Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * Copyright (C) 2007 Oracle. All rights reserved.
4 : */
5 :
6 : #include <linux/fs.h>
7 : #include <linux/blkdev.h>
8 : #include <linux/radix-tree.h>
9 : #include <linux/writeback.h>
10 : #include <linux/workqueue.h>
11 : #include <linux/kthread.h>
12 : #include <linux/slab.h>
13 : #include <linux/migrate.h>
14 : #include <linux/ratelimit.h>
15 : #include <linux/uuid.h>
16 : #include <linux/semaphore.h>
17 : #include <linux/error-injection.h>
18 : #include <linux/crc32c.h>
19 : #include <linux/sched/mm.h>
20 : #include <asm/unaligned.h>
21 : #include <crypto/hash.h>
22 : #include "ctree.h"
23 : #include "disk-io.h"
24 : #include "transaction.h"
25 : #include "btrfs_inode.h"
26 : #include "bio.h"
27 : #include "print-tree.h"
28 : #include "locking.h"
29 : #include "tree-log.h"
30 : #include "free-space-cache.h"
31 : #include "free-space-tree.h"
32 : #include "check-integrity.h"
33 : #include "rcu-string.h"
34 : #include "dev-replace.h"
35 : #include "raid56.h"
36 : #include "sysfs.h"
37 : #include "qgroup.h"
38 : #include "compression.h"
39 : #include "tree-checker.h"
40 : #include "ref-verify.h"
41 : #include "block-group.h"
42 : #include "discard.h"
43 : #include "space-info.h"
44 : #include "zoned.h"
45 : #include "subpage.h"
46 : #include "fs.h"
47 : #include "accessors.h"
48 : #include "extent-tree.h"
49 : #include "root-tree.h"
50 : #include "defrag.h"
51 : #include "uuid-tree.h"
52 : #include "relocation.h"
53 : #include "scrub.h"
54 : #include "super.h"
55 :
56 : #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
57 : BTRFS_HEADER_FLAG_RELOC |\
58 : BTRFS_SUPER_FLAG_ERROR |\
59 : BTRFS_SUPER_FLAG_SEEDING |\
60 : BTRFS_SUPER_FLAG_METADUMP |\
61 : BTRFS_SUPER_FLAG_METADUMP_V2)
62 :
63 : static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 : static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65 :
66 3472 : static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
67 : {
68 3472 : if (fs_info->csum_shash)
69 3242 : crypto_free_shash(fs_info->csum_shash);
70 3472 : }
71 :
72 : /*
73 : * Compute the csum of a btree block and store the result to provided buffer.
74 : */
75 8981356 : static void csum_tree_block(struct extent_buffer *buf, u8 *result)
76 : {
77 8981356 : struct btrfs_fs_info *fs_info = buf->fs_info;
78 8981356 : const int num_pages = num_extent_pages(buf);
79 8981356 : const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
80 8981356 : SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
81 8981356 : char *kaddr;
82 8981356 : int i;
83 :
84 8981356 : shash->tfm = fs_info->csum_shash;
85 8981356 : crypto_shash_init(shash);
86 8981341 : kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
87 8981341 : crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
88 8981341 : first_page_part - BTRFS_CSUM_SIZE);
89 :
90 43932279 : for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
91 25969594 : kaddr = page_address(buf->pages[i]);
92 25969594 : crypto_shash_update(shash, kaddr, PAGE_SIZE);
93 : }
94 8981344 : memset(result, 0, BTRFS_CSUM_SIZE);
95 8981344 : crypto_shash_final(shash, result);
96 8981364 : }
97 :
98 : /*
99 : * we can't consider a given block up to date unless the transid of the
100 : * block matches the transid in the parent node's pointer. This is how we
101 : * detect blocks that either didn't get written at all or got written
102 : * in the wrong place.
103 : */
104 546259285 : int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
105 : {
106 1092518570 : if (!extent_buffer_uptodate(eb))
107 : return 0;
108 :
109 546249351 : if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
110 : return 1;
111 :
112 0 : if (atomic)
113 : return -EAGAIN;
114 :
115 0 : if (!extent_buffer_uptodate(eb) ||
116 : btrfs_header_generation(eb) != parent_transid) {
117 0 : btrfs_err_rl(eb->fs_info,
118 : "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
119 : eb->start, eb->read_mirror,
120 : parent_transid, btrfs_header_generation(eb));
121 0 : clear_extent_buffer_uptodate(eb);
122 0 : return 0;
123 : }
124 : return 1;
125 : }
126 :
127 : static bool btrfs_supported_super_csum(u16 csum_type)
128 : {
129 442595 : switch (csum_type) {
130 : case BTRFS_CSUM_TYPE_CRC32:
131 : case BTRFS_CSUM_TYPE_XXHASH:
132 : case BTRFS_CSUM_TYPE_SHA256:
133 : case BTRFS_CSUM_TYPE_BLAKE2:
134 : return true;
135 : default:
136 0 : return false;
137 : }
138 : }
139 :
140 : /*
141 : * Return 0 if the superblock checksum type matches the checksum value of that
142 : * algorithm. Pass the raw disk superblock data.
143 : */
144 3294 : int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
145 : const struct btrfs_super_block *disk_sb)
146 : {
147 3294 : char result[BTRFS_CSUM_SIZE];
148 3294 : SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
149 :
150 3294 : shash->tfm = fs_info->csum_shash;
151 :
152 : /*
153 : * The super_block structure does not span the whole
154 : * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
155 : * filled with zeros and is included in the checksum.
156 : */
157 3294 : crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
158 : BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
159 :
160 6588 : if (memcmp(disk_sb->csum, result, fs_info->csum_size))
161 0 : return 1;
162 :
163 : return 0;
164 : }
165 :
166 0 : static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
167 : int mirror_num)
168 : {
169 0 : struct btrfs_fs_info *fs_info = eb->fs_info;
170 0 : int i, num_pages = num_extent_pages(eb);
171 0 : int ret = 0;
172 :
173 0 : if (sb_rdonly(fs_info->sb))
174 : return -EROFS;
175 :
176 0 : for (i = 0; i < num_pages; i++) {
177 0 : struct page *p = eb->pages[i];
178 0 : u64 start = max_t(u64, eb->start, page_offset(p));
179 0 : u64 end = min_t(u64, eb->start + eb->len, page_offset(p) + PAGE_SIZE);
180 0 : u32 len = end - start;
181 :
182 0 : ret = btrfs_repair_io_failure(fs_info, 0, start, len,
183 : start, p, offset_in_page(start), mirror_num);
184 0 : if (ret)
185 : break;
186 : }
187 :
188 : return ret;
189 : }
190 :
191 : /*
192 : * helper to read a given tree block, doing retries as required when
193 : * the checksums don't match and we have alternate mirrors to try.
194 : *
195 : * @check: expected tree parentness check, see the comments of the
196 : * structure for details.
197 : */
198 23661365 : int btrfs_read_extent_buffer(struct extent_buffer *eb,
199 : struct btrfs_tree_parent_check *check)
200 : {
201 23661365 : struct btrfs_fs_info *fs_info = eb->fs_info;
202 23661365 : int failed = 0;
203 23661365 : int ret;
204 23661365 : int num_copies = 0;
205 23661365 : int mirror_num = 0;
206 23661365 : int failed_mirror = 0;
207 :
208 23661367 : ASSERT(check);
209 :
210 23661367 : while (1) {
211 23661367 : clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
212 23661893 : ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
213 23661486 : if (!ret)
214 : break;
215 :
216 4 : num_copies = btrfs_num_copies(fs_info,
217 4 : eb->start, eb->len);
218 4 : if (num_copies == 1)
219 : break;
220 :
221 3 : if (!failed_mirror) {
222 3 : failed = 1;
223 3 : failed_mirror = eb->read_mirror;
224 : }
225 :
226 3 : mirror_num++;
227 3 : if (mirror_num == failed_mirror)
228 0 : mirror_num++;
229 :
230 3 : if (mirror_num > num_copies)
231 : break;
232 : }
233 :
234 23661484 : if (failed && !ret && failed_mirror)
235 0 : btrfs_repair_eb_io_failure(eb, failed_mirror);
236 :
237 23661484 : return ret;
238 : }
239 :
240 : /*
241 : * Checksum a dirty tree block before IO.
242 : */
243 8882027 : blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
244 : {
245 8882027 : struct extent_buffer *eb = bbio->private;
246 8882027 : struct btrfs_fs_info *fs_info = eb->fs_info;
247 8882027 : u64 found_start = btrfs_header_bytenr(eb);
248 8882027 : u8 result[BTRFS_CSUM_SIZE];
249 8882027 : int ret;
250 :
251 : /* Btree blocks are always contiguous on disk. */
252 8882027 : if (WARN_ON_ONCE(bbio->file_offset != eb->start))
253 : return BLK_STS_IOERR;
254 8882027 : if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
255 : return BLK_STS_IOERR;
256 :
257 17764054 : if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
258 0 : WARN_ON_ONCE(found_start != 0);
259 : return BLK_STS_OK;
260 : }
261 :
262 8882027 : if (WARN_ON_ONCE(found_start != eb->start))
263 : return BLK_STS_IOERR;
264 8882027 : if (WARN_ON(!btrfs_page_test_uptodate(fs_info, eb->pages[0], eb->start,
265 : eb->len)))
266 : return BLK_STS_IOERR;
267 :
268 8882005 : ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
269 : offsetof(struct btrfs_header, fsid),
270 : BTRFS_FSID_SIZE) == 0);
271 8881979 : csum_tree_block(eb, result);
272 :
273 8881976 : if (btrfs_header_level(eb))
274 879548 : ret = btrfs_check_node(eb);
275 : else
276 8002428 : ret = btrfs_check_leaf(eb);
277 :
278 8882098 : if (ret < 0)
279 0 : goto error;
280 :
281 : /*
282 : * Also check the generation, the eb reached here must be newer than
283 : * last committed. Or something seriously wrong happened.
284 : */
285 8882098 : if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
286 0 : ret = -EUCLEAN;
287 0 : btrfs_err(fs_info,
288 : "block=%llu bad generation, have %llu expect > %llu",
289 : eb->start, btrfs_header_generation(eb),
290 : fs_info->last_trans_committed);
291 0 : goto error;
292 : }
293 8882098 : write_extent_buffer(eb, result, 0, fs_info->csum_size);
294 8882098 : return BLK_STS_OK;
295 :
296 0 : error:
297 0 : btrfs_print_tree(eb, 0);
298 0 : btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
299 : eb->start);
300 : /*
301 : * Be noisy if this is an extent buffer from a log tree. We don't abort
302 : * a transaction in case there's a bad log tree extent buffer, we just
303 : * fallback to a transaction commit. Still we want to know when there is
304 : * a bad log tree extent buffer, as that may signal a bug somewhere.
305 : */
306 0 : WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
307 : btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
308 0 : return errno_to_blk_status(ret);
309 : }
310 :
311 99359 : static bool check_tree_block_fsid(struct extent_buffer *eb)
312 : {
313 99359 : struct btrfs_fs_info *fs_info = eb->fs_info;
314 99359 : struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
315 99359 : u8 fsid[BTRFS_FSID_SIZE];
316 99359 : u8 *metadata_uuid;
317 :
318 99359 : read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
319 : BTRFS_FSID_SIZE);
320 : /*
321 : * Checking the incompat flag is only valid for the current fs. For
322 : * seed devices it's forbidden to have their uuid changed so reading
323 : * ->fsid in this case is fine
324 : */
325 99359 : if (btrfs_fs_incompat(fs_info, METADATA_UUID))
326 0 : metadata_uuid = fs_devices->metadata_uuid;
327 : else
328 99359 : metadata_uuid = fs_devices->fsid;
329 :
330 198718 : if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
331 : return false;
332 :
333 0 : list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
334 0 : if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
335 : return false;
336 :
337 : return true;
338 : }
339 :
340 : /* Do basic extent buffer checks at read time */
341 99359 : int btrfs_validate_extent_buffer(struct extent_buffer *eb,
342 : struct btrfs_tree_parent_check *check)
343 : {
344 99359 : struct btrfs_fs_info *fs_info = eb->fs_info;
345 99359 : u64 found_start;
346 99359 : const u32 csum_size = fs_info->csum_size;
347 99359 : u8 found_level;
348 99359 : u8 result[BTRFS_CSUM_SIZE];
349 99359 : const u8 *header_csum;
350 99359 : int ret = 0;
351 :
352 99359 : ASSERT(check);
353 :
354 99359 : found_start = btrfs_header_bytenr(eb);
355 99359 : if (found_start != eb->start) {
356 0 : btrfs_err_rl(fs_info,
357 : "bad tree block start, mirror %u want %llu have %llu",
358 : eb->read_mirror, eb->start, found_start);
359 0 : ret = -EIO;
360 0 : goto out;
361 : }
362 99359 : if (check_tree_block_fsid(eb)) {
363 0 : btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
364 : eb->start, eb->read_mirror);
365 0 : ret = -EIO;
366 0 : goto out;
367 : }
368 99356 : found_level = btrfs_header_level(eb);
369 99356 : if (found_level >= BTRFS_MAX_LEVEL) {
370 0 : btrfs_err(fs_info,
371 : "bad tree block level, mirror %u level %d on logical %llu",
372 : eb->read_mirror, btrfs_header_level(eb), eb->start);
373 0 : ret = -EIO;
374 0 : goto out;
375 : }
376 :
377 99356 : csum_tree_block(eb, result);
378 99357 : header_csum = page_address(eb->pages[0]) +
379 : get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
380 :
381 198714 : if (memcmp(result, header_csum, csum_size) != 0) {
382 1 : btrfs_warn_rl(fs_info,
383 : "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
384 : eb->start, eb->read_mirror,
385 : CSUM_FMT_VALUE(csum_size, header_csum),
386 : CSUM_FMT_VALUE(csum_size, result),
387 : btrfs_header_level(eb));
388 1 : ret = -EUCLEAN;
389 1 : goto out;
390 : }
391 :
392 99356 : if (found_level != check->level) {
393 0 : btrfs_err(fs_info,
394 : "level verify failed on logical %llu mirror %u wanted %u found %u",
395 : eb->start, eb->read_mirror, check->level, found_level);
396 0 : ret = -EIO;
397 0 : goto out;
398 : }
399 99356 : if (unlikely(check->transid &&
400 : btrfs_header_generation(eb) != check->transid)) {
401 0 : btrfs_err_rl(eb->fs_info,
402 : "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
403 : eb->start, eb->read_mirror, check->transid,
404 : btrfs_header_generation(eb));
405 0 : ret = -EIO;
406 0 : goto out;
407 : }
408 99356 : if (check->has_first_key) {
409 51775 : struct btrfs_key *expect_key = &check->first_key;
410 51775 : struct btrfs_key found_key;
411 :
412 51775 : if (found_level)
413 210 : btrfs_node_key_to_cpu(eb, &found_key, 0);
414 : else
415 51565 : btrfs_item_key_to_cpu(eb, &found_key, 0);
416 51775 : if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
417 0 : btrfs_err(fs_info,
418 : "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
419 : eb->start, check->transid,
420 : expect_key->objectid,
421 : expect_key->type, expect_key->offset,
422 : found_key.objectid, found_key.type,
423 : found_key.offset);
424 0 : ret = -EUCLEAN;
425 0 : goto out;
426 : }
427 : }
428 99356 : if (check->owner_root) {
429 89869 : ret = btrfs_check_eb_owner(eb, check->owner_root);
430 89869 : if (ret < 0)
431 0 : goto out;
432 : }
433 :
434 : /*
435 : * If this is a leaf block and it is corrupt, set the corrupt bit so
436 : * that we don't try and read the other copies of this block, just
437 : * return -EIO.
