     247             :                                             unsigned long address,
     248             :                                             pmd_t *pmdp)
     249             : {
     250             :         pmd_t pmd = *pmdp;
     251             :         int r = 1;
     252             :         if (!pmd_young(pmd))
     253             :                 r = 0;
     254             :         else
     255             :                 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
     256             :         return r;
     257             : }
     258             : #else
     259             : static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
     260             :                                             unsigned long address,
     261             :                                             pmd_t *pmdp)
     262             : {
     263             :         BUILD_BUG();
     264             :         return 0;
     265             : }
     266             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
     267             : #endif
     268             : 
     269             : #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
     270             : int ptep_clear_flush_young(struct vm_area_struct *vma,
     271             :                            unsigned long address, pte_t *ptep);
     272             : #endif
     273             : 
     274             : #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
     275             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     276             : extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
     277             :                                   unsigned long address, pmd_t *pmdp);
     278             : #else
     279             : /*
     280             :  * Despite relevant to THP only, this API is called from generic rmap code
     281             :  * under PageTransHuge(), hence needs a dummy implementation for !THP
     282             :  */
     283             : static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
     284             :                                          unsigned long address, pmd_t *pmdp)
     285             : {
     286             :         BUILD_BUG();
     287             :         return 0;
     288             : }
     289             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
     290             : #endif
     291             : 
     292             : #ifndef arch_has_hw_nonleaf_pmd_young
     293             : /*
     294             :  * Return whether the accessed bit in non-leaf PMD entries is supported on the
     295             :  * local CPU.
     296             :  */
     297             : static inline bool arch_has_hw_nonleaf_pmd_young(void)
     298             : {
     299             :         return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
     300             : }
     301             : #endif
     302             : 
     303             : #ifndef arch_has_hw_pte_young
     304             : /*
     305             :  * Return whether the accessed bit is supported on the local CPU.
     306             :  *
     307             :  * This stub assumes accessing through an old PTE triggers a page fault.
     308             :  * Architectures that automatically set the access bit should overwrite it.
     309             :  */
     310             : static inline bool arch_has_hw_pte_young(void)
     311             : {
     312             :         return false;
     313             : }
     314             : #endif
     315             : 
     316             : #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
     317             : static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
     318             :                                        unsigned long address,
     319             :                                        pte_t *ptep)
     320             : {
     321             :         pte_t pte = ptep_get(ptep);
     322             :         pte_clear(mm, address, ptep);
     323             :         page_table_check_pte_clear(mm, address, pte);
     324             :         return pte;
     325             : }
     326             : #endif
     327             : 
     328             : static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
     329             :                               pte_t *ptep)
     330             : {
     331             :         ptep_get_and_clear(mm, addr, ptep);
     332             : }
     333             : 
     334             : #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
     335             : /*
     336             :  * For walking the pagetables without holding any locks.  Some architectures
     337             :  * (eg x86-32 PAE) cannot load the entries atomically without using expensive
     338             :  * instructions.  We are guaranteed that a PTE will only either go from not
     339             :  * present to present, or present to not present -- it will not switch to a
     340             :  * completely different present page without a TLB flush inbetween; which we
     341             :  * are blocking by holding interrupts off.
     342             :  *
     343             :  * Setting ptes from not present to present goes:
     344             :  *
     345             :  *   ptep->pte_high = h;
     346             :  *   smp_wmb();
     347             :  *   ptep->pte_low = l;
     348             :  *
     349             :  * And present to not present goes:
     350             :  *
     351             :  *   ptep->pte_low = 0;
     352             :  *   smp_wmb();
     353             :  *   ptep->pte_high = 0;
     354             :  *
     355             :  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
     356             :  * We load pte_high *after* loading pte_low, which ensures we don't see an older
     357             :  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
     358             :  * picked up a changed pte high. We might have gotten rubbish values from
     359             :  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
     360             :  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
     361             :  * operates on present ptes we're safe.
     362             :  */
     363             : static inline pte_t ptep_get_lockless(pte_t *ptep)
     364             : {
     365             :         pte_t pte;
     366             : 
     367             :         do {
     368             :                 pte.pte_low = ptep->pte_low;
     369             :                 smp_rmb();
     370             :                 pte.pte_high = ptep->pte_high;
     371             :                 smp_rmb();
     372             :         } while (unlikely(pte.pte_low != ptep->pte_low));
     373             : 
     374             :         return pte;
     375             : }
     376             : #define ptep_get_lockless ptep_get_lockless
     377             : 
     378             : #if CONFIG_PGTABLE_LEVELS > 2
     379             : static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
     380             : {
     381             :         pmd_t pmd;
     382             : 
     383             :         do {
     384             :                 pmd.pmd_low = pmdp->pmd_low;
     385             :                 smp_rmb();
     386             :                 pmd.pmd_high = pmdp->pmd_high;
     387             :                 smp_rmb();
     388             :         } while (unlikely(pmd.pmd_low != pmdp->pmd_low));
     389             : 
     390             :         return pmd;
     391             : }
     392             : #define pmdp_get_lockless pmdp_get_lockless
     393             : #endif /* CONFIG_PGTABLE_LEVELS > 2 */
     394             : #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
     395             : 
     396             : /*
     397             :  * We require that the PTE can be read atomically.