438 : */
439 99356 : if (found_level == 0 && btrfs_check_leaf(eb)) {
440 0 : set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
441 0 : ret = -EIO;
442 : }
443 :
444 99358 : if (found_level > 0 && btrfs_check_node(eb))
445 : ret = -EIO;
446 :
447 99358 : if (ret)
448 0 : btrfs_err(fs_info,
449 : "read time tree block corruption detected on logical %llu mirror %u",
450 : eb->start, eb->read_mirror);
451 99358 : out:
452 99359 : return ret;
453 : }
454 :
455 : #ifdef CONFIG_MIGRATION
456 28116655 : static int btree_migrate_folio(struct address_space *mapping,
457 : struct folio *dst, struct folio *src, enum migrate_mode mode)
458 : {
459 : /*
460 : * we can't safely write a btree page from here,
461 : * we haven't done the locking hook
462 : */
463 28116655 : if (folio_test_dirty(src))
464 : return -EAGAIN;
465 : /*
466 : * Buffers may be managed in a filesystem specific way.
467 : * We must have no buffers or drop them.
468 : */
469 4814689 : if (folio_get_private(src) &&
470 940783 : !filemap_release_folio(src, GFP_KERNEL))
471 : return -EAGAIN;
472 3768482 : return migrate_folio(mapping, dst, src, mode);
473 : }
474 : #else
475 : #define btree_migrate_folio NULL
476 : #endif
477 :
478 2323720 : static int btree_writepages(struct address_space *mapping,
479 : struct writeback_control *wbc)
480 : {
481 2323720 : struct btrfs_fs_info *fs_info;
482 2323720 : int ret;
483 :
484 2323720 : if (wbc->sync_mode == WB_SYNC_NONE) {
485 :
486 43579 : if (wbc->for_kupdate)
487 : return 0;
488 :
489 42818 : fs_info = BTRFS_I(mapping->host)->root->fs_info;
490 : /* this is a bit racy, but that's ok */
491 42818 : ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
492 : BTRFS_DIRTY_METADATA_THRESH,
493 : fs_info->dirty_metadata_batch);
494 42815 : if (ret < 0)
495 : return 0;
496 : }
497 2280214 : return btree_write_cache_pages(mapping, wbc);
498 : }
499 :
500 3237570 : static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
501 : {
502 6475140 : if (folio_test_writeback(folio) || folio_test_dirty(folio))
503 0 : return false;
504 :
505 3237570 : return try_release_extent_buffer(&folio->page);
506 : }
507 :
508 34505 : static void btree_invalidate_folio(struct folio *folio, size_t offset,
509 : size_t length)
510 : {
511 34505 : struct extent_io_tree *tree;
512 34505 : tree = &BTRFS_I(folio->mapping->host)->io_tree;
513 34505 : extent_invalidate_folio(tree, folio, offset);
514 34505 : btree_release_folio(folio, GFP_NOFS);
515 34505 : if (folio_get_private(folio)) {
516 0 : btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
517 : "folio private not zero on folio %llu",
518 : (unsigned long long)folio_pos(folio));
519 0 : folio_detach_private(folio);
520 : }
521 34505 : }
522 :
523 : #ifdef DEBUG
524 : static bool btree_dirty_folio(struct address_space *mapping,
525 : struct folio *folio)
526 : {
527 : struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
528 : struct btrfs_subpage *subpage;
529 : struct extent_buffer *eb;
530 : int cur_bit = 0;
531 : u64 page_start = folio_pos(folio);
532 :
533 : if (fs_info->sectorsize == PAGE_SIZE) {
534 : eb = folio_get_private(folio);
535 : BUG_ON(!eb);
536 : BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
537 : BUG_ON(!atomic_read(&eb->refs));
538 : btrfs_assert_tree_write_locked(eb);
539 : return filemap_dirty_folio(mapping, folio);
540 : }
541 : subpage = folio_get_private(folio);
542 :
543 : ASSERT(subpage->dirty_bitmap);
544 : while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
545 : unsigned long flags;
546 : u64 cur;
547 : u16 tmp = (1 << cur_bit);
548 :
549 : spin_lock_irqsave(&subpage->lock, flags);
550 : if (!(tmp & subpage->dirty_bitmap)) {
551 : spin_unlock_irqrestore(&subpage->lock, flags);
552 : cur_bit++;
553 : continue;
554 : }
555 : spin_unlock_irqrestore(&subpage->lock, flags);
556 : cur = page_start + cur_bit * fs_info->sectorsize;
557 :
558 : eb = find_extent_buffer(fs_info, cur);
559 : ASSERT(eb);
560 : ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
561 : ASSERT(atomic_read(&eb->refs));
562 : btrfs_assert_tree_write_locked(eb);
563 : free_extent_buffer(eb);
564 :
565 : cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
566 : }
567 : return filemap_dirty_folio(mapping, folio);
568 : }
569 : #else
570 : #define btree_dirty_folio filemap_dirty_folio
571 : #endif
572 :
573 : static const struct address_space_operations btree_aops = {
574 : .writepages = btree_writepages,
575 : .release_folio = btree_release_folio,
576 : .invalidate_folio = btree_invalidate_folio,
577 : .migrate_folio = btree_migrate_folio,
578 : .dirty_folio = btree_dirty_folio,
579 : };
580 :
581 22032735 : struct extent_buffer *btrfs_find_create_tree_block(
582 : struct btrfs_fs_info *fs_info,
583 : u64 bytenr, u64 owner_root,
584 : int level)
585 : {
586 45664039 : if (btrfs_is_testing(fs_info))
587 : return alloc_test_extent_buffer(fs_info, bytenr);
588 22032735 : return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
589 : }
590 :
591 : /*
592 : * Read tree block at logical address @bytenr and do variant basic but critical
593 : * verification.
594 : *
595 : * @check: expected tree parentness check, see comments of the
596 : * structure for details.
597 : */
598 23631304 : struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
599 : struct btrfs_tree_parent_check *check)
600 : {
601 23631304 : struct extent_buffer *buf = NULL;
602 23631304 : int ret;
603 :
604 23631304 : ASSERT(check);
605 :
606 23631304 : buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
607 23631304 : check->level);
608 23632280 : if (IS_ERR(buf))
609 : return buf;
610 :
611 23632280 : ret = btrfs_read_extent_buffer(buf, check);
612 23631978 : if (ret) {
613 1 : free_extent_buffer_stale(buf);
614 1 : return ERR_PTR(ret);
615 : }
616 23631977 : if (btrfs_check_eb_owner(buf, check->owner_root)) {
617 0 : free_extent_buffer_stale(buf);
618 0 : return ERR_PTR(-EUCLEAN);
619 : }
620 : return buf;
621 :
622 : }
623 :
624 67274 : static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
625 : u64 objectid)
626 : {
627 67274 : bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
628 :
629 67274 : memset(&root->root_key, 0, sizeof(root->root_key));
630 67274 : memset(&root->root_item, 0, sizeof(root->root_item));
631 67274 : memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
632 67274 : root->fs_info = fs_info;
633 67274 : root->root_key.objectid = objectid;
634 67274 : root->node = NULL;
635 67274 : root->commit_root = NULL;
636 67274 : root->state = 0;
637 67274 : RB_CLEAR_NODE(&root->rb_node);
638 :
639 67274 : root->last_trans = 0;
640 67274 : root->free_objectid = 0;
641 67274 : root->nr_delalloc_inodes = 0;
642 67274 : root->nr_ordered_extents = 0;
643 67274 : root->inode_tree = RB_ROOT;
644 67274 : INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
645 :
646 67274 : btrfs_init_root_block_rsv(root);
647 :
648 67274 : INIT_LIST_HEAD(&root->dirty_list);
649 67274 : INIT_LIST_HEAD(&root->root_list);
650 67274 : INIT_LIST_HEAD(&root->delalloc_inodes);
651 67274 : INIT_LIST_HEAD(&root->delalloc_root);
652 67274 : INIT_LIST_HEAD(&root->ordered_extents);
653 67274 : INIT_LIST_HEAD(&root->ordered_root);
654 67274 : INIT_LIST_HEAD(&root->reloc_dirty_list);
655 67274 : INIT_LIST_HEAD(&root->logged_list[0]);
656 67274 : INIT_LIST_HEAD(&root->logged_list[1]);
657 67274 : spin_lock_init(&root->inode_lock);
658 67274 : spin_lock_init(&root->delalloc_lock);
659 67274 : spin_lock_init(&root->ordered_extent_lock);
660 67274 : spin_lock_init(&root->accounting_lock);
661 67274 : spin_lock_init(&root->log_extents_lock[0]);
662 67274 : spin_lock_init(&root->log_extents_lock[1]);
663 67274 : spin_lock_init(&root->qgroup_meta_rsv_lock);
664 67274 : mutex_init(&root->objectid_mutex);
665 67274 : mutex_init(&root->log_mutex);
666 67274 : mutex_init(&root->ordered_extent_mutex);
667 67274 : mutex_init(&root->delalloc_mutex);
668 67274 : init_waitqueue_head(&root->qgroup_flush_wait);
669 67274 : init_waitqueue_head(&root->log_writer_wait);
670 67274 : init_waitqueue_head(&root->log_commit_wait[0]);
671 67274 : init_waitqueue_head(&root->log_commit_wait[1]);
672 67274 : INIT_LIST_HEAD(&root->log_ctxs[0]);
673 67274 : INIT_LIST_HEAD(&root->log_ctxs[1]);
674 67274 : atomic_set(&root->log_commit[0], 0);
675 67274 : atomic_set(&root->log_commit[1], 0);
676 67274 : atomic_set(&root->log_writers, 0);
677 67274 : atomic_set(&root->log_batch, 0);
678 67274 : refcount_set(&root->refs, 1);
679 67274 : atomic_set(&root->snapshot_force_cow, 0);
680 67274 : atomic_set(&root->nr_swapfiles, 0);
681 67274 : root->log_transid = 0;
682 67274 : root->log_transid_committed = -1;
683 67274 : root->last_log_commit = 0;
684 67274 : root->anon_dev = 0;
685 67274 : if (!dummy) {
686 67274 : extent_io_tree_init(fs_info, &root->dirty_log_pages,
687 : IO_TREE_ROOT_DIRTY_LOG_PAGES);
688 67274 : extent_io_tree_init(fs_info, &root->log_csum_range,
689 : IO_TREE_LOG_CSUM_RANGE);
690 : }
691 :
692 67274 : spin_lock_init(&root->root_item_lock);
693 67274 : btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
694 : #ifdef CONFIG_BTRFS_DEBUG
695 : INIT_LIST_HEAD(&root->leak_list);
696 : spin_lock(&fs_info->fs_roots_radix_lock);
697 : list_add_tail(&root->leak_list, &fs_info->allocated_roots);
698 : spin_unlock(&fs_info->fs_roots_radix_lock);
699 : #endif
700 67273 : }
701 :
702 67274 : static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
703 : u64 objectid, gfp_t flags)
704 : {
705 67274 : struct btrfs_root *root = kzalloc(sizeof(*root), flags);
706 67274 : if (root)
707 67274 : __setup_root(root, fs_info, objectid);
708 67274 : return root;
709 : }
710 :
711 : #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
712 : /* Should only be used by the testing infrastructure */
713 : struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
714 : {
715 : struct btrfs_root *root;
716 :
717 : if (!fs_info)
718 : return ERR_PTR(-EINVAL);
719 :
720 : root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
721 : if (!root)
722 : return ERR_PTR(-ENOMEM);
723 :
724 : /* We don't use the stripesize in selftest, set it as sectorsize */
725 : root->alloc_bytenr = 0;
726 :
727 : return root;
728 : }
729 : #endif
730 :
731 : static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
732 : {
733 9637 : const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
734 9637 : const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
735 :
736 9637 : return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
737 : }
738 :
739 : static int global_root_key_cmp(const void *k, const struct rb_node *node)
740 : {
741 345631383 : const struct btrfs_key *key = k;
742 345631383 : const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
743 :
744 345631383 : return btrfs_comp_cpu_keys(key, &root->root_key);
745 : }
746 :
747 9641 : int btrfs_global_root_insert(struct btrfs_root *root)
748 : {
749 9641 : struct btrfs_fs_info *fs_info = root->fs_info;
750 9641 : struct rb_node *tmp;
751 9641 : int ret = 0;
752 :
753 9641 : write_lock(&fs_info->global_root_lock);
754 9641 : tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
755 9641 : write_unlock(&fs_info->global_root_lock);
756 :
757 9641 : if (tmp) {
758 0 : ret = -EEXIST;
759 0 : btrfs_warn(fs_info, "global root %llu %llu already exists",
760 : root->root_key.objectid, root->root_key.offset);
761 : }
762 9641 : return ret;
763 : }
764 :
765 5 : void btrfs_global_root_delete(struct btrfs_root *root)
766 : {
767 5 : struct btrfs_fs_info *fs_info = root->fs_info;
768 :
769 5 : write_lock(&fs_info->global_root_lock);
770 5 : rb_erase(&root->rb_node, &fs_info->global_root_tree);
771 5 : write_unlock(&fs_info->global_root_lock);
772 5 : }
773 :
774 178158701 : struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
775 : struct btrfs_key *key)
776 : {
777 178158701 : struct rb_node *node;
778 178158701 : struct btrfs_root *root = NULL;
779 :
780 178158701 : read_lock(&fs_info->global_root_lock);
781 178150206 : node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
782 178150206 : if (node)
783 178150206 : root = container_of(node, struct btrfs_root, rb_node);
784 178150206 : read_unlock(&fs_info->global_root_lock);
785 :
786 178160849 : return root;
787 : }
788 :
789 136444263 : static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
790 : {
791 136444263 : struct btrfs_block_group *block_group;
792 136444263 : u64 ret;
793 :
794 136444263 : if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
795 : return 0;
796 :
797 0 : if (bytenr)
798 0 : block_group = btrfs_lookup_block_group(fs_info, bytenr);
799 : else
800 0 : block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
801 0 : ASSERT(block_group);
802 0 : if (!block_group)
803 : return 0;
804 0 : ret = block_group->global_root_id;
805 0 : btrfs_put_block_group(block_group);
806 :
807 0 : return ret;
808 : }
809 :
810 10661076 : struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
811 : {
812 21320527 : struct btrfs_key key = {
813 : .objectid = BTRFS_CSUM_TREE_OBJECTID,
814 : .type = BTRFS_ROOT_ITEM_KEY,
815 10661076 : .offset = btrfs_global_root_id(fs_info, bytenr),
816 : };
817 :
818 10659451 : return btrfs_global_root(fs_info, &key);
819 : }
820 :
821 125788174 : struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
822 : {
823 251574014 : struct btrfs_key key = {
824 : .objectid = BTRFS_EXTENT_TREE_OBJECTID,
825 : .type = BTRFS_ROOT_ITEM_KEY,
826 125788174 : .offset = btrfs_global_root_id(fs_info, bytenr),
827 : };
828 :
829 125785840 : return btrfs_global_root(fs_info, &key);
830 : }
831 :
832 575586 : struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
833 : {
834 575586 : if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
835 0 : return fs_info->block_group_root;
836 575586 : return btrfs_extent_root(fs_info, 0);
837 : }
838 :
839 164 : struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
840 : u64 objectid)
841 : {
842 164 : struct btrfs_fs_info *fs_info = trans->fs_info;
843 164 : struct extent_buffer *leaf;
844 164 : struct btrfs_root *tree_root = fs_info->tree_root;
845 164 : struct btrfs_root *root;
846 164 : struct btrfs_key key;
847 164 : unsigned int nofs_flag;
848 164 : int ret = 0;
849 :
850 : /*
851 : * We're holding a transaction handle, so use a NOFS memory allocation
852 : * context to avoid deadlock if reclaim happens.