     398             :  */
     399             : #ifndef ptep_get_lockless
     400             : static inline pte_t ptep_get_lockless(pte_t *ptep)
     401             : {
     402             :         return ptep_get(ptep);
     403             : }
     404             : #endif
     405             : 
     406             : #ifndef pmdp_get_lockless
     407             : static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
     408             : {
     409             :         return pmdp_get(pmdp);
     410             : }
     411             : #endif
     412             : 
     413             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     414             : #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
     415             : static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
     416             :                                             unsigned long address,
     417             :                                             pmd_t *pmdp)
     418             : {
     419             :         pmd_t pmd = *pmdp;
     420             : 
     421             :         pmd_clear(pmdp);
     422             :         page_table_check_pmd_clear(mm, address, pmd);
     423             : 
     424             :         return pmd;
     425             : }
     426             : #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
     427             : #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
     428             : static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
     429             :                                             unsigned long address,
     430             :                                             pud_t *pudp)
     431             : {
     432             :         pud_t pud = *pudp;
     433             : 
     434             :         pud_clear(pudp);
     435             :         page_table_check_pud_clear(mm, address, pud);
     436             : 
     437             :         return pud;
     438             : }
     439             : #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
     440             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
     441             : 
     442             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     443             : #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
     444             : static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
     445             :                                             unsigned long address, pmd_t *pmdp,
     446             :                                             int full)
     447             : {
     448             :         return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
     449             : }
     450             : #endif
     451             : 
     452             : #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
     453             : static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
     454             :                                             unsigned long address, pud_t *pudp,
     455             :                                             int full)
     456             : {
     457             :         return pudp_huge_get_and_clear(mm, address, pudp);
     458             : }
     459             : #endif
     460             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
     461             : 
     462             : #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
     463             : static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
     464             :                                             unsigned long address, pte_t *ptep,
     465             :                                             int full)
     466             : {
     467             :         return ptep_get_and_clear(mm, address, ptep);
     468             : }
     469             : #endif
     470             : 
     471             : 
     472             : /*
     473             :  * If two threads concurrently fault at the same page, the thread that
     474             :  * won the race updates the PTE and its local TLB/Cache. The other thread
     475             :  * gives up, simply does nothing, and continues; on architectures where
     476             :  * software can update TLB,  local TLB can be updated here to avoid next page
     477             :  * fault. This function updates TLB only, do nothing with cache or others.
     478             :  * It is the difference with function update_mmu_cache.
     479             :  */
     480             : #ifndef __HAVE_ARCH_UPDATE_MMU_TLB
     481             : static inline void update_mmu_tlb(struct vm_area_struct *vma,
     482             :                                 unsigned long address, pte_t *ptep)
     483             : {
     484             : }
     485             : #define __HAVE_ARCH_UPDATE_MMU_TLB
     486             : #endif
     487             : 
     488             : /*
     489             :  * Some architectures may be able to avoid expensive synchronization
     490             :  * primitives when modifications are made to PTE's which are already
     491             :  * not present, or in the process of an address space destruction.
     492             :  */
     493             : #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
     494             : static inline void pte_clear_not_present_full(struct mm_struct *mm,
     495             :                                               unsigned long address,
     496             :                                               pte_t *ptep,
     497             :                                               int full)
     498             : {
     499             :         pte_clear(mm, address, ptep);
     500             : }
     501             : #endif
     502             : 
     503             : #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
     504             : extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
     505             :                               unsigned long address,
     506             :                               pte_t *ptep);
     507             : #endif
     508             : 
     509             : #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
     510             : extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
     511             :                               unsigned long address,
     512             :                               pmd_t *pmdp);
     513             : extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
     514             :                               unsigned long address,
     515             :                               pud_t *pudp);
     516             : #endif
     517             : 
     518             : #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
     519             : struct mm_struct;
     520             : static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
     521             : {
     522             :         pte_t old_pte = ptep_get(ptep);
     523             :         set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
     524             : }
     525             : #endif
     526             : 
     527             : /*
     528             :  * On some architectures hardware does not set page access bit when accessing
     529             :  * memory page, it is responsibility of software setting this bit. It brings
     530             :  * out extra page fault penalty to track page access bit. For optimization page
     531             :  * access bit can be set during all page fault flow on these arches.
     532             :  * To be differentiate with macro pte_mkyoung, this macro is used on platforms
     533             :  * where software maintains page access bit.
     534             :  */
     535             : #ifndef pte_sw_mkyoung
     536             : static inline pte_t pte_sw_mkyoung(pte_t pte)
     537             : {
     538             :         return pte;
     539             : }
     540             : #define pte_sw_mkyoung  pte_sw_mkyoung
     541             : #endif
     542             : 
     543             : #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
     544             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     545             : static inline void pmdp_set_wrprotect(struct mm_struct *mm,
     546             :                                       unsigned long address, pmd_t *pmdp)
     547             : {
     548             :         pmd_t old_pmd = *pmdp;
     549             :         set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
     550             : }
     551             : #else
     552             : static inline void pmdp_set_wrprotect(struct mm_struct *mm,
     553             :                                       unsigned long address, pmd_t *pmdp)
     554             : {
     555             :         BUILD_BUG();
     556             : }
     557             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
     558             : #endif
     559             : #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
     560             : #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
     561             : static inline void pudp_set_wrprotect(struct mm_struct *mm,
     562             :                                       unsigned long address, pud_t *pudp)
     563             : {
     564             :         pud_t old_pud = *pudp;
     565             : 
     566             :         set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
     567             : }
     568             : #else
     569             : static inline void pudp_set_wrprotect(struct mm_struct *mm,
     570             :                                       unsigned long address, pud_t *pudp)
     571             : {
     572             :         BUILD_BUG();
     573             : }
     574             : #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
     575             : #endif
     576             : 
     577             : #ifndef pmdp_collapse_flush
     578             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     579             : extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
     580             :                                  unsigned long address, pmd_t *pmdp);
     581             : #else
     582             : static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
     583             :                                         unsigned long address,
     584             :                                         pmd_t *pmdp)
     585             : {
     586             :         BUILD_BUG();
     587             :         return *pmdp;
     588             : }
     589             : #define pmdp_collapse_flush pmdp_collapse_flush
     590             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
     591             : #endif
     592             : 
     593             : #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
     594             : extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
     595             :                                        pgtable_t pgtable);
     596             : #endif
     597             : 
     598             : #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
     599             : extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
     600             : #endif
     601             : 
     602             : #ifndef arch_needs_pgtable_deposit
     603             : #define arch_needs_pgtable_deposit() (false)
     604             : #endif
     605             : 
     606             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     607             : /*
     608             :  * This is an implementation of pmdp_establish() that is only suitable for an
     609             :  * architecture that doesn't have hardware dirty/accessed bits. In this case we
     610             :  * can't race with CPU which sets these bits and non-atomic approach is fine.
     611             :  */
     612             : static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
     613             :                 unsigned long address, pmd_t *pmdp, pmd_t pmd)
     614             : {
     615             :         pmd_t old_pmd = *pmdp;
     616             :         set_pmd_at(vma->vm_mm, address, pmdp, pmd);
     617             :         return old_pmd;
     618             : }
     619             : #endif
     620             : 
     621             : #ifndef __HAVE_ARCH_PMDP_INVALIDATE
     622             : extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
     623             :                             pmd_t *pmdp);
     624             : #endif
     625             : 
     626             : #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
     627             : 
     628             : /*
     629             :  * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
     630             :  * hugepage mapping in the page tables. This function is similar to
     631             :  * pmdp_invalidate(), but should only be used if the access and dirty bits would
     632             :  * not be cleared by the software in the new PMD value. The function ensures
     633             :  * that hardware changes of the access and dirty bits updates would not be lost.
     634             :  *
     635             :  * Doing so can allow in certain architectures to avoid a TLB flush in most
     636             :  * cases. Yet, another TLB flush might be necessary later if the PMD update
     637             :  * itself requires such flush (e.g., if protection was set to be stricter). Yet,
     638             :  * even when a TLB flush is needed because of the update, the caller may be able
     639             :  * to batch these TLB flushing operations, so fewer TLB flush operations are
     640             :  * needed.
     641             :  */
     642             : extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
     643             :                                 unsigned long address, pmd_t *pmdp);
     644             : #endif
     645             : 
     646             : #ifndef __HAVE_ARCH_PTE_SAME
     647             : static inline int pte_same(pte_t pte_a, pte_t pte_b)
     648             : {
     649             :         return pte_val(pte_a) == pte_val(pte_b);
     650             : }
     651             : #endif
     652             : 
     653             : #ifndef __HAVE_ARCH_PTE_UNUSED
     654             : /*
     655             :  * Some architectures provide facilities to virtualization guests
     656             :  * so that they can flag allocated pages as unused. This allows the
     657             :  * host to transparently reclaim unused pages. This function returns
     658             :  * whether the pte's page is unused.
     659             :  */
     660             : static inline int pte_unused(pte_t pte)
     661             : {
     662             :         return 0;
     663             : }
     664             : #endif
     665             : 
     666             : #ifndef pte_access_permitted
     667             : #define pte_access_permitted(pte, write) \
     668             :         (pte_present(pte) && (!(write) || pte_write(pte)))
     669             : #endif
     670             : 
     671             : #ifndef pmd_access_permitted
     672             : #define pmd_access_permitted(pmd, write) \
     673             :         (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
     674             : #endif
     675             : 
     676             : #ifndef pud_access_permitted
     677             : #define pud_access_permitted(pud, write) \
     678             :         (pud_present(pud) && (!(write) || pud_write(pud)))
     679             : #endif
     680             : 
     681             : #ifndef p4d_access_permitted
     682             : #define p4d_access_permitted(p4d, write) \
     683             :         (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
     684             : #endif
     685             : 
     686             : #ifndef pgd_access_permitted
     687             : #define pgd_access_permitted(pgd, write) \
     688             :         (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
     689             : #endif
     690             : 
     691             : #ifndef __HAVE_ARCH_PMD_SAME
     692             : static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
     693             : {
     694             :         return pmd_val(pmd_a) == pmd_val(pmd_b);
     695             : }
     696             : 
     697             : static inline int pud_same(pud_t pud_a, pud_t pud_b)
     698             : {
     699             :         return pud_val(pud_a) == pud_val(pud_b);
     700             : }
     701             : #endif
     702             : 
     703             : #ifndef __HAVE_ARCH_P4D_SAME
     704             : static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
     705             : {
     706             :         return p4d_val(p4d_a) == p4d_val(p4d_b);
     707             : }
     708             : #endif
     709             : 
     710             : #ifndef __HAVE_ARCH_PGD_SAME
     711             : static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
     712             : {
     713             :         return pgd_val(pgd_a) == pgd_val(pgd_b);
     714             : }
     715             : #endif
     716             : 
     717             : /*
     718             :  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
     719             :  * TLB flush will be required as a result of the "set". For example, use
     720             :  * in scenarios where it is known ahead of time that the routine is
     721             :  * setting non-present entries, or re-setting an existing entry to the
     722             :  * same value. Otherwise, use the typical "set" helpers and flush the
     723             :  * TLB.
     724             :  */
     725             : #define set_pte_safe(ptep, pte) \
     726             : ({ \
     727             :         WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
     728             :         set_pte(ptep, pte); \
     729             : })
     730             : 
     731             : #define set_pmd_safe(pmdp, pmd) \
     732             : ({ \
     733             :         WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
     734             :         set_pmd(pmdp, pmd); \
     735             : })
     736             : 
     737             : #define set_pud_safe(pudp, pud) \
     738             : ({ \
     739             :         WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
     740             :         set_pud(pudp, pud); \
     741             : })
     742             : 
     743             : #define set_p4d_safe(p4dp, p4d) \
     744             : ({ \
     745             :         WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
     746             :         set_p4d(p4dp, p4d); \
     747             : })
     748             : 
     749             : #define set_pgd_safe(pgdp, pgd) \
     750             : ({ \
     751             :         WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
     752             :         set_pgd(pgdp, pgd); \
     753             : })
     754             : 
     755             : #ifndef __HAVE_ARCH_DO_SWAP_PAGE
     756             : /*
     757             :  * Some architectures support metadata associated with a page. When a
     758             :  * page is being swapped out, this metadata must be saved so it can be
     759             :  * restored when the page is swapped back in. SPARC M7 and newer
     760             :  * processors support an ADI (Application Data Integrity) tag for the
     761             :  * page as metadata for the page. arch_do_swap_page() can restore this
     762             :  * metadata when a page is swapped back in.
     763             :  */
     764             : static inline void arch_do_swap_page(struct mm_struct *mm,
     765             :                                      struct vm_area_struct *vma,
     766             :                                      unsigned long addr,
     767             :                                      pte_t pte, pte_t oldpte)
     768             : {
     769             : 
     770             : }
     771             : #endif
     772             : 
     773             : #ifndef __HAVE_ARCH_UNMAP_ONE
     774             : /*
     775             :  * Some architectures support metadata associated with a page. When a
     776             :  * page is being swapped out, this metadata must be saved so it can be
     777             :  * restored when the page is swapped back in. SPARC M7 and newer
     778             :  * processors support an ADI (Application Data Integrity) tag for the
     779             :  * page as metadata for the page. arch_unmap_one() can save this
     780             :  * metadata on a swap-out of a page.