853 : */
854 164 : nofs_flag = memalloc_nofs_save();
855 164 : root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
856 164 : memalloc_nofs_restore(nofs_flag);
857 164 : if (!root)
858 : return ERR_PTR(-ENOMEM);
859 :
860 164 : root->root_key.objectid = objectid;
861 164 : root->root_key.type = BTRFS_ROOT_ITEM_KEY;
862 164 : root->root_key.offset = 0;
863 :
864 164 : leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
865 : BTRFS_NESTING_NORMAL);
866 164 : if (IS_ERR(leaf)) {
867 0 : ret = PTR_ERR(leaf);
868 0 : leaf = NULL;
869 0 : goto fail;
870 : }
871 :
872 164 : root->node = leaf;
873 164 : btrfs_mark_buffer_dirty(leaf);
874 :
875 164 : root->commit_root = btrfs_root_node(root);
876 164 : set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
877 :
878 164 : btrfs_set_root_flags(&root->root_item, 0);
879 164 : btrfs_set_root_limit(&root->root_item, 0);
880 164 : btrfs_set_root_bytenr(&root->root_item, leaf->start);
881 164 : btrfs_set_root_generation(&root->root_item, trans->transid);
882 164 : btrfs_set_root_level(&root->root_item, 0);
883 164 : btrfs_set_root_refs(&root->root_item, 1);
884 164 : btrfs_set_root_used(&root->root_item, leaf->len);
885 164 : btrfs_set_root_last_snapshot(&root->root_item, 0);
886 164 : btrfs_set_root_dirid(&root->root_item, 0);
887 164 : if (is_fstree(objectid))
888 0 : generate_random_guid(root->root_item.uuid);
889 : else
890 164 : export_guid(root->root_item.uuid, &guid_null);
891 164 : btrfs_set_root_drop_level(&root->root_item, 0);
892 :
893 164 : btrfs_tree_unlock(leaf);
894 :
895 164 : key.objectid = objectid;
896 164 : key.type = BTRFS_ROOT_ITEM_KEY;
897 164 : key.offset = 0;
898 164 : ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
899 164 : if (ret)
900 0 : goto fail;
901 :
902 : return root;
903 :
904 0 : fail:
905 0 : btrfs_put_root(root);
906 :
907 0 : return ERR_PTR(ret);
908 : }
909 :
910 9566 : static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
911 : struct btrfs_fs_info *fs_info)
912 : {
913 9566 : struct btrfs_root *root;
914 :
915 9566 : root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
916 9566 : if (!root)
917 : return ERR_PTR(-ENOMEM);
918 :
919 9566 : root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
920 9566 : root->root_key.type = BTRFS_ROOT_ITEM_KEY;
921 9566 : root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
922 :
923 9566 : return root;
924 : }
925 :
926 9566 : int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
927 : struct btrfs_root *root)
928 : {
929 9566 : struct extent_buffer *leaf;
930 :
931 : /*
932 : * DON'T set SHAREABLE bit for log trees.
933 : *
934 : * Log trees are not exposed to user space thus can't be snapshotted,
935 : * and they go away before a real commit is actually done.
936 : *
937 : * They do store pointers to file data extents, and those reference
938 : * counts still get updated (along with back refs to the log tree).
939 : */
940 :
941 9566 : leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
942 : NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
943 9566 : if (IS_ERR(leaf))
944 0 : return PTR_ERR(leaf);
945 :
946 9566 : root->node = leaf;
947 :
948 9566 : btrfs_mark_buffer_dirty(root->node);
949 9566 : btrfs_tree_unlock(root->node);
950 :
951 9566 : return 0;
952 : }
953 :
954 4757 : int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
955 : struct btrfs_fs_info *fs_info)
956 : {
957 4757 : struct btrfs_root *log_root;
958 :
959 4757 : log_root = alloc_log_tree(trans, fs_info);
960 4757 : if (IS_ERR(log_root))
961 0 : return PTR_ERR(log_root);
962 :
963 4757 : if (!btrfs_is_zoned(fs_info)) {
964 4757 : int ret = btrfs_alloc_log_tree_node(trans, log_root);
965 :
966 4757 : if (ret) {
967 0 : btrfs_put_root(log_root);
968 0 : return ret;
969 : }
970 : }
971 :
972 4757 : WARN_ON(fs_info->log_root_tree);
973 4757 : fs_info->log_root_tree = log_root;
974 4757 : return 0;
975 : }
976 :
977 4809 : int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
978 : struct btrfs_root *root)
979 : {
980 4809 : struct btrfs_fs_info *fs_info = root->fs_info;
981 4809 : struct btrfs_root *log_root;
982 4809 : struct btrfs_inode_item *inode_item;
983 4809 : int ret;
984 :
985 4809 : log_root = alloc_log_tree(trans, fs_info);
986 4809 : if (IS_ERR(log_root))
987 0 : return PTR_ERR(log_root);
988 :
989 4809 : ret = btrfs_alloc_log_tree_node(trans, log_root);
990 4809 : if (ret) {
991 0 : btrfs_put_root(log_root);
992 0 : return ret;
993 : }
994 :
995 4809 : log_root->last_trans = trans->transid;
996 4809 : log_root->root_key.offset = root->root_key.objectid;
997 :
998 4809 : inode_item = &log_root->root_item.inode;
999 4809 : btrfs_set_stack_inode_generation(inode_item, 1);
1000 4809 : btrfs_set_stack_inode_size(inode_item, 3);
1001 4809 : btrfs_set_stack_inode_nlink(inode_item, 1);
1002 4809 : btrfs_set_stack_inode_nbytes(inode_item,
1003 4809 : fs_info->nodesize);
1004 4809 : btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1005 :
1006 4809 : btrfs_set_root_node(&log_root->root_item, log_root->node);
1007 :
1008 4809 : WARN_ON(root->log_root);
1009 4809 : root->log_root = log_root;
1010 4809 : root->log_transid = 0;
1011 4809 : root->log_transid_committed = -1;
1012 4809 : root->last_log_commit = 0;
1013 4809 : return 0;
1014 : }
1015 :
1016 50777 : static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1017 : struct btrfs_path *path,
1018 : struct btrfs_key *key)
1019 : {
1020 50777 : struct btrfs_root *root;
1021 50777 : struct btrfs_tree_parent_check check = { 0 };
1022 50777 : struct btrfs_fs_info *fs_info = tree_root->fs_info;
1023 50777 : u64 generation;
1024 50777 : int ret;
1025 50777 : int level;
1026 :
1027 50777 : root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1028 50777 : if (!root)
1029 : return ERR_PTR(-ENOMEM);
1030 :
1031 50777 : ret = btrfs_find_root(tree_root, key, path,
1032 : &root->root_item, &root->root_key);
1033 50777 : if (ret) {
1034 3196 : if (ret > 0)
1035 3196 : ret = -ENOENT;
1036 3196 : goto fail;
1037 : }
1038 :
1039 47581 : generation = btrfs_root_generation(&root->root_item);
1040 47581 : level = btrfs_root_level(&root->root_item);
1041 47581 : check.level = level;
1042 47581 : check.transid = generation;
1043 47581 : check.owner_root = key->objectid;
1044 47581 : root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1045 : &check);
1046 47581 : if (IS_ERR(root->node)) {
1047 0 : ret = PTR_ERR(root->node);
1048 0 : root->node = NULL;
1049 0 : goto fail;
1050 : }
1051 47581 : if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1052 0 : ret = -EIO;
1053 0 : goto fail;
1054 : }
1055 :
1056 : /*
1057 : * For real fs, and not log/reloc trees, root owner must
1058 : * match its root node owner
1059 : */
1060 47581 : if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1061 47581 : root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1062 28255 : root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1063 28255 : root->root_key.objectid != btrfs_header_owner(root->node)) {
1064 0 : btrfs_crit(fs_info,
1065 : "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1066 : root->root_key.objectid, root->node->start,
1067 : btrfs_header_owner(root->node),
1068 : root->root_key.objectid);
1069 0 : ret = -EUCLEAN;
1070 0 : goto fail;
1071 : }
1072 47581 : root->commit_root = btrfs_root_node(root);
1073 47581 : return root;
1074 3196 : fail:
1075 3196 : btrfs_put_root(root);
1076 3196 : return ERR_PTR(ret);
1077 : }
1078 :
1079 41092 : struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1080 : struct btrfs_key *key)
1081 : {
1082 41092 : struct btrfs_root *root;
1083 41092 : struct btrfs_path *path;
1084 :
1085 41092 : path = btrfs_alloc_path();
1086 41092 : if (!path)
1087 : return ERR_PTR(-ENOMEM);
1088 41092 : root = read_tree_root_path(tree_root, path, key);
1089 41092 : btrfs_free_path(path);
1090 :
1091 41092 : return root;
1092 : }
1093 :
1094 : /*
1095 : * Initialize subvolume root in-memory structure
1096 : *
1097 : * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1098 : */
1099 12121 : static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1100 : {
1101 12121 : int ret;
1102 :
1103 12121 : btrfs_drew_lock_init(&root->snapshot_lock);
1104 :
1105 12121 : if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1106 : !btrfs_is_data_reloc_root(root)) {
1107 8906 : set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1108 8906 : btrfs_check_and_init_root_item(&root->root_item);
1109 : }
1110 :
1111 : /*
1112 : * Don't assign anonymous block device to roots that are not exposed to
1113 : * userspace, the id pool is limited to 1M
1114 : */
1115 17812 : if (is_fstree(root->root_key.objectid) &&
1116 : btrfs_root_refs(&root->root_item) > 0) {
1117 8774 : if (!anon_dev) {
1118 7497 : ret = get_anon_bdev(&root->anon_dev);
1119 7497 : if (ret)
1120 0 : goto fail;
1121 : } else {
1122 1277 : root->anon_dev = anon_dev;
1123 : }
1124 : }
1125 :
1126 12121 : mutex_lock(&root->objectid_mutex);
1127 12121 : ret = btrfs_init_root_free_objectid(root);
1128 12121 : if (ret) {
1129 0 : mutex_unlock(&root->objectid_mutex);
1130 0 : goto fail;
1131 : }
1132 :
1133 12121 : ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1134 :
1135 12121 : mutex_unlock(&root->objectid_mutex);
1136 :
1137 12121 : return 0;
1138 : fail:
1139 : /* The caller is responsible to call btrfs_free_fs_root */
1140 : return ret;
1141 : }
1142 :
1143 12197584 : static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1144 : u64 root_id)
1145 : {
1146 12197584 : struct btrfs_root *root;
1147 :
1148 12197584 : spin_lock(&fs_info->fs_roots_radix_lock);
1149 12198682 : root = radix_tree_lookup(&fs_info->fs_roots_radix,
1150 : (unsigned long)root_id);
1151 12198682 : root = btrfs_grab_root(root);
1152 12198682 : spin_unlock(&fs_info->fs_roots_radix_lock);
1153 12198682 : return root;
1154 : }
1155 :
1156 12272593 : static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1157 : u64 objectid)
1158 : {
1159 12272593 : struct btrfs_key key = {
1160 : .objectid = objectid,
1161 : .type = BTRFS_ROOT_ITEM_KEY,
1162 : .offset = 0,
1163 : };
1164 :
1165 12272593 : switch (objectid) {
1166 7113 : case BTRFS_ROOT_TREE_OBJECTID:
1167 7113 : return btrfs_grab_root(fs_info->tree_root);
1168 36071 : case BTRFS_EXTENT_TREE_OBJECTID:
1169 36071 : return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1170 227 : case BTRFS_CHUNK_TREE_OBJECTID:
1171 227 : return btrfs_grab_root(fs_info->chunk_root);
1172 226 : case BTRFS_DEV_TREE_OBJECTID:
1173 226 : return btrfs_grab_root(fs_info->dev_root);
1174 29121 : case BTRFS_CSUM_TREE_OBJECTID:
1175 29121 : return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1176 170 : case BTRFS_QUOTA_TREE_OBJECTID:
1177 170 : return btrfs_grab_root(fs_info->quota_root);
1178 1961 : case BTRFS_UUID_TREE_OBJECTID:
1179 1961 : return btrfs_grab_root(fs_info->uuid_root);
1180 0 : case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1181 0 : return btrfs_grab_root(fs_info->block_group_root);
1182 197 : case BTRFS_FREE_SPACE_TREE_OBJECTID:
1183 197 : return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1184 : default:
1185 : return NULL;
1186 : }
1187 : }
1188 :
1189 12121 : int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1190 : struct btrfs_root *root)
1191 : {
1192 12121 : int ret;
1193 :
1194 12121 : ret = radix_tree_preload(GFP_NOFS);
1195 12121 : if (ret)
1196 : return ret;
1197 :
1198 12121 : spin_lock(&fs_info->fs_roots_radix_lock);
1199 12121 : ret = radix_tree_insert(&fs_info->fs_roots_radix,
1200 12121 : (unsigned long)root->root_key.objectid,
1201 : root);
1202 12121 : if (ret == 0) {
1203 12121 : btrfs_grab_root(root);
1204 12121 : set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1205 : }
1206 12121 : spin_unlock(&fs_info->fs_roots_radix_lock);
1207 12121 : radix_tree_preload_end();
1208 :
1209 12121 : return ret;
1210 : }
1211 :
1212 0 : void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1213 : {
1214 : #ifdef CONFIG_BTRFS_DEBUG
1215 : struct btrfs_root *root;
1216 :
1217 : while (!list_empty(&fs_info->allocated_roots)) {
1218 : char buf[BTRFS_ROOT_NAME_BUF_LEN];
1219 :
1220 : root = list_first_entry(&fs_info->allocated_roots,
1221 : struct btrfs_root, leak_list);
1222 : btrfs_err(fs_info, "leaked root %s refcount %d",
1223 : btrfs_root_name(&root->root_key, buf),
1224 : refcount_read(&root->refs));
1225 : while (refcount_read(&root->refs) > 1)
1226 : btrfs_put_root(root);
1227 : btrfs_put_root(root);
1228 : }
1229 : #endif
1230 0 : }
1231 :
1232 3472 : static void free_global_roots(struct btrfs_fs_info *fs_info)
1233 : {
1234 3472 : struct btrfs_root *root;
1235 3472 : struct rb_node *node;
1236 :
1237 13108 : while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1238 9636 : root = rb_entry(node, struct btrfs_root, rb_node);
1239 9636 : rb_erase(&root->rb_node, &fs_info->global_root_tree);
1240 9636 : btrfs_put_root(root);
1241 : }
1242 3472 : }
1243 :
1244 3472 : void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1245 : {
1246 3472 : percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1247 3472 : percpu_counter_destroy(&fs_info->delalloc_bytes);
1248 3472 : percpu_counter_destroy(&fs_info->ordered_bytes);
1249 3472 : percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1250 3472 : btrfs_free_csum_hash(fs_info);
1251 3472 : btrfs_free_stripe_hash_table(fs_info);
1252 3472 : btrfs_free_ref_cache(fs_info);
1253 3472 : kfree(fs_info->balance_ctl);
1254 3472 : kfree(fs_info->delayed_root);
1255 3472 : free_global_roots(fs_info);
1256 3472 : btrfs_put_root(fs_info->tree_root);
1257 3472 : btrfs_put_root(fs_info->chunk_root);
1258 3472 : btrfs_put_root(fs_info->dev_root);
1259 3472 : btrfs_put_root(fs_info->quota_root);
1260 3472 : btrfs_put_root(fs_info->uuid_root);
1261 3472 : btrfs_put_root(fs_info->fs_root);
1262 3472 : btrfs_put_root(fs_info->data_reloc_root);
1263 3472 : btrfs_put_root(fs_info->block_group_root);
1264 3472 : btrfs_check_leaked_roots(fs_info);
1265 3472 : btrfs_extent_buffer_leak_debug_check(fs_info);
1266 3472 : kfree(fs_info->super_copy);
1267 3472 : kfree(fs_info->super_for_commit);
1268 3472 : kfree(fs_info->subpage_info);
1269 3472 : kvfree(fs_info);
1270 3472 : }
1271 :
1272 :
1273 : /*
1274 : * Get an in-memory reference of a root structure.
1275 : *
1276 : * For essential trees like root/extent tree, we grab it from fs_info directly.
1277 : * For subvolume trees, we check the cached filesystem roots first. If not
1278 : * found, then read it from disk and add it to cached fs roots.
1279 : *
1280 : * Caller should release the root by calling btrfs_put_root() after the usage.
1281 : *
1282 : * NOTE: Reloc and log trees can't be read by this function as they share the
1283 : * same root objectid.
1284 : *
1285 : * @objectid: root id
1286 : * @anon_dev: preallocated anonymous block device number for new roots,
1287 : * pass 0 for new allocation.
1288 : * @check_ref: whether to check root item references, If true, return -ENOENT
1289 : * for orphan roots
1290 : */
1291 5839719 : static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1292 : u64 objectid, dev_t anon_dev,
1293 : bool check_ref)
1294 : {
1295 5839719 : struct btrfs_root *root;
1296 5839719 : struct btrfs_path *path;
1297 5839719 : struct btrfs_key key;
1298 5839719 : int ret;
1299 :
1300 5839719 : root = btrfs_get_global_root(fs_info, objectid);
1301 5839719 : if (root)
1302 : return root;
1303 5771886 : again:
1304 5771886 : root = btrfs_lookup_fs_root(fs_info, objectid);
1305 5771888 : if (root) {
1306 : /* Shouldn't get preallocated anon_dev for cached roots */
1307 5759767 : ASSERT(!anon_dev);
1308 5759767 : if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1309 0 : btrfs_put_root(root);
1310 0 : return ERR_PTR(-ENOENT);
1311 : }
1312 : return root;
1313 : }
1314 :
1315 12121 : key.objectid = objectid;
1316 12121 : key.type = BTRFS_ROOT_ITEM_KEY;
1317 12121 : key.offset = (u64)-1;
1318 12121 : root = btrfs_read_tree_root(fs_info->tree_root, &key);
1319 12121 : if (IS_ERR(root))
1320 0 : return root;
1321 :
1322 12121 : if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1323 0 : ret = -ENOENT;
1324 0 : goto fail;
1325 : }
1326 :
1327 12121 : ret = btrfs_init_fs_root(root, anon_dev);
1328 12121 : if (ret)
1329 0 : goto fail;
1330 :
1331 12121 : path = btrfs_alloc_path();
1332 12121 : if (!path) {
1333 0 : ret = -ENOMEM;
1334 0 : goto fail;
1335 : }
1336 12121 : key.objectid = BTRFS_ORPHAN_OBJECTID;
1337 12121 : key.type = BTRFS_ORPHAN_ITEM_KEY;
1338 12121 : key.offset = objectid;
1339 :
1340 12121 : ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1341 12121 : btrfs_free_path(path);
1342 12121 : if (ret < 0)
1343 0 : goto fail;
1344 12121 : if (ret == 0)
1345 132 : set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1346 :
1347 12121 : ret = btrfs_insert_fs_root(fs_info, root);
1348 12121 : if (ret) {
1349 0 : if (ret == -EEXIST) {
1350 0 : btrfs_put_root(root);
1351 0 : goto again;
1352 : }
1353 0 : goto fail;
1354 : }
1355 : return root;
1356 0 : fail:
1357 : /*
1358 : * If our caller provided us an anonymous device, then it's his
1359 : * responsibility to free it in case we fail. So we have to set our
1360 : * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1361 : * and once again by our caller.
1362 : */
1363 0 : if (anon_dev)
1364 0 : root->anon_dev = 0;
1365 0 : btrfs_put_root(root);
1366 0 : return ERR_PTR(ret);
1367 : }
1368 :
1369 : /*
1370 : * Get in-memory reference of a root structure
1371 : *
1372 : * @objectid: tree objectid
1373 : * @check_ref: if set, verify that the tree exists and the item has at least
1374 : * one reference
1375 : */
1376 5832012 : struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1377 : u64 objectid, bool check_ref)
1378 : {
1379 5832012 : return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1380 : }
1381 :
1382 : /*
1383 : * Get in-memory reference of a root structure, created as new, optionally pass
1384 : * the anonymous block device id
1385 : *
1386 : * @objectid: tree objectid
1387 : * @anon_dev: if zero, allocate a new anonymous block device or use the
1388 : * parameter value
1389 : */
1390 1277 : struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1391 : u64 objectid, dev_t anon_dev)
1392 : {
1393 1277 : return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1394 : }
1395 :
1396 : /*
1397 : * btrfs_get_fs_root_commit_root - return a root for the given objectid
1398 : * @fs_info: the fs_info
1399 : * @objectid: the objectid we need to lookup
1400 : *
1401 : * This is exclusively used for backref walking, and exists specifically because
1402 : * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1403 : * creation time, which means we may have to read the tree_root in order to look
1404 : * up a fs root that is not in memory. If the root is not in memory we will
1405 : * read the tree root commit root and look up the fs root from there. This is a
1406 : * temporary root, it will not be inserted into the radix tree as it doesn't
1407 : * have the most uptodate information, it'll simply be discarded once the
1408 : * backref code is finished using the root.
1409 : */
1410 6433149 : struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1411 : struct btrfs_path *path,
1412 : u64 objectid)
1413 : {
1414 6433149 : struct btrfs_root *root;
1415 6433149 : struct btrfs_key key;
1416 :
1417 6433149 : ASSERT(path->search_commit_root && path->skip_locking);
1418 :
1419 : /*
1420 : * This can return -ENOENT if we ask for a root that doesn't exist, but
1421 : * since this is called via the backref walking code we won't be looking
1422 : * up a root that doesn't exist, unless there's corruption. So if root
1423 : * != NULL just return it.
1424 : */
1425 6433149 : root = btrfs_get_global_root(fs_info, objectid);
1426 6432909 : if (root)
1427 : return root;
1428 :
1429 6425683 : root = btrfs_lookup_fs_root(fs_info, objectid);
1430 6426794 : if (root)
1431 : return root;
1432 :
1433 46 : key.objectid = objectid;
1434 46 : key.type = BTRFS_ROOT_ITEM_KEY;
1435 46 : key.offset = (u64)-1;
1436 46 : root = read_tree_root_path(fs_info->tree_root, path, &key);
1437 46 : btrfs_release_path(path);
1438 :
1439 46 : return root;
1440 : }
1441 :
1442 3215 : static int cleaner_kthread(void *arg)
1443 : {
1444 3215 : struct btrfs_fs_info *fs_info = arg;
1445 51833 : int again;
1446 :
1447 51833 : while (1) {
1448 51833 : again = 0;
1449 :
1450 51833 : set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1451 :
1452 : /* Make the cleaner go to sleep early. */
1453 51833 : if (btrfs_need_cleaner_sleep(fs_info))
1454 3298 : goto sleep;
1455 :
1456 : /*
1457 : * Do not do anything if we might cause open_ctree() to block
1458 : * before we have finished mounting the filesystem.
1459 : */
1460 48535 : if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1461 6350 : goto sleep;
1462 :
1463 42185 : if (!mutex_trylock(&fs_info->cleaner_mutex))
1464 76 : goto sleep;
1465 :
1466 : /*
1467 : * Avoid the problem that we change the status of the fs
1468 : * during the above check and trylock.
1469 : */
1470 42109 : if (btrfs_need_cleaner_sleep(fs_info)) {
1471 0 : mutex_unlock(&fs_info->cleaner_mutex);
1472 0 : goto sleep;
1473 : }
1474 :
1475 42109 : if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1476 32 : btrfs_sysfs_feature_update(fs_info);
1477 :
1478 42109 : btrfs_run_delayed_iputs(fs_info);
1479 :
1480 42109 : again = btrfs_clean_one_deleted_snapshot(fs_info);
1481 42109 : mutex_unlock(&fs_info->cleaner_mutex);
1482 :
1483 : /*
1484 : * The defragger has dealt with the R/O remount and umount,
1485 : * needn't do anything special here.