     781             :  */
     782             : static inline int arch_unmap_one(struct mm_struct *mm,
     783             :                                   struct vm_area_struct *vma,
     784             :                                   unsigned long addr,
     785             :                                   pte_t orig_pte)
     786             : {
     787             :         return 0;
     788             : }
     789             : #endif
     790             : 
     791             : /*
     792             :  * Allow architectures to preserve additional metadata associated with
     793             :  * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
     794             :  * prototypes must be defined in the arch-specific asm/pgtable.h file.
     795             :  */
     796             : #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
     797             : static inline int arch_prepare_to_swap(struct page *page)
     798             : {
     799             :         return 0;
     800             : }
     801             : #endif
     802             : 
     803             : #ifndef __HAVE_ARCH_SWAP_INVALIDATE
     804             : static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
     805             : {
     806             : }
     807             : 
     808             : static inline void arch_swap_invalidate_area(int type)
     809             : {
     810             : }
     811             : #endif
     812             : 
     813             : #ifndef __HAVE_ARCH_SWAP_RESTORE
     814             : static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
     815             : {
     816             : }
     817             : #endif
     818             : 
     819             : #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
     820             : #define pgd_offset_gate(mm, addr)       pgd_offset(mm, addr)
     821             : #endif
     822             : 
     823             : #ifndef __HAVE_ARCH_MOVE_PTE
     824             : #define move_pte(pte, prot, old_addr, new_addr) (pte)
     825             : #endif
     826             : 
     827             : #ifndef pte_accessible
     828             : # define pte_accessible(mm, pte)        ((void)(pte), 1)
     829             : #endif
     830             : 
     831             : #ifndef flush_tlb_fix_spurious_fault
     832             : #define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
     833             : #endif
     834             : 
     835             : /*
     836             :  * When walking page tables, get the address of the next boundary,
     837             :  * or the end address of the range if that comes earlier.  Although no
     838             :  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
     839             :  */
     840             : 
     841             : #define pgd_addr_end(addr, end)                                         \
     842             : ({      unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;      \
     843             :         (__boundary - 1 < (end) - 1)? __boundary: (end);             \
     844             : })
     845             : 
     846             : #ifndef p4d_addr_end
     847             : #define p4d_addr_end(addr, end)                                         \
     848             : ({      unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;  \
     849             :         (__boundary - 1 < (end) - 1)? __boundary: (end);             \
     850             : })
     851             : #endif
     852             : 
     853             : #ifndef pud_addr_end
     854             : #define pud_addr_end(addr, end)                                         \
     855             : ({      unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;  \
     856             :         (__boundary - 1 < (end) - 1)? __boundary: (end);             \
     857             : })
     858             : #endif
     859             : 
     860             : #ifndef pmd_addr_end
     861             : #define pmd_addr_end(addr, end)                                         \
     862             : ({      unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;  \
     863             :         (__boundary - 1 < (end) - 1)? __boundary: (end);             \
     864             : })
     865             : #endif
     866             : 
     867             : /*
     868             :  * When walking page tables, we usually want to skip any p?d_none entries;
     869             :  * and any p?d_bad entries - reporting the error before resetting to none.
     870             :  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
     871             :  */
     872             : void pgd_clear_bad(pgd_t *);
     873             : 
     874             : #ifndef __PAGETABLE_P4D_FOLDED
     875             : void p4d_clear_bad(p4d_t *);
     876             : #else
     877             : #define p4d_clear_bad(p4d)        do { } while (0)
     878             : #endif
     879             : 
     880             : #ifndef __PAGETABLE_PUD_FOLDED
     881             : void pud_clear_bad(pud_t *);
     882             : #else
     883             : #define pud_clear_bad(p4d)        do { } while (0)
     884             : #endif
     885             : 
     886             : void pmd_clear_bad(pmd_t *);
     887             : 
     888             : static inline int pgd_none_or_clear_bad(pgd_t *pgd)
     889             : {
     890             :         if (pgd_none(*pgd))
     891             :                 return 1;
     892             :         if (unlikely(pgd_bad(*pgd))) {
     893             :                 pgd_clear_bad(pgd);
     894             :                 return 1;
     895             :         }
     896             :         return 0;
     897             : }
     898             : 
     899             : static inline int p4d_none_or_clear_bad(p4d_t *p4d)
     900             : {
     901             :         if (p4d_none(*p4d))
     902             :                 return 1;
     903             :         if (unlikely(p4d_bad(*p4d))) {
     904             :                 p4d_clear_bad(p4d);
     905             :                 return 1;
     906             :         }
     907             :         return 0;
     908             : }
     909             : 
     910             : static inline int pud_none_or_clear_bad(pud_t *pud)
     911             : {
     912             :         if (pud_none(*pud))
     913             :                 return 1;
     914             :         if (unlikely(pud_bad(*pud))) {
     915             :                 pud_clear_bad(pud);
     916             :                 return 1;
     917             :         }
     918             :         return 0;
     919             : }
     920             : 
     921             : static inline int pmd_none_or_clear_bad(pmd_t *pmd)
     922             : {
     923             :         if (pmd_none(*pmd))
     924             :                 return 1;
     925             :         if (unlikely(pmd_bad(*pmd))) {
     926             :                 pmd_clear_bad(pmd);
     927             :                 return 1;
     928             :         }
     929             :         return 0;
     930             : }
     931             : 
     932             : static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
     933             :                                              unsigned long addr,
     934             :                                              pte_t *ptep)
     935             : {
     936             :         /*
     937             :          * Get the current pte state, but zero it out to make it
     938             :          * non-present, preventing the hardware from asynchronously
     939             :          * updating it.
     940             :          */
     941             :         return ptep_get_and_clear(vma->vm_mm, addr, ptep);
     942             : }
     943             : 
     944             : static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
     945             :                                              unsigned long addr,
     946             :                                              pte_t *ptep, pte_t pte)
     947             : {
     948             :         /*
     949             :          * The pte is non-present, so there's no hardware state to
     950             :          * preserve.
     951             :          */
     952             :         set_pte_at(vma->vm_mm, addr, ptep, pte);
     953             : }
     954             : 
     955             : #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
     956             : /*
     957             :  * Start a pte protection read-modify-write transaction, which
     958             :  * protects against asynchronous hardware modifications to the pte.
     959             :  * The intention is not to prevent the hardware from making pte
     960             :  * updates, but to prevent any updates it may make from being lost.
     961             :  *
     962             :  * This does not protect against other software modifications of the
     963             :  * pte; the appropriate pte lock must be held over the transaction.