1486 : */
1487 42109 : btrfs_run_defrag_inodes(fs_info);
1488 :
1489 : /*
1490 : * Acquires fs_info->reclaim_bgs_lock to avoid racing
1491 : * with relocation (btrfs_relocate_chunk) and relocation
1492 : * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1493 : * after acquiring fs_info->reclaim_bgs_lock. So we
1494 : * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1495 : * unused block groups.
1496 : */
1497 42109 : btrfs_delete_unused_bgs(fs_info);
1498 :
1499 : /*
1500 : * Reclaim block groups in the reclaim_bgs list after we deleted
1501 : * all unused block_groups. This possibly gives us some more free
1502 : * space.
1503 : */
1504 42109 : btrfs_reclaim_bgs(fs_info);
1505 51833 : sleep:
1506 51833 : clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1507 51833 : if (kthread_should_park())
1508 3215 : kthread_parkme();
1509 51833 : if (kthread_should_stop())
1510 3215 : return 0;
1511 48618 : if (!again) {
1512 48500 : set_current_state(TASK_INTERRUPTIBLE);
1513 48500 : schedule();
1514 48500 : __set_current_state(TASK_RUNNING);
1515 : }
1516 : }
1517 : }
1518 :
1519 3215 : static int transaction_kthread(void *arg)
1520 : {
1521 3215 : struct btrfs_root *root = arg;
1522 3215 : struct btrfs_fs_info *fs_info = root->fs_info;
1523 4484 : struct btrfs_trans_handle *trans;
1524 4484 : struct btrfs_transaction *cur;
1525 4484 : u64 transid;
1526 4484 : time64_t delta;
1527 4484 : unsigned long delay;
1528 4484 : bool cannot_commit;
1529 :
1530 4484 : do {
1531 4484 : cannot_commit = false;
1532 4484 : delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1533 4483 : mutex_lock(&fs_info->transaction_kthread_mutex);
1534 :
1535 4484 : spin_lock(&fs_info->trans_lock);
1536 4484 : cur = fs_info->running_transaction;
1537 4484 : if (!cur) {
1538 4083 : spin_unlock(&fs_info->trans_lock);
1539 4083 : goto sleep;
1540 : }
1541 :
1542 401 : delta = ktime_get_seconds() - cur->start_time;
1543 401 : if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1544 397 : cur->state < TRANS_STATE_COMMIT_START &&
1545 393 : delta < fs_info->commit_interval) {
1546 190 : spin_unlock(&fs_info->trans_lock);
1547 190 : delay -= msecs_to_jiffies((delta - 1) * 1000);
1548 190 : delay = min(delay,
1549 : msecs_to_jiffies(fs_info->commit_interval * 1000));
1550 190 : goto sleep;
1551 : }
1552 211 : transid = cur->transid;
1553 211 : spin_unlock(&fs_info->trans_lock);
1554 :
1555 : /* If the file system is aborted, this will always fail. */
1556 211 : trans = btrfs_attach_transaction(root);
1557 211 : if (IS_ERR(trans)) {
1558 4 : if (PTR_ERR(trans) != -ENOENT)
1559 0 : cannot_commit = true;
1560 4 : goto sleep;
1561 : }
1562 207 : if (transid == trans->transid) {
1563 207 : btrfs_commit_transaction(trans);
1564 : } else {
1565 0 : btrfs_end_transaction(trans);
1566 : }
1567 4484 : sleep:
1568 4484 : wake_up_process(fs_info->cleaner_kthread);
1569 4484 : mutex_unlock(&fs_info->transaction_kthread_mutex);
1570 :
1571 4484 : if (BTRFS_FS_ERROR(fs_info))
1572 3 : btrfs_cleanup_transaction(fs_info);
1573 8968 : if (!kthread_should_stop() &&
1574 4485 : (!btrfs_transaction_blocked(fs_info) ||
1575 : cannot_commit))
1576 4483 : schedule_timeout_interruptible(delay);
1577 4484 : } while (!kthread_should_stop());
1578 3215 : return 0;
1579 : }
1580 :
1581 : /*
1582 : * This will find the highest generation in the array of root backups. The
1583 : * index of the highest array is returned, or -EINVAL if we can't find
1584 : * anything.
1585 : *
1586 : * We check to make sure the array is valid by comparing the
1587 : * generation of the latest root in the array with the generation
1588 : * in the super block. If they don't match we pitch it.
1589 : */
1590 3216 : static int find_newest_super_backup(struct btrfs_fs_info *info)
1591 : {
1592 3216 : const u64 newest_gen = btrfs_super_generation(info->super_copy);
1593 3216 : u64 cur;
1594 3216 : struct btrfs_root_backup *root_backup;
1595 3216 : int i;
1596 :
1597 8076 : for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1598 8076 : root_backup = info->super_copy->super_roots + i;
1599 8076 : cur = btrfs_backup_tree_root_gen(root_backup);
1600 8076 : if (cur == newest_gen)
1601 3216 : return i;
1602 : }
1603 :
1604 : return -EINVAL;
1605 : }
1606 :
1607 : /*
1608 : * copy all the root pointers into the super backup array.
1609 : * this will bump the backup pointer by one when it is
1610 : * done
1611 : */
1612 203010 : static void backup_super_roots(struct btrfs_fs_info *info)
1613 : {
1614 203010 : const int next_backup = info->backup_root_index;
1615 203010 : struct btrfs_root_backup *root_backup;
1616 :
1617 203010 : root_backup = info->super_for_commit->super_roots + next_backup;
1618 :
1619 : /*
1620 : * make sure all of our padding and empty slots get zero filled
1621 : * regardless of which ones we use today
1622 : */
1623 203010 : memset(root_backup, 0, sizeof(*root_backup));
1624 :
1625 203010 : info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1626 :
1627 203010 : btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1628 203010 : btrfs_set_backup_tree_root_gen(root_backup,
1629 203010 : btrfs_header_generation(info->tree_root->node));
1630 :
1631 203010 : btrfs_set_backup_tree_root_level(root_backup,
1632 203010 : btrfs_header_level(info->tree_root->node));
1633 :
1634 203010 : btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1635 203010 : btrfs_set_backup_chunk_root_gen(root_backup,
1636 203010 : btrfs_header_generation(info->chunk_root->node));
1637 203010 : btrfs_set_backup_chunk_root_level(root_backup,
1638 203010 : btrfs_header_level(info->chunk_root->node));
1639 :
1640 203010 : if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1641 203010 : struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1642 203010 : struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1643 :
1644 203010 : btrfs_set_backup_extent_root(root_backup,
1645 203010 : extent_root->node->start);
1646 203010 : btrfs_set_backup_extent_root_gen(root_backup,
1647 203010 : btrfs_header_generation(extent_root->node));
1648 203010 : btrfs_set_backup_extent_root_level(root_backup,
1649 203010 : btrfs_header_level(extent_root->node));
1650 :
1651 203010 : btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1652 203010 : btrfs_set_backup_csum_root_gen(root_backup,
1653 203010 : btrfs_header_generation(csum_root->node));
1654 203010 : btrfs_set_backup_csum_root_level(root_backup,
1655 203010 : btrfs_header_level(csum_root->node));
1656 : }
1657 :
1658 : /*
1659 : * we might commit during log recovery, which happens before we set
1660 : * the fs_root. Make sure it is valid before we fill it in.
1661 : */
1662 203010 : if (info->fs_root && info->fs_root->node) {
1663 202727 : btrfs_set_backup_fs_root(root_backup,
1664 : info->fs_root->node->start);
1665 202727 : btrfs_set_backup_fs_root_gen(root_backup,
1666 202727 : btrfs_header_generation(info->fs_root->node));
1667 202727 : btrfs_set_backup_fs_root_level(root_backup,
1668 202727 : btrfs_header_level(info->fs_root->node));
1669 : }
1670 :
1671 203010 : btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1672 203010 : btrfs_set_backup_dev_root_gen(root_backup,
1673 203010 : btrfs_header_generation(info->dev_root->node));
1674 203010 : btrfs_set_backup_dev_root_level(root_backup,
1675 203010 : btrfs_header_level(info->dev_root->node));
1676 :
1677 203010 : btrfs_set_backup_total_bytes(root_backup,
1678 203010 : btrfs_super_total_bytes(info->super_copy));
1679 203010 : btrfs_set_backup_bytes_used(root_backup,
1680 203010 : btrfs_super_bytes_used(info->super_copy));
1681 203010 : btrfs_set_backup_num_devices(root_backup,
1682 203010 : btrfs_super_num_devices(info->super_copy));
1683 :
1684 : /*
1685 : * if we don't copy this out to the super_copy, it won't get remembered
1686 : * for the next commit
1687 : */
1688 406020 : memcpy(&info->super_copy->super_roots,
1689 : &info->super_for_commit->super_roots,
1690 : sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1691 203010 : }
1692 :
1693 : /*
1694 : * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1695 : * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1696 : *
1697 : * fs_info - filesystem whose backup roots need to be read
1698 : * priority - priority of backup root required
1699 : *
1700 : * Returns backup root index on success and -EINVAL otherwise.
1701 : */
1702 0 : static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1703 : {
1704 0 : int backup_index = find_newest_super_backup(fs_info);
1705 0 : struct btrfs_super_block *super = fs_info->super_copy;
1706 0 : struct btrfs_root_backup *root_backup;
1707 :
1708 0 : if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1709 0 : if (priority == 0)
1710 : return backup_index;
1711 :
1712 0 : backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1713 0 : backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1714 : } else {
1715 : return -EINVAL;
1716 : }
1717 :
1718 0 : root_backup = super->super_roots + backup_index;
1719 :
1720 0 : btrfs_set_super_generation(super,
1721 : btrfs_backup_tree_root_gen(root_backup));
1722 0 : btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1723 0 : btrfs_set_super_root_level(super,
1724 : btrfs_backup_tree_root_level(root_backup));
1725 0 : btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1726 :
1727 : /*
1728 : * Fixme: the total bytes and num_devices need to match or we should
1729 : * need a fsck
1730 : */
1731 0 : btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1732 0 : btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1733 :
1734 0 : return backup_index;
1735 : }
1736 :
1737 : /* helper to cleanup workers */
1738 3216 : static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1739 : {
1740 3216 : btrfs_destroy_workqueue(fs_info->fixup_workers);
1741 3216 : btrfs_destroy_workqueue(fs_info->delalloc_workers);
1742 3216 : btrfs_destroy_workqueue(fs_info->workers);
1743 3216 : if (fs_info->endio_workers)
1744 3216 : destroy_workqueue(fs_info->endio_workers);
1745 3216 : if (fs_info->rmw_workers)
1746 3216 : destroy_workqueue(fs_info->rmw_workers);
1747 3216 : if (fs_info->compressed_write_workers)
1748 3216 : destroy_workqueue(fs_info->compressed_write_workers);
1749 3216 : btrfs_destroy_workqueue(fs_info->endio_write_workers);
1750 3216 : btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1751 3216 : btrfs_destroy_workqueue(fs_info->delayed_workers);
1752 3216 : btrfs_destroy_workqueue(fs_info->caching_workers);
1753 3216 : btrfs_destroy_workqueue(fs_info->flush_workers);
1754 3216 : btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1755 3216 : if (fs_info->discard_ctl.discard_workers)
1756 3216 : destroy_workqueue(fs_info->discard_ctl.discard_workers);
1757 : /*
1758 : * Now that all other work queues are destroyed, we can safely destroy
1759 : * the queues used for metadata I/O, since tasks from those other work
1760 : * queues can do metadata I/O operations.
1761 : */
1762 3216 : if (fs_info->endio_meta_workers)
1763 3216 : destroy_workqueue(fs_info->endio_meta_workers);
1764 3216 : }
1765 :
1766 102638 : static void free_root_extent_buffers(struct btrfs_root *root)
1767 : {
1768 102638 : if (root) {
1769 96256 : free_extent_buffer(root->node);
1770 96256 : free_extent_buffer(root->commit_root);
1771 96256 : root->node = NULL;
1772 96256 : root->commit_root = NULL;
1773 : }
1774 102638 : }
1775 :
1776 3216 : static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1777 : {
1778 3216 : struct btrfs_root *root, *tmp;
1779 :
1780 16068 : rbtree_postorder_for_each_entry_safe(root, tmp,
1781 : &fs_info->global_root_tree,
1782 : rb_node)
1783 9636 : free_root_extent_buffers(root);
1784 3216 : }
1785 :
1786 : /* helper to cleanup tree roots */
1787 3216 : static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1788 : {
1789 3216 : free_root_extent_buffers(info->tree_root);
1790 :
1791 3216 : free_global_root_pointers(info);
1792 3216 : free_root_extent_buffers(info->dev_root);
1793 3216 : free_root_extent_buffers(info->quota_root);
1794 3216 : free_root_extent_buffers(info->uuid_root);
1795 3216 : free_root_extent_buffers(info->fs_root);
1796 3216 : free_root_extent_buffers(info->data_reloc_root);
1797 3216 : free_root_extent_buffers(info->block_group_root);
1798 3216 : if (free_chunk_root)
1799 3216 : free_root_extent_buffers(info->chunk_root);
1800 3216 : }
1801 :
1802 18289918 : void btrfs_put_root(struct btrfs_root *root)
1803 : {
1804 18289918 : if (!root)
1805 : return;
1806 :
1807 16273033 : if (refcount_dec_and_test(&root->refs)) {
1808 67274 : WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1809 67274 : WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1810 67274 : if (root->anon_dev)
1811 8606 : free_anon_bdev(root->anon_dev);
1812 67274 : free_root_extent_buffers(root);
1813 : #ifdef CONFIG_BTRFS_DEBUG
1814 : spin_lock(&root->fs_info->fs_roots_radix_lock);
1815 : list_del_init(&root->leak_list);
1816 : spin_unlock(&root->fs_info->fs_roots_radix_lock);
1817 : #endif
1818 67274 : kfree(root);
1819 : }
1820 : }
1821 :
1822 3215 : void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1823 : {
1824 3215 : int ret;
1825 3215 : struct btrfs_root *gang[8];
1826 3215 : int i;
1827 :
1828 3397 : while (!list_empty(&fs_info->dead_roots)) {
1829 182 : gang[0] = list_entry(fs_info->dead_roots.next,
1830 : struct btrfs_root, root_list);
1831 182 : list_del(&gang[0]->root_list);
1832 :
1833 364 : if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1834 182 : btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1835 182 : btrfs_put_root(gang[0]);
1836 : }
1837 :
1838 7035 : while (1) {
1839 7035 : ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1840 : (void **)gang, 0,
1841 : ARRAY_SIZE(gang));
1842 7035 : if (!ret)
1843 : break;
1844 15641 : for (i = 0; i < ret; i++)
1845 11821 : btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1846 : }
1847 3215 : }
1848 :
1849 3472 : static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1850 : {
1851 3472 : mutex_init(&fs_info->scrub_lock);
1852 3472 : atomic_set(&fs_info->scrubs_running, 0);
1853 3472 : atomic_set(&fs_info->scrub_pause_req, 0);
1854 3472 : atomic_set(&fs_info->scrubs_paused, 0);
1855 3472 : atomic_set(&fs_info->scrub_cancel_req, 0);
1856 3472 : init_waitqueue_head(&fs_info->scrub_pause_wait);
1857 3472 : refcount_set(&fs_info->scrub_workers_refcnt, 0);
1858 3472 : }
1859 :
1860 3472 : static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1861 : {
1862 3472 : spin_lock_init(&fs_info->balance_lock);
1863 3472 : mutex_init(&fs_info->balance_mutex);
1864 3472 : atomic_set(&fs_info->balance_pause_req, 0);
1865 3472 : atomic_set(&fs_info->balance_cancel_req, 0);
1866 3472 : fs_info->balance_ctl = NULL;
1867 3472 : init_waitqueue_head(&fs_info->balance_wait_q);
1868 3472 : atomic_set(&fs_info->reloc_cancel_req, 0);
1869 3472 : }
1870 :
1871 3242 : static int btrfs_init_btree_inode(struct super_block *sb)
1872 : {
1873 3242 : struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1874 3242 : unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1875 3242 : fs_info->tree_root);
1876 3242 : struct inode *inode;
1877 :
1878 3242 : inode = new_inode(sb);
1879 3242 : if (!inode)
1880 : return -ENOMEM;
1881 :
1882 3242 : inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1883 3242 : set_nlink(inode, 1);
1884 : /*
1885 : * we set the i_size on the btree inode to the max possible int.
1886 : * the real end of the address space is determined by all of
1887 : * the devices in the system
1888 : */
1889 3242 : inode->i_size = OFFSET_MAX;
1890 3242 : inode->i_mapping->a_ops = &btree_aops;
1891 3242 : mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1892 :
1893 3242 : RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
1894 3242 : extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1895 : IO_TREE_BTREE_INODE_IO);
1896 3242 : extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1897 :
1898 3242 : BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1899 3242 : BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
1900 3242 : BTRFS_I(inode)->location.type = 0;
1901 3242 : BTRFS_I(inode)->location.offset = 0;
1902 3242 : set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1903 3242 : __insert_inode_hash(inode, hash);
1904 3242 : fs_info->btree_inode = inode;
1905 :
1906 3242 : return 0;
1907 : }
1908 :
1909 3472 : static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1910 : {
1911 3472 : mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1912 3472 : init_rwsem(&fs_info->dev_replace.rwsem);
1913 3472 : init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1914 3472 : }
1915 :
1916 3472 : static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1917 : {
1918 3472 : spin_lock_init(&fs_info->qgroup_lock);
1919 3472 : mutex_init(&fs_info->qgroup_ioctl_lock);
1920 3472 : fs_info->qgroup_tree = RB_ROOT;
1921 3472 : INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1922 3472 : fs_info->qgroup_seq = 1;
1923 3472 : fs_info->qgroup_ulist = NULL;
1924 3472 : fs_info->qgroup_rescan_running = false;
1925 3472 : fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
1926 3472 : mutex_init(&fs_info->qgroup_rescan_lock);
1927 3472 : }
1928 :
1929 3216 : static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1930 : {
1931 3216 : u32 max_active = fs_info->thread_pool_size;
1932 3216 : unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1933 3216 : unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1934 :
1935 6432 : fs_info->workers =
1936 3216 : btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1937 :
1938 6432 : fs_info->delalloc_workers =
1939 3216 : btrfs_alloc_workqueue(fs_info, "delalloc",
1940 : flags, max_active, 2);
1941 :
1942 6432 : fs_info->flush_workers =
1943 3216 : btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1944 : flags, max_active, 0);
1945 :
1946 6432 : fs_info->caching_workers =
1947 3216 : btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1948 :
1949 6432 : fs_info->fixup_workers =
1950 3216 : btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1951 :
1952 6432 : fs_info->endio_workers =
1953 3216 : alloc_workqueue("btrfs-endio", flags, max_active);
1954 6432 : fs_info->endio_meta_workers =
1955 3216 : alloc_workqueue("btrfs-endio-meta", flags, max_active);
1956 3216 : fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
1957 6432 : fs_info->endio_write_workers =
1958 3216 : btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1959 : max_active, 2);
1960 6432 : fs_info->compressed_write_workers =
1961 3216 : alloc_workqueue("btrfs-compressed-write", flags, max_active);
1962 6432 : fs_info->endio_freespace_worker =
1963 3216 : btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
1964 : max_active, 0);
1965 6432 : fs_info->delayed_workers =
1966 3216 : btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
1967 : max_active, 0);
1968 6432 : fs_info->qgroup_rescan_workers =
1969 3216 : btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
1970 : ordered_flags);
1971 6432 : fs_info->discard_ctl.discard_workers =
1972 3216 : alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
1973 :
1974 6432 : if (!(fs_info->workers &&
1975 3216 : fs_info->delalloc_workers && fs_info->flush_workers &&
1976 3216 : fs_info->endio_workers && fs_info->endio_meta_workers &&
1977 3216 : fs_info->compressed_write_workers &&
1978 3216 : fs_info->endio_write_workers &&
1979 3216 : fs_info->endio_freespace_worker && fs_info->rmw_workers &&
1980 3216 : fs_info->caching_workers && fs_info->fixup_workers &&
1981 3216 : fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
1982 : fs_info->discard_ctl.discard_workers)) {
1983 0 : return -ENOMEM;
1984 : }
1985 :
1986 : return 0;
1987 : }
1988 :
1989 3242 : static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
1990 : {
1991 3242 : struct crypto_shash *csum_shash;
1992 3242 : const char *csum_driver = btrfs_super_csum_driver(csum_type);
1993 :
1994 3242 : csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
1995 :
1996 3242 : if (IS_ERR(csum_shash)) {
1997 0 : btrfs_err(fs_info, "error allocating %s hash for checksum",
1998 : csum_driver);
1999 0 : return PTR_ERR(csum_shash);
2000 : }
2001 :
2002 3242 : fs_info->csum_shash = csum_shash;
2003 :
2004 : /*
2005 : * Check if the checksum implementation is a fast accelerated one.
2006 : * As-is this is a bit of a hack and should be replaced once the csum
2007 : * implementations provide that information themselves.
2008 : */
2009 3242 : switch (csum_type) {
2010 : case BTRFS_CSUM_TYPE_CRC32:
2011 3242 : if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2012 3242 : set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2013 : break;
2014 0 : case BTRFS_CSUM_TYPE_XXHASH:
2015 0 : set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2016 : break;
2017 : default:
2018 : break;
2019 : }
2020 :
2021 3242 : btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2022 : btrfs_super_csum_name(csum_type),
2023 : crypto_shash_driver_name(csum_shash));
2024 3242 : return 0;
2025 : }
2026 :
2027 283 : static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2028 : struct btrfs_fs_devices *fs_devices)
2029 : {
2030 283 : int ret;
2031 283 : struct btrfs_tree_parent_check check = { 0 };
2032 283 : struct btrfs_root *log_tree_root;
2033 283 : struct btrfs_super_block *disk_super = fs_info->super_copy;
2034 283 : u64 bytenr = btrfs_super_log_root(disk_super);
2035 283 : int level = btrfs_super_log_root_level(disk_super);
2036 :
2037 283 : if (fs_devices->rw_devices == 0) {
2038 0 : btrfs_warn(fs_info, "log replay required on RO media");
2039 0 : return -EIO;
2040 : }
2041 :
2042 283 : log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2043 : GFP_KERNEL);
2044 283 : if (!log_tree_root)
2045 : return -ENOMEM;
2046 :
2047 283 : check.level = level;
2048 283 : check.transid = fs_info->generation + 1;
2049 283 : check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2050 283 : log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2051 283 : if (IS_ERR(log_tree_root->node)) {
2052 0 : btrfs_warn(fs_info, "failed to read log tree");
2053 0 : ret = PTR_ERR(log_tree_root->node);
2054 0 : log_tree_root->node = NULL;
2055 0 : btrfs_put_root(log_tree_root);
2056 0 : return ret;
2057 : }
2058 566 : if (!extent_buffer_uptodate(log_tree_root->node)) {
2059 0 : btrfs_err(fs_info, "failed to read log tree");
2060 0 : btrfs_put_root(log_tree_root);
2061 0 : return -EIO;
2062 : }
2063 :
2064 : /* returns with log_tree_root freed on success */
2065 283 : ret = btrfs_recover_log_trees(log_tree_root);
2066 283 : if (ret) {
2067 0 : btrfs_handle_fs_error(fs_info, ret,
2068 : "Failed to recover log tree");
2069 0 : btrfs_put_root(log_tree_root);
2070 0 : return ret;
2071 : }
2072 :
2073 283 : if (sb_rdonly(fs_info->sb)) {
2074 0 : ret = btrfs_commit_super(fs_info);
2075 0 : if (ret)
2076 0 : return ret;
2077 : }
2078 :
2079 : return 0;
2080 : }
2081 :
2082 9639 : static int load_global_roots_objectid(struct btrfs_root *tree_root,
2083 : struct btrfs_path *path, u64 objectid,
2084 : const char *name)
2085 : {
2086 9639 : struct btrfs_fs_info *fs_info = tree_root->fs_info;
2087 9639 : struct btrfs_root *root;
2088 9639 : u64 max_global_id = 0;
2089 9639 : int ret;
2090 9639 : struct btrfs_key key = {
2091 : .objectid = objectid,
2092 : .type = BTRFS_ROOT_ITEM_KEY,
2093 : .offset = 0,
2094 : };
2095 9639 : bool found = false;
2096 :
2097 : /* If we have IGNOREDATACSUMS skip loading these roots. */
2098 9639 : if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2099 3215 : btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2100 0 : set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2101 0 : return 0;
2102 : }
2103 :
2104 28917 : while (1) {
2105 19278 : ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2106 19278 : if (ret < 0)
2107 : break;
2108 :
2109 19278 : if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2110 0 : ret = btrfs_next_leaf(tree_root, path);
2111 0 : if (ret) {
2112 0 : if (ret > 0)
2113 : ret = 0;
2114 : break;
2115 : }
2116 : }
2117 19278 : ret = 0;
2118 :
2119 19278 : btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2120 19278 : if (key.objectid != objectid)
2121 : break;
2122 9639 : btrfs_release_path(path);
2123 :
2124 : /*
2125 : * Just worry about this for extent tree, it'll be the same for
2126 : * everybody.