     964             :  *
     965             :  * Note that this interface is intended to be batchable, meaning that
     966             :  * ptep_modify_prot_commit may not actually update the pte, but merely
     967             :  * queue the update to be done at some later time.  The update must be
     968             :  * actually committed before the pte lock is released, however.
     969             :  */
     970             : static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
     971             :                                            unsigned long addr,
     972             :                                            pte_t *ptep)
     973             : {
     974             :         return __ptep_modify_prot_start(vma, addr, ptep);
     975             : }
     976             : 
     977             : /*
     978             :  * Commit an update to a pte, leaving any hardware-controlled bits in
     979             :  * the PTE unmodified.
     980             :  */
     981             : static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
     982             :                                            unsigned long addr,
     983             :                                            pte_t *ptep, pte_t old_pte, pte_t pte)
     984             : {
     985             :         __ptep_modify_prot_commit(vma, addr, ptep, pte);
     986             : }
     987             : #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
     988             : #endif /* CONFIG_MMU */
     989             : 
     990             : /*
     991             :  * No-op macros that just return the current protection value. Defined here
     992             :  * because these macros can be used even if CONFIG_MMU is not defined.
     993             :  */
     994             : 
     995             : #ifndef pgprot_nx
     996             : #define pgprot_nx(prot) (prot)
     997             : #endif
     998             : 
     999             : #ifndef pgprot_noncached
    1000             : #define pgprot_noncached(prot)  (prot)
    1001             : #endif
    1002             : 
    1003             : #ifndef pgprot_writecombine
    1004             : #define pgprot_writecombine pgprot_noncached
    1005             : #endif
    1006             : 
    1007             : #ifndef pgprot_writethrough
    1008             : #define pgprot_writethrough pgprot_noncached
    1009             : #endif
    1010             : 
    1011             : #ifndef pgprot_device
    1012             : #define pgprot_device pgprot_noncached
    1013             : #endif
    1014             : 
    1015             : #ifndef pgprot_mhp
    1016             : #define pgprot_mhp(prot)        (prot)
    1017             : #endif
    1018             : 
    1019             : #ifdef CONFIG_MMU
    1020             : #ifndef pgprot_modify
    1021             : #define pgprot_modify pgprot_modify
    1022             : static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
    1023             : {
    1024             :         if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
    1025             :                 newprot = pgprot_noncached(newprot);
    1026             :         if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
    1027             :                 newprot = pgprot_writecombine(newprot);
    1028             :         if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
    1029             :                 newprot = pgprot_device(newprot);
    1030             :         return newprot;
    1031             : }
    1032             : #endif
    1033             : #endif /* CONFIG_MMU */
    1034             : 
    1035             : #ifndef pgprot_encrypted
    1036             : #define pgprot_encrypted(prot)  (prot)
    1037             : #endif
    1038             : 
    1039             : #ifndef pgprot_decrypted
    1040             : #define pgprot_decrypted(prot)  (prot)
    1041             : #endif
    1042             : 
    1043             : /*
    1044             :  * A facility to provide lazy MMU batching.  This allows PTE updates and
    1045             :  * page invalidations to be delayed until a call to leave lazy MMU mode
    1046             :  * is issued.  Some architectures may benefit from doing this, and it is
    1047             :  * beneficial for both shadow and direct mode hypervisors, which may batch
    1048             :  * the PTE updates which happen during this window.  Note that using this
    1049             :  * interface requires that read hazards be removed from the code.  A read
    1050             :  * hazard could result in the direct mode hypervisor case, since the actual
    1051             :  * write to the page tables may not yet have taken place, so reads though
    1052             :  * a raw PTE pointer after it has been modified are not guaranteed to be
    1053             :  * up to date.  This mode can only be entered and left under the protection of
    1054             :  * the page table locks for all page tables which may be modified.  In the UP
    1055             :  * case, this is required so that preemption is disabled, and in the SMP case,
    1056             :  * it must synchronize the delayed page table writes properly on other CPUs.
    1057             :  */
    1058             : #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
    1059             : #define arch_enter_lazy_mmu_mode()      do {} while (0)
    1060             : #define arch_leave_lazy_mmu_mode()      do {} while (0)
    1061             : #define arch_flush_lazy_mmu_mode()      do {} while (0)
    1062             : #endif
    1063             : 
    1064             : /*
    1065             :  * A facility to provide batching of the reload of page tables and
    1066             :  * other process state with the actual context switch code for
    1067             :  * paravirtualized guests.  By convention, only one of the batched
    1068             :  * update (lazy) modes (CPU, MMU) should be active at any given time,
    1069             :  * entry should never be nested, and entry and exits should always be
    1070             :  * paired.  This is for sanity of maintaining and reasoning about the
    1071             :  * kernel code.  In this case, the exit (end of the context switch) is
    1072             :  * in architecture-specific code, and so doesn't need a generic
    1073             :  * definition.
    1074             :  */
    1075             : #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
    1076             : #define arch_start_context_switch(prev) do {} while (0)
    1077             : #endif
    1078             : 
    1079             : #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
    1080             : #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
    1081             : static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
    1082             : {
    1083             :         return pmd;
    1084             : }
    1085             : 
    1086             : static inline int pmd_swp_soft_dirty(pmd_t pmd)
    1087             : {
    1088             :         return 0;
    1089             : }
    1090             : 
    1091             : static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
    1092             : {
    1093             :         return pmd;
    1094             : }
    1095             : #endif
    1096             : #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
    1097             : static inline int pte_soft_dirty(pte_t pte)
    1098             : {
    1099             :         return 0;
    1100             : }
    1101             : 
    1102             : static inline int pmd_soft_dirty(pmd_t pmd)
    1103             : {
    1104             :         return 0;
    1105             : }
    1106             : 
    1107             : static inline pte_t pte_mksoft_dirty(pte_t pte)
    1108             : {
    1109             :         return pte;
    1110             : }
    1111             : 
    1112             : static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
    1113             : {
    1114             :         return pmd;
    1115             : }
    1116             : 
    1117             : static inline pte_t pte_clear_soft_dirty(pte_t pte)
    1118             : {
    1119             :         return pte;
    1120             : }
    1121             : 
    1122             : static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
    1123             : {
    1124             :         return pmd;
    1125             : }
    1126             : 
    1127             : static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
    1128             : {
    1129             :         return pte;
    1130             : }
    1131             : 
    1132             : static inline int pte_swp_soft_dirty(pte_t pte)
    1133             : {
    1134             :         return 0;
    1135             : }
    1136             : 
    1137             : static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
    1138             : {
    1139             :         return pte;
    1140             : }
    1141             : 
    1142             : static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
    1143             : {
    1144             :         return pmd;
    1145             : }
    1146             : 
    1147             : static inline int pmd_swp_soft_dirty(pmd_t pmd)
    1148             : {
    1149             :         return 0;
    1150             : }
    1151             : 
    1152             : static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
    1153             : {
    1154             :         return pmd;
    1155             : }
    1156             : #endif
    1157             : 
    1158             : #ifndef __HAVE_PFNMAP_TRACKING
    1159             : /*
    1160             :  * Interfaces that can be used by architecture code to keep track of
    1161             :  * memory type of pfn mappings specified by the remap_pfn_range,
    1162             :  * vmf_insert_pfn.
    1163             :  */
    1164             : 
    1165             : /*
    1166             :  * track_pfn_remap is called when a _new_ pfn mapping is being established
    1167             :  * by remap_pfn_range() for physical range indicated by pfn and size.
    1168             :  */
    1169             : static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
    1170             :                                   unsigned long pfn, unsigned long addr,
    1171             :                                   unsigned long size)
    1172             : {
    1173             :         return 0;
    1174             : }
    1175             : 
    1176             : /*
    1177             :  * track_pfn_insert is called when a _new_ single pfn is established
    1178             :  * by vmf_insert_pfn().
    1179             :  */
    1180             : static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
    1181             :                                     pfn_t pfn)
    1182             : {
    1183             : }
    1184             : 
    1185             : /*
    1186             :  * track_pfn_copy is called when vma that is covering the pfnmap gets
    1187             :  * copied through copy_page_range().
    1188             :  */
    1189             : static inline int track_pfn_copy(struct vm_area_struct *vma)
    1190             : {
    1191             :         return 0;
    1192             : }
    1193             : 
    1194             : /*
    1195             :  * untrack_pfn is called while unmapping a pfnmap for a region.
    1196             :  * untrack can be called for a specific region indicated by pfn and size or
    1197             :  * can be for the entire vma (in which case pfn, size are zero).
    1198             :  */
    1199             : static inline void untrack_pfn(struct vm_area_struct *vma,
    1200             :                                unsigned long pfn, unsigned long size,
    1201             :                                bool mm_wr_locked)
    1202             : {
    1203             : }
    1204             : 
    1205             : /*
    1206             :  * untrack_pfn_clear is called while mremapping a pfnmap for a new region
    1207             :  * or fails to copy pgtable during duplicate vm area.
    1208             :  */
    1209             : static inline void untrack_pfn_clear(struct vm_area_struct *vma)
    1210             : {
    1211             : }
    1212             : #else
    1213             : extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
    1214             :                            unsigned long pfn, unsigned long addr,
    1215             :                            unsigned long size);
    1216             : extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
    1217             :                              pfn_t pfn);
    1218             : extern int track_pfn_copy(struct vm_area_struct *vma);
    1219             : extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
    1220             :                         unsigned long size, bool mm_wr_locked);
    1221             : extern void untrack_pfn_clear(struct vm_area_struct *vma);
    1222             : #endif
    1223             : 
    1224             : #ifdef CONFIG_MMU
    1225             : #ifdef __HAVE_COLOR_ZERO_PAGE
    1226             : static inline int is_zero_pfn(unsigned long pfn)
    1227             : {
    1228             :         extern unsigned long zero_pfn;
    1229             :         unsigned long offset_from_zero_pfn = pfn - zero_pfn;
    1230             :         return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
    1231             : }
    1232             : 
    1233             : #define my_zero_pfn(addr)       page_to_pfn(ZERO_PAGE(addr))
    1234             : 
    1235             : #else
    1236             : static inline int is_zero_pfn(unsigned long pfn)
    1237             : {
    1238             :         extern unsigned long zero_pfn;
    1239             :         return pfn == zero_pfn;
    1240             : }
    1241             : 
    1242             : static inline unsigned long my_zero_pfn(unsigned long addr)
    1243             : {
    1244             :         extern unsigned long zero_pfn;
    1245             :         return zero_pfn;
    1246             : }
    1247             : #endif
    1248             : #else
    1249             : static inline int is_zero_pfn(unsigned long pfn)
    1250             : {
    1251             :         return 0;
    1252             : }
    1253             : 
    1254             : static inline unsigned long my_zero_pfn(unsigned long addr)
    1255             : {
    1256             :         return 0;
    1257             : }
    1258             : #endif /* CONFIG_MMU */
    1259             : 
    1260             : #ifdef CONFIG_MMU
    1261             : 
    1262             : #ifndef CONFIG_TRANSPARENT_HUGEPAGE
    1263             : static inline int pmd_trans_huge(pmd_t pmd)
    1264             : {
    1265             :         return 0;
    1266             : }
    1267             : #ifndef pmd_write
    1268             : static inline int pmd_write(pmd_t pmd)
    1269             : {
    1270             :         BUG();
    1271             :         return 0;
    1272             : }
    1273             : #endif /* pmd_write */
    1274             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
    1275             : 
    1276             : #ifndef pud_write
    1277             : static inline int pud_write(pud_t pud)
    1278             : {
    1279             :         BUG();
    1280             :         return 0;
    1281             : }
    1282             : #endif /* pud_write */
    1283             : 
    1284             : #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
    1285             : static inline int pmd_devmap(pmd_t pmd)
    1286             : {
    1287             :         return 0;
    1288             : }
    1289             : static inline int pud_devmap(pud_t pud)
    1290             : {
    1291             :         return 0;
    1292             : }
    1293             : static inline int pgd_devmap(pgd_t pgd)
    1294             : {
    1295             :         return 0;
    1296             : }
    1297             : #endif
    1298             : 
    1299             : #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
    1300             :         !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
    1301             : static inline int pud_trans_huge(pud_t pud)
    1302             : {
    1303             :         return 0;
    1304             : }
    1305             : #endif
    1306             : 
    1307             : static inline int pud_trans_unstable(pud_t *pud)
    1308             : {
    1309             : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
    1310             :         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
    1311             :         pud_t pudval = READ_ONCE(*pud);
    1312             : 
    1313             :         if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
    1314             :                 return 1;
    1315             :         if (unlikely(pud_bad(pudval))) {
    1316             :                 pud_clear_bad(pud);
    1317             :                 return 1;
    1318             :         }
    1319             : #endif
    1320             :         return 0;
    1321             : }
    1322             : 
    1323             : #ifndef CONFIG_NUMA_BALANCING
    1324             : /*
    1325             :  * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
    1326             :  * the only case the kernel cares is for NUMA balancing and is only ever set
    1327             :  * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
    1328             :  * _PAGE_PROTNONE so by default, implement the helper as "always no". It
    1329             :  * is the responsibility of the caller to distinguish between PROT_NONE
    1330             :  * protections and NUMA hinting fault protections.