2127 : */
2128 9639 : if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2129 3215 : max_global_id = max(max_global_id, key.offset);
2130 :
2131 9639 : found = true;
2132 9639 : root = read_tree_root_path(tree_root, path, &key);
2133 9639 : if (IS_ERR(root)) {
2134 0 : if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2135 0 : ret = PTR_ERR(root);
2136 : break;
2137 : }
2138 9639 : set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2139 9639 : ret = btrfs_global_root_insert(root);
2140 9639 : if (ret) {
2141 0 : btrfs_put_root(root);
2142 0 : break;
2143 : }
2144 9639 : key.offset++;
2145 : }
2146 9639 : btrfs_release_path(path);
2147 :
2148 9639 : if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2149 3215 : fs_info->nr_global_roots = max_global_id + 1;
2150 :
2151 9639 : if (!found || ret) {
2152 0 : if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2153 0 : set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2154 :
2155 0 : if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2156 0 : ret = ret ? ret : -ENOENT;
2157 : else
2158 : ret = 0;
2159 0 : btrfs_err(fs_info, "failed to load root %s", name);
2160 : }
2161 : return ret;
2162 : }
2163 :
2164 3215 : static int load_global_roots(struct btrfs_root *tree_root)
2165 : {
2166 3215 : struct btrfs_path *path;
2167 3215 : int ret = 0;
2168 :
2169 3215 : path = btrfs_alloc_path();
2170 3215 : if (!path)
2171 : return -ENOMEM;
2172 :
2173 3215 : ret = load_global_roots_objectid(tree_root, path,
2174 : BTRFS_EXTENT_TREE_OBJECTID, "extent");
2175 3215 : if (ret)
2176 0 : goto out;
2177 3215 : ret = load_global_roots_objectid(tree_root, path,
2178 : BTRFS_CSUM_TREE_OBJECTID, "csum");
2179 3215 : if (ret)
2180 0 : goto out;
2181 3215 : if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2182 6 : goto out;
2183 3209 : ret = load_global_roots_objectid(tree_root, path,
2184 : BTRFS_FREE_SPACE_TREE_OBJECTID,
2185 : "free space");
2186 3215 : out:
2187 3215 : btrfs_free_path(path);
2188 3215 : return ret;
2189 : }
2190 :
2191 3215 : static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2192 : {
2193 3215 : struct btrfs_root *tree_root = fs_info->tree_root;
2194 3215 : struct btrfs_root *root;
2195 3215 : struct btrfs_key location;
2196 3215 : int ret;
2197 :
2198 3215 : BUG_ON(!fs_info->tree_root);
2199 :
2200 3215 : ret = load_global_roots(tree_root);
2201 3215 : if (ret)
2202 : return ret;
2203 :
2204 3215 : location.type = BTRFS_ROOT_ITEM_KEY;
2205 3215 : location.offset = 0;
2206 :
2207 3215 : if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2208 0 : location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2209 0 : root = btrfs_read_tree_root(tree_root, &location);
2210 0 : if (IS_ERR(root)) {
2211 0 : if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2212 0 : ret = PTR_ERR(root);
2213 0 : goto out;
2214 : }
2215 : } else {
2216 0 : set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2217 0 : fs_info->block_group_root = root;
2218 : }
2219 : }
2220 :
2221 3215 : location.objectid = BTRFS_DEV_TREE_OBJECTID;
2222 3215 : root = btrfs_read_tree_root(tree_root, &location);
2223 3215 : if (IS_ERR(root)) {
2224 0 : if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2225 0 : ret = PTR_ERR(root);
2226 0 : goto out;
2227 : }
2228 : } else {
2229 3215 : set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2230 3215 : fs_info->dev_root = root;
2231 : }
2232 : /* Initialize fs_info for all devices in any case */
2233 3215 : ret = btrfs_init_devices_late(fs_info);
2234 3215 : if (ret)
2235 0 : goto out;
2236 :
2237 : /*
2238 : * This tree can share blocks with some other fs tree during relocation
2239 : * and we need a proper setup by btrfs_get_fs_root
2240 : */
2241 3215 : root = btrfs_get_fs_root(tree_root->fs_info,
2242 : BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2243 3215 : if (IS_ERR(root)) {
2244 0 : if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2245 0 : ret = PTR_ERR(root);
2246 0 : goto out;
2247 : }
2248 : } else {
2249 3215 : set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2250 3215 : fs_info->data_reloc_root = root;
2251 : }
2252 :
2253 3215 : location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2254 3215 : root = btrfs_read_tree_root(tree_root, &location);
2255 3215 : if (!IS_ERR(root)) {
2256 22 : set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2257 22 : set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2258 22 : fs_info->quota_root = root;
2259 : }
2260 :
2261 3215 : location.objectid = BTRFS_UUID_TREE_OBJECTID;
2262 3215 : root = btrfs_read_tree_root(tree_root, &location);
2263 3215 : if (IS_ERR(root)) {
2264 3 : if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2265 3 : ret = PTR_ERR(root);
2266 3 : if (ret != -ENOENT)
2267 0 : goto out;
2268 : }
2269 : } else {
2270 3212 : set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2271 3212 : fs_info->uuid_root = root;
2272 : }
2273 :
2274 : return 0;
2275 0 : out:
2276 0 : btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2277 : location.objectid, ret);
2278 0 : return ret;
2279 : }
2280 :
2281 : /*
2282 : * Real super block validation
2283 : * NOTE: super csum type and incompat features will not be checked here.
2284 : *
2285 : * @sb: super block to check
2286 : * @mirror_num: the super block number to check its bytenr:
2287 : * 0 the primary (1st) sb
2288 : * 1, 2 2nd and 3rd backup copy
2289 : * -1 skip bytenr check
2290 : */
2291 445889 : int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2292 : struct btrfs_super_block *sb, int mirror_num)
2293 : {
2294 445889 : u64 nodesize = btrfs_super_nodesize(sb);
2295 445889 : u64 sectorsize = btrfs_super_sectorsize(sb);
2296 445889 : int ret = 0;
2297 :
2298 445889 : if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2299 0 : btrfs_err(fs_info, "no valid FS found");
2300 0 : ret = -EINVAL;
2301 : }
2302 445889 : if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2303 0 : btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2304 : btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2305 0 : ret = -EINVAL;
2306 : }
2307 445889 : if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2308 0 : btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2309 : btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2310 0 : ret = -EINVAL;
2311 : }
2312 445889 : if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2313 0 : btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2314 : btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2315 0 : ret = -EINVAL;
2316 : }
2317 445889 : if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2318 0 : btrfs_err(fs_info, "log_root level too big: %d >= %d",
2319 : btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2320 0 : ret = -EINVAL;
2321 : }
2322 :
2323 : /*
2324 : * Check sectorsize and nodesize first, other check will need it.
2325 : * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2326 : */
2327 891778 : if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2328 : sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2329 0 : btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2330 0 : ret = -EINVAL;
2331 : }
2332 :
2333 : /*
2334 : * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2335 : *
2336 : * We can support 16K sectorsize with 64K page size without problem,
2337 : * but such sectorsize/pagesize combination doesn't make much sense.
2338 : * 4K will be our future standard, PAGE_SIZE is supported from the very
2339 : * beginning.
2340 : */
2341 445889 : if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2342 0 : btrfs_err(fs_info,
2343 : "sectorsize %llu not yet supported for page size %lu",
2344 : sectorsize, PAGE_SIZE);
2345 0 : ret = -EINVAL;
2346 : }
2347 :
2348 891778 : if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2349 445889 : nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2350 0 : btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2351 0 : ret = -EINVAL;
2352 : }
2353 445889 : if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2354 0 : btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2355 : le32_to_cpu(sb->__unused_leafsize), nodesize);
2356 0 : ret = -EINVAL;
2357 : }
2358 :
2359 : /* Root alignment check */
2360 445889 : if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2361 0 : btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2362 : btrfs_super_root(sb));
2363 0 : ret = -EINVAL;
2364 : }
2365 445889 : if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2366 0 : btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2367 : btrfs_super_chunk_root(sb));
2368 0 : ret = -EINVAL;
2369 : }
2370 445889 : if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2371 0 : btrfs_warn(fs_info, "log_root block unaligned: %llu",
2372 : btrfs_super_log_root(sb));
2373 0 : ret = -EINVAL;
2374 : }
2375 :
2376 891778 : if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2377 : BTRFS_FSID_SIZE)) {
2378 0 : btrfs_err(fs_info,
2379 : "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2380 : fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2381 0 : ret = -EINVAL;
2382 : }
2383 :
2384 445889 : if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2385 0 : memcmp(fs_info->fs_devices->metadata_uuid,
2386 0 : fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2387 0 : btrfs_err(fs_info,
2388 : "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2389 : fs_info->super_copy->metadata_uuid,
2390 : fs_info->fs_devices->metadata_uuid);
2391 0 : ret = -EINVAL;
2392 : }
2393 :
2394 891778 : if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2395 : BTRFS_FSID_SIZE) != 0) {
2396 0 : btrfs_err(fs_info,
2397 : "dev_item UUID does not match metadata fsid: %pU != %pU",
2398 : fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2399 0 : ret = -EINVAL;
2400 : }
2401 :
2402 : /*
2403 : * Artificial requirement for block-group-tree to force newer features
2404 : * (free-space-tree, no-holes) so the test matrix is smaller.
2405 : */
2406 445889 : if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2407 0 : (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2408 0 : !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2409 0 : btrfs_err(fs_info,
2410 : "block-group-tree feature requires fres-space-tree and no-holes");
2411 0 : ret = -EINVAL;
2412 : }
2413 :
2414 : /*
2415 : * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2416 : * done later
2417 : */
2418 445889 : if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2419 0 : btrfs_err(fs_info, "bytes_used is too small %llu",
2420 : btrfs_super_bytes_used(sb));
2421 0 : ret = -EINVAL;
2422 : }
2423 891778 : if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2424 0 : btrfs_err(fs_info, "invalid stripesize %u",
2425 : btrfs_super_stripesize(sb));
2426 0 : ret = -EINVAL;
2427 : }
2428 445889 : if (btrfs_super_num_devices(sb) > (1UL << 31))
2429 0 : btrfs_warn(fs_info, "suspicious number of devices: %llu",
2430 : btrfs_super_num_devices(sb));
2431 445889 : if (btrfs_super_num_devices(sb) == 0) {
2432 0 : btrfs_err(fs_info, "number of devices is 0");
2433 0 : ret = -EINVAL;
2434 : }
2435 :
2436 449177 : if (mirror_num >= 0 &&
2437 : btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2438 0 : btrfs_err(fs_info, "super offset mismatch %llu != %u",
2439 : btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2440 0 : ret = -EINVAL;
2441 : }
2442 :
2443 : /*
2444 : * Obvious sys_chunk_array corruptions, it must hold at least one key
2445 : * and one chunk
2446 : */
2447 445889 : if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2448 0 : btrfs_err(fs_info, "system chunk array too big %u > %u",
2449 : btrfs_super_sys_array_size(sb),
2450 : BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2451 0 : ret = -EINVAL;
2452 : }
2453 445889 : if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2454 : + sizeof(struct btrfs_chunk)) {
2455 0 : btrfs_err(fs_info, "system chunk array too small %u < %zu",
2456 : btrfs_super_sys_array_size(sb),
2457 : sizeof(struct btrfs_disk_key)
2458 : + sizeof(struct btrfs_chunk));
2459 0 : ret = -EINVAL;
2460 : }
2461 :
2462 : /*
2463 : * The generation is a global counter, we'll trust it more than the others
2464 : * but it's still possible that it's the one that's wrong.
2465 : */
2466 445889 : if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2467 0 : btrfs_warn(fs_info,
2468 : "suspicious: generation < chunk_root_generation: %llu < %llu",
2469 : btrfs_super_generation(sb),
2470 : btrfs_super_chunk_root_generation(sb));
2471 445889 : if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2472 3 : && btrfs_super_cache_generation(sb) != (u64)-1)
2473 0 : btrfs_warn(fs_info,
2474 : "suspicious: generation < cache_generation: %llu < %llu",
2475 : btrfs_super_generation(sb),
2476 : btrfs_super_cache_generation(sb));
2477 :
2478 445889 : return ret;
2479 : }
2480 :
2481 : /*
2482 : * Validation of super block at mount time.
2483 : * Some checks already done early at mount time, like csum type and incompat
2484 : * flags will be skipped.
2485 : */
2486 : static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2487 : {
2488 3242 : return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2489 : }
2490 :
2491 : /*
2492 : * Validation of super block at write time.
2493 : * Some checks like bytenr check will be skipped as their values will be
2494 : * overwritten soon.
2495 : * Extra checks like csum type and incompat flags will be done here.