    1331             :  */
    1332             : static inline int pte_protnone(pte_t pte)
    1333             : {
    1334             :         return 0;
    1335             : }
    1336             : 
    1337             : static inline int pmd_protnone(pmd_t pmd)
    1338             : {
    1339             :         return 0;
    1340             : }
    1341             : #endif /* CONFIG_NUMA_BALANCING */
    1342             : 
    1343             : #endif /* CONFIG_MMU */
    1344             : 
    1345             : #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
    1346             : 
    1347             : #ifndef __PAGETABLE_P4D_FOLDED
    1348             : int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
    1349             : void p4d_clear_huge(p4d_t *p4d);
    1350             : #else
    1351             : static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
    1352             : {
    1353             :         return 0;
    1354             : }
    1355             : static inline void p4d_clear_huge(p4d_t *p4d) { }
    1356             : #endif /* !__PAGETABLE_P4D_FOLDED */
    1357             : 
    1358             : int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
    1359             : int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
    1360             : int pud_clear_huge(pud_t *pud);
    1361             : int pmd_clear_huge(pmd_t *pmd);
    1362             : int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
    1363             : int pud_free_pmd_page(pud_t *pud, unsigned long addr);
    1364             : int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
    1365             : #else   /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
    1366             : static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
    1367             : {
    1368             :         return 0;
    1369             : }
    1370             : static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
    1371             : {
    1372             :         return 0;
    1373             : }
    1374             : static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
    1375             : {
    1376             :         return 0;
    1377             : }
    1378             : static inline void p4d_clear_huge(p4d_t *p4d) { }
    1379             : static inline int pud_clear_huge(pud_t *pud)
    1380             : {
    1381             :         return 0;
    1382             : }
    1383             : static inline int pmd_clear_huge(pmd_t *pmd)
    1384             : {
    1385             :         return 0;
    1386             : }
    1387             : static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
    1388             : {
    1389             :         return 0;
    1390             : }
    1391             : static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
    1392             : {
    1393             :         return 0;
    1394             : }
    1395             : static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
    1396             : {
    1397             :         return 0;
    1398             : }
    1399             : #endif  /* CONFIG_HAVE_ARCH_HUGE_VMAP */
    1400             : 
    1401             : #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
    1402             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    1403             : /*
    1404             :  * ARCHes with special requirements for evicting THP backing TLB entries can
    1405             :  * implement this. Otherwise also, it can help optimize normal TLB flush in
    1406             :  * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
    1407             :  * entire TLB if flush span is greater than a threshold, which will
    1408             :  * likely be true for a single huge page. Thus a single THP flush will
    1409             :  * invalidate the entire TLB which is not desirable.
    1410             :  * e.g. see arch/arc: flush_pmd_tlb_range
    1411             :  */
    1412             : #define flush_pmd_tlb_range(vma, addr, end)     flush_tlb_range(vma, addr, end)
    1413             : #define flush_pud_tlb_range(vma, addr, end)     flush_tlb_range(vma, addr, end)
    1414             : #else
    1415             : #define flush_pmd_tlb_range(vma, addr, end)     BUILD_BUG()
    1416             : #define flush_pud_tlb_range(vma, addr, end)     BUILD_BUG()
    1417             : #endif
    1418             : #endif
    1419             : 
    1420             : struct file;
    1421             : int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
    1422             :                         unsigned long size, pgprot_t *vma_prot);
    1423             : 
    1424             : #ifndef CONFIG_X86_ESPFIX64
    1425             : static inline void init_espfix_bsp(void) { }
    1426             : #endif
    1427             : 
    1428             : extern void __init pgtable_cache_init(void);
    1429             : 
    1430             : #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
    1431             : static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
    1432             : {
    1433             :         return true;
    1434             : }
    1435             : 
    1436             : static inline bool arch_has_pfn_modify_check(void)
    1437             : {
    1438             :         return false;
    1439             : }
    1440             : #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
    1441             : 
    1442             : /*
    1443             :  * Architecture PAGE_KERNEL_* fallbacks
    1444             :  *
    1445             :  * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
    1446             :  * because they really don't support them, or the port needs to be updated to
    1447             :  * reflect the required functionality. Below are a set of relatively safe
    1448             :  * fallbacks, as best effort, which we can count on in lieu of the architectures
    1449             :  * not defining them on their own yet.
    1450             :  */
    1451             : 
    1452             : #ifndef PAGE_KERNEL_RO
    1453             : # define PAGE_KERNEL_RO PAGE_KERNEL
    1454             : #endif
    1455             : 
    1456             : #ifndef PAGE_KERNEL_EXEC
    1457             : # define PAGE_KERNEL_EXEC PAGE_KERNEL
    1458             : #endif
    1459             : 
    1460             : /*
    1461             :  * Page Table Modification bits for pgtbl_mod_mask.
    1462             :  *
    1463             :  * These are used by the p?d_alloc_track*() set of functions an in the generic
    1464             :  * vmalloc/ioremap code to track at which page-table levels entries have been
    1465             :  * modified. Based on that the code can better decide when vmalloc and ioremap
    1466             :  * mapping changes need to be synchronized to other page-tables in the system.
    1467             :  */
    1468             : #define         __PGTBL_PGD_MODIFIED    0
    1469             : #define         __PGTBL_P4D_MODIFIED    1
    1470             : #define         __PGTBL_PUD_MODIFIED    2
    1471             : #define         __PGTBL_PMD_MODIFIED    3
    1472             : #define         __PGTBL_PTE_MODIFIED    4
    1473             : 
    1474             : #define         PGTBL_PGD_MODIFIED      BIT(__PGTBL_PGD_MODIFIED)
    1475             : #define         PGTBL_P4D_MODIFIED      BIT(__PGTBL_P4D_MODIFIED)
    1476             : #define         PGTBL_PUD_MODIFIED      BIT(__PGTBL_PUD_MODIFIED)
    1477             : #define         PGTBL_PMD_MODIFIED      BIT(__PGTBL_PMD_MODIFIED)
    1478             : #define         PGTBL_PTE_MODIFIED      BIT(__PGTBL_PTE_MODIFIED)
    1479             : 
    1480             : /* Page-Table Modification Mask */
    1481             : typedef unsigned int pgtbl_mod_mask;
    1482             : 
    1483             : #endif /* !__ASSEMBLY__ */
    1484             : 
    1485             : #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
    1486             : #ifdef CONFIG_PHYS_ADDR_T_64BIT
    1487             : /*
    1488             :  * ZSMALLOC needs to know the highest PFN on 32-bit architectures
    1489             :  * with physical address space extension, but falls back to
    1490             :  * BITS_PER_LONG otherwise.
    1491             :  */
    1492             : #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
    1493             : #else
    1494             : #define MAX_POSSIBLE_PHYSMEM_BITS 32
    1495             : #endif
    1496             : #endif
    1497             : 
    1498             : #ifndef has_transparent_hugepage
    1499             : #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
    1500             : #endif
    1501             : 
    1502             : /*
    1503             :  * On some architectures it depends on the mm if the p4d/pud or pmd
    1504             :  * layer of the page table hierarchy is folded or not.
    1505             :  */
    1506             : #ifndef mm_p4d_folded
    1507             : #define mm_p4d_folded(mm)       __is_defined(__PAGETABLE_P4D_FOLDED)
    1508             : #endif
    1509             : 
    1510             : #ifndef mm_pud_folded
    1511             : #define mm_pud_folded(mm)       __is_defined(__PAGETABLE_PUD_FOLDED)
    1512             : #endif
    1513             : 
    1514             : #ifndef mm_pmd_folded
    1515             : #define mm_pmd_folded(mm)       __is_defined(__PAGETABLE_PMD_FOLDED)
    1516             : #endif
    1517             : 
    1518             : #ifndef p4d_offset_lockless
    1519             : #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
    1520             : #endif
    1521             : #ifndef pud_offset_lockless
    1522             : #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
    1523             : #endif
    1524             : #ifndef pmd_offset_lockless
    1525             : #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
    1526             : #endif
    1527             : 
    1528             : /*
    1529             :  * p?d_leaf() - true if this entry is a final mapping to a physical address.
    1530             :  * This differs from p?d_huge() by the fact that they are always available (if
    1531             :  * the architecture supports large pages at the appropriate level) even
    1532             :  * if CONFIG_HUGETLB_PAGE is not defined.
    1533             :  * Only meaningful when called on a valid entry.
    1534             :  */
    1535             : #ifndef pgd_leaf
    1536             : #define pgd_leaf(x)     0
    1537             : #endif
    1538             : #ifndef p4d_leaf
    1539             : #define p4d_leaf(x)     0
    1540             : #endif
    1541             : #ifndef pud_leaf
    1542             : #define pud_leaf(x)     0
    1543             : #endif
    1544             : #ifndef pmd_leaf
    1545             : #define pmd_leaf(x)     0
    1546             : #endif
    1547             : 
    1548             : #ifndef pgd_leaf_size
    1549             : #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
    1550             : #endif
    1551             : #ifndef p4d_leaf_size
    1552             : #define p4d_leaf_size(x) P4D_SIZE
    1553             : #endif
    1554             : #ifndef pud_leaf_size
    1555             : #define pud_leaf_size(x) PUD_SIZE
    1556             : #endif
    1557             : #ifndef pmd_leaf_size
    1558             : #define pmd_leaf_size(x) PMD_SIZE
    1559             : #endif
    1560             : #ifndef pte_leaf_size
    1561             : #define pte_leaf_size(x) PAGE_SIZE
    1562             : #endif
    1563             : 
    1564             : /*
    1565             :  * Some architectures have MMUs that are configurable or selectable at boot
    1566             :  * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
    1567             :  * helps to have a static maximum value.
    1568             :  */
    1569             : 
    1570             : #ifndef MAX_PTRS_PER_PTE
    1571             : #define MAX_PTRS_PER_PTE PTRS_PER_PTE
    1572             : #endif
    1573             : 
    1574             : #ifndef MAX_PTRS_PER_PMD
    1575             : #define MAX_PTRS_PER_PMD PTRS_PER_PMD
    1576             : #endif
    1577             : 
    1578             : #ifndef MAX_PTRS_PER_PUD
    1579             : #define MAX_PTRS_PER_PUD PTRS_PER_PUD
    1580             : #endif
    1581             : 
    1582             : #ifndef MAX_PTRS_PER_P4D
    1583             : #define MAX_PTRS_PER_P4D PTRS_PER_P4D
    1584             : #endif
    1585             : 
    1586             : /* description of effects of mapping type and prot in current implementation.
    1587             :  * this is due to the limited x86 page protection hardware.  The expected
    1588             :  * behavior is in parens:
    1589             :  *
    1590             :  * map_type     prot
    1591             :  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
    1592             :  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
    1593             :  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
    1594             :  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
    1595             :  *
    1596             :  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
    1597             :  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
    1598             :  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
    1599             :  *
    1600             :  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
    1601             :  * MAP_PRIVATE (with Enhanced PAN supported):
    1602             :  *                                                              r: (no) no
    1603             :  *                                                              w: (no) no
    1604             :  *                                                              x: (yes) yes
    1605             :  */
    1606             : #define DECLARE_VM_GET_PAGE_PROT                                        \
    1607             : pgprot_t vm_get_page_prot(unsigned long vm_flags)                       \
    1608             : {                                                                       \
    1609             :                 return protection_map[vm_flags &                    \
    1610             :                         (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)];    \
    1611             : }                                                                       \
    1612             : EXPORT_SYMBOL(vm_get_page_prot);
    1613             : 
    1614             : #endif /* _LINUX_PGTABLE_H */

Generated by: LCOV version 1.14