2496 : */
2497 442595 : static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2498 : struct btrfs_super_block *sb)
2499 : {
2500 442595 : int ret;
2501 :
2502 442595 : ret = btrfs_validate_super(fs_info, sb, -1);
2503 442595 : if (ret < 0)
2504 0 : goto out;
2505 442595 : if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2506 0 : ret = -EUCLEAN;
2507 0 : btrfs_err(fs_info, "invalid csum type, has %u want %u",
2508 : btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2509 0 : goto out;
2510 : }
2511 442595 : if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2512 0 : ret = -EUCLEAN;
2513 0 : btrfs_err(fs_info,
2514 : "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2515 : btrfs_super_incompat_flags(sb),
2516 : (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2517 0 : goto out;
2518 : }
2519 442595 : out:
2520 442595 : if (ret < 0)
2521 0 : btrfs_err(fs_info,
2522 : "super block corruption detected before writing it to disk");
2523 442595 : return ret;
2524 : }
2525 :
2526 6432 : static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2527 : {
2528 6432 : struct btrfs_tree_parent_check check = {
2529 : .level = level,
2530 : .transid = gen,
2531 6432 : .owner_root = root->root_key.objectid
2532 : };
2533 6432 : int ret = 0;
2534 :
2535 6432 : root->node = read_tree_block(root->fs_info, bytenr, &check);
2536 6432 : if (IS_ERR(root->node)) {
2537 1 : ret = PTR_ERR(root->node);
2538 1 : root->node = NULL;
2539 1 : return ret;
2540 : }
2541 12862 : if (!extent_buffer_uptodate(root->node)) {
2542 0 : free_extent_buffer(root->node);
2543 0 : root->node = NULL;
2544 0 : return -EIO;
2545 : }
2546 :
2547 6431 : btrfs_set_root_node(&root->root_item, root->node);
2548 6431 : root->commit_root = btrfs_root_node(root);
2549 6431 : btrfs_set_root_refs(&root->root_item, 1);
2550 6431 : return ret;
2551 : }
2552 :
2553 3216 : static int load_important_roots(struct btrfs_fs_info *fs_info)
2554 : {
2555 3216 : struct btrfs_super_block *sb = fs_info->super_copy;
2556 3216 : u64 gen, bytenr;
2557 3216 : int level, ret;
2558 :
2559 3216 : bytenr = btrfs_super_root(sb);
2560 3216 : gen = btrfs_super_generation(sb);
2561 3216 : level = btrfs_super_root_level(sb);
2562 3216 : ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2563 3216 : if (ret) {
2564 1 : btrfs_warn(fs_info, "couldn't read tree root");
2565 1 : return ret;
2566 : }
2567 : return 0;
2568 : }
2569 :
2570 3216 : static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2571 : {
2572 3216 : int backup_index = find_newest_super_backup(fs_info);
2573 3216 : struct btrfs_super_block *sb = fs_info->super_copy;
2574 3216 : struct btrfs_root *tree_root = fs_info->tree_root;
2575 3216 : bool handle_error = false;
2576 3216 : int ret = 0;
2577 3216 : int i;
2578 :
2579 3217 : for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2580 3217 : if (handle_error) {
2581 1 : if (!IS_ERR(tree_root->node))
2582 1 : free_extent_buffer(tree_root->node);
2583 1 : tree_root->node = NULL;
2584 :
2585 1 : if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2586 : break;
2587 :
2588 0 : free_root_pointers(fs_info, 0);
2589 :
2590 : /*
2591 : * Don't use the log in recovery mode, it won't be
2592 : * valid
2593 : */
2594 0 : btrfs_set_super_log_root(sb, 0);
2595 :
2596 : /* We can't trust the free space cache either */
2597 0 : btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2598 :
2599 0 : btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2600 0 : ret = read_backup_root(fs_info, i);
2601 0 : backup_index = ret;
2602 0 : if (ret < 0)
2603 0 : return ret;
2604 : }
2605 :
2606 3216 : ret = load_important_roots(fs_info);
2607 3216 : if (ret) {
2608 1 : handle_error = true;
2609 1 : continue;
2610 : }
2611 :
2612 : /*
2613 : * No need to hold btrfs_root::objectid_mutex since the fs
2614 : * hasn't been fully initialised and we are the only user
2615 : */
2616 3215 : ret = btrfs_init_root_free_objectid(tree_root);
2617 3215 : if (ret < 0) {
2618 0 : handle_error = true;
2619 0 : continue;
2620 : }
2621 :
2622 3215 : ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2623 :
2624 3215 : ret = btrfs_read_roots(fs_info);
2625 3215 : if (ret < 0) {
2626 0 : handle_error = true;
2627 0 : continue;
2628 : }
2629 :
2630 : /* All successful */
2631 3215 : fs_info->generation = btrfs_header_generation(tree_root->node);
2632 3215 : fs_info->last_trans_committed = fs_info->generation;
2633 3215 : fs_info->last_reloc_trans = 0;
2634 :
2635 : /* Always begin writing backup roots after the one being used */
2636 3215 : if (backup_index < 0) {
2637 0 : fs_info->backup_root_index = 0;
2638 : } else {
2639 3215 : fs_info->backup_root_index = backup_index + 1;
2640 3215 : fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2641 : }
2642 : break;
2643 : }
2644 :
2645 : return ret;
2646 : }
2647 :
2648 3472 : void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2649 : {
2650 3472 : INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2651 3472 : INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2652 3472 : INIT_LIST_HEAD(&fs_info->trans_list);
2653 3472 : INIT_LIST_HEAD(&fs_info->dead_roots);
2654 3472 : INIT_LIST_HEAD(&fs_info->delayed_iputs);
2655 3472 : INIT_LIST_HEAD(&fs_info->delalloc_roots);
2656 3472 : INIT_LIST_HEAD(&fs_info->caching_block_groups);
2657 3472 : spin_lock_init(&fs_info->delalloc_root_lock);
2658 3472 : spin_lock_init(&fs_info->trans_lock);
2659 3472 : spin_lock_init(&fs_info->fs_roots_radix_lock);
2660 3472 : spin_lock_init(&fs_info->delayed_iput_lock);
2661 3472 : spin_lock_init(&fs_info->defrag_inodes_lock);
2662 3472 : spin_lock_init(&fs_info->super_lock);
2663 3472 : spin_lock_init(&fs_info->buffer_lock);
2664 3472 : spin_lock_init(&fs_info->unused_bgs_lock);
2665 3472 : spin_lock_init(&fs_info->treelog_bg_lock);
2666 3472 : spin_lock_init(&fs_info->zone_active_bgs_lock);
2667 3472 : spin_lock_init(&fs_info->relocation_bg_lock);
2668 3472 : rwlock_init(&fs_info->tree_mod_log_lock);
2669 3472 : rwlock_init(&fs_info->global_root_lock);
2670 3472 : mutex_init(&fs_info->unused_bg_unpin_mutex);
2671 3472 : mutex_init(&fs_info->reclaim_bgs_lock);
2672 3472 : mutex_init(&fs_info->reloc_mutex);
2673 3472 : mutex_init(&fs_info->delalloc_root_mutex);
2674 3472 : mutex_init(&fs_info->zoned_meta_io_lock);
2675 3472 : mutex_init(&fs_info->zoned_data_reloc_io_lock);
2676 3472 : seqlock_init(&fs_info->profiles_lock);
2677 :
2678 3472 : btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2679 3472 : btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2680 3472 : btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2681 3472 : btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2682 3472 : btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start,
2683 : BTRFS_LOCKDEP_TRANS_COMMIT_START);
2684 3472 : btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2685 : BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2686 3472 : btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2687 : BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2688 3472 : btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2689 : BTRFS_LOCKDEP_TRANS_COMPLETED);
2690 :
2691 3472 : INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2692 3472 : INIT_LIST_HEAD(&fs_info->space_info);
2693 3472 : INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2694 3472 : INIT_LIST_HEAD(&fs_info->unused_bgs);
2695 3472 : INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2696 3472 : INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2697 : #ifdef CONFIG_BTRFS_DEBUG
2698 : INIT_LIST_HEAD(&fs_info->allocated_roots);
2699 : INIT_LIST_HEAD(&fs_info->allocated_ebs);
2700 : spin_lock_init(&fs_info->eb_leak_lock);
2701 : #endif
2702 3472 : extent_map_tree_init(&fs_info->mapping_tree);
2703 3472 : btrfs_init_block_rsv(&fs_info->global_block_rsv,
2704 : BTRFS_BLOCK_RSV_GLOBAL);
2705 3472 : btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2706 3472 : btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2707 3472 : btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2708 3472 : btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2709 : BTRFS_BLOCK_RSV_DELOPS);
2710 3472 : btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2711 : BTRFS_BLOCK_RSV_DELREFS);
2712 :
2713 3472 : atomic_set(&fs_info->async_delalloc_pages, 0);
2714 3472 : atomic_set(&fs_info->defrag_running, 0);
2715 3472 : atomic_set(&fs_info->nr_delayed_iputs, 0);
2716 3472 : atomic64_set(&fs_info->tree_mod_seq, 0);
2717 3472 : fs_info->global_root_tree = RB_ROOT;
2718 3472 : fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2719 3472 : fs_info->metadata_ratio = 0;
2720 3472 : fs_info->defrag_inodes = RB_ROOT;
2721 3472 : atomic64_set(&fs_info->free_chunk_space, 0);
2722 3472 : fs_info->tree_mod_log = RB_ROOT;
2723 3472 : fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2724 3472 : btrfs_init_ref_verify(fs_info);
2725 :
2726 3472 : fs_info->thread_pool_size = min_t(unsigned long,
2727 : num_online_cpus() + 2, 8);
2728 :
2729 3472 : INIT_LIST_HEAD(&fs_info->ordered_roots);
2730 3472 : spin_lock_init(&fs_info->ordered_root_lock);
2731 :
2732 3472 : btrfs_init_scrub(fs_info);
2733 : #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2734 : fs_info->check_integrity_print_mask = 0;
2735 : #endif
2736 3472 : btrfs_init_balance(fs_info);
2737 3472 : btrfs_init_async_reclaim_work(fs_info);
2738 :
2739 3472 : rwlock_init(&fs_info->block_group_cache_lock);
2740 3472 : fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2741 :
2742 3472 : extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2743 : IO_TREE_FS_EXCLUDED_EXTENTS);
2744 :
2745 3472 : mutex_init(&fs_info->ordered_operations_mutex);
2746 3472 : mutex_init(&fs_info->tree_log_mutex);
2747 3472 : mutex_init(&fs_info->chunk_mutex);
2748 3472 : mutex_init(&fs_info->transaction_kthread_mutex);
2749 3472 : mutex_init(&fs_info->cleaner_mutex);
2750 3472 : mutex_init(&fs_info->ro_block_group_mutex);
2751 3472 : init_rwsem(&fs_info->commit_root_sem);
2752 3472 : init_rwsem(&fs_info->cleanup_work_sem);
2753 3472 : init_rwsem(&fs_info->subvol_sem);
2754 3472 : sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2755 :
2756 3472 : btrfs_init_dev_replace_locks(fs_info);
2757 3472 : btrfs_init_qgroup(fs_info);
2758 3472 : btrfs_discard_init(fs_info);
2759 :
2760 3472 : btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2761 3472 : btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2762 :
2763 3472 : init_waitqueue_head(&fs_info->transaction_throttle);
2764 3472 : init_waitqueue_head(&fs_info->transaction_wait);
2765 3472 : init_waitqueue_head(&fs_info->transaction_blocked_wait);
2766 3472 : init_waitqueue_head(&fs_info->async_submit_wait);
2767 3472 : init_waitqueue_head(&fs_info->delayed_iputs_wait);
2768 :
2769 : /* Usable values until the real ones are cached from the superblock */
2770 3472 : fs_info->nodesize = 4096;
2771 3472 : fs_info->sectorsize = 4096;
2772 3472 : fs_info->sectorsize_bits = ilog2(4096);
2773 3472 : fs_info->stripesize = 4096;
2774 :
2775 3472 : fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2776 :
2777 3472 : spin_lock_init(&fs_info->swapfile_pins_lock);
2778 3472 : fs_info->swapfile_pins = RB_ROOT;
2779 :
2780 3472 : fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2781 3472 : INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2782 3472 : }
2783 :
2784 3242 : static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2785 : {
2786 3242 : int ret;
2787 :
2788 3242 : fs_info->sb = sb;
2789 3242 : sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2790 3242 : sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2791 :
2792 3242 : ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2793 3242 : if (ret)
2794 : return ret;
2795 :
2796 3242 : ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2797 3242 : if (ret)
2798 : return ret;
2799 :
2800 0 : fs_info->dirty_metadata_batch = PAGE_SIZE *
2801 3242 : (1 + ilog2(nr_cpu_ids));
2802 :
2803 3242 : ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2804 3242 : if (ret)
2805 : return ret;
2806 :
2807 3242 : ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2808 : GFP_KERNEL);
2809 3242 : if (ret)
2810 : return ret;
2811 :
2812 3242 : fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2813 : GFP_KERNEL);
2814 3242 : if (!fs_info->delayed_root)
2815 : return -ENOMEM;
2816 3242 : btrfs_init_delayed_root(fs_info->delayed_root);
2817 :
2818 3242 : if (sb_rdonly(sb))
2819 38 : set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2820 :
2821 3242 : return btrfs_alloc_stripe_hash_table(fs_info);
2822 : }
2823 :
2824 991 : static int btrfs_uuid_rescan_kthread(void *data)
2825 : {
2826 991 : struct btrfs_fs_info *fs_info = data;
2827 991 : int ret;
2828 :
2829 : /*
2830 : * 1st step is to iterate through the existing UUID tree and
2831 : * to delete all entries that contain outdated data.
2832 : * 2nd step is to add all missing entries to the UUID tree.
2833 : */
2834 991 : ret = btrfs_uuid_tree_iterate(fs_info);
2835 991 : if (ret < 0) {
2836 0 : if (ret != -EINTR)
2837 0 : btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2838 : ret);
2839 0 : up(&fs_info->uuid_tree_rescan_sem);
2840 0 : return ret;
2841 : }
2842 991 : return btrfs_uuid_scan_kthread(data);
2843 : }
2844 :
2845 991 : static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2846 : {
2847 991 : struct task_struct *task;
2848 :
2849 991 : down(&fs_info->uuid_tree_rescan_sem);
2850 991 : task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2851 991 : if (IS_ERR(task)) {
2852 : /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2853 0 : btrfs_warn(fs_info, "failed to start uuid_rescan task");
2854 0 : up(&fs_info->uuid_tree_rescan_sem);
2855 0 : return PTR_ERR(task);
2856 : }
2857 :
2858 : return 0;
2859 : }
2860 :
2861 : /*
2862 : * Some options only have meaning at mount time and shouldn't persist across
2863 : * remounts, or be displayed. Clear these at the end of mount and remount
2864 : * code paths.
2865 : */
2866 118 : void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
2867 : {
2868 3333 : btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
2869 3333 : btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
2870 118 : }
2871 :
2872 : /*
2873 : * Mounting logic specific to read-write file systems. Shared by open_ctree
2874 : * and btrfs_remount when remounting from read-only to read-write.
2875 : */
2876 3179 : int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2877 : {
2878 3179 : int ret;
2879 3179 : const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2880 3179 : bool rebuild_free_space_tree = false;
2881 :
2882 3179 : if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2883 10 : btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2884 : rebuild_free_space_tree = true;
2885 3170 : } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2886 3164 : !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2887 0 : btrfs_warn(fs_info, "free space tree is invalid");
2888 0 : rebuild_free_space_tree = true;
2889 : }
2890 :
2891 0 : if (rebuild_free_space_tree) {
2892 9 : btrfs_info(fs_info, "rebuilding free space tree");
2893 9 : ret = btrfs_rebuild_free_space_tree(fs_info);
2894 9 : if (ret) {
2895 0 : btrfs_warn(fs_info,
2896 : "failed to rebuild free space tree: %d", ret);
2897 0 : goto out;
2898 : }
2899 : }
2900 :
2901 3179 : if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2902 3173 : !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
2903 5 : btrfs_info(fs_info, "disabling free space tree");
2904 5 : ret = btrfs_delete_free_space_tree(fs_info);
2905 5 : if (ret) {
2906 0 : btrfs_warn(fs_info,
2907 : "failed to disable free space tree: %d", ret);
2908 0 : goto out;
2909 : }
2910 : }
2911 :
2912 : /*
2913 : * btrfs_find_orphan_roots() is responsible for finding all the dead
2914 : * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
2915 : * them into the fs_info->fs_roots_radix tree. This must be done before
2916 : * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
2917 : * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
2918 : * item before the root's tree is deleted - this means that if we unmount
2919 : * or crash before the deletion completes, on the next mount we will not
2920 : * delete what remains of the tree because the orphan item does not
2921 : * exists anymore, which is what tells us we have a pending deletion.
2922 : */
2923 3179 : ret = btrfs_find_orphan_roots(fs_info);
2924 3179 : if (ret)
2925 0 : goto out;
2926 :
2927 3179 : ret = btrfs_cleanup_fs_roots(fs_info);
2928 3179 : if (ret)
2929 0 : goto out;
2930 :
2931 3179 : down_read(&fs_info->cleanup_work_sem);
2932 6358 : if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2933 3179 : (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2934 0 : up_read(&fs_info->cleanup_work_sem);
2935 0 : goto out;
2936 : }
2937 3179 : up_read(&fs_info->cleanup_work_sem);
2938 :
2939 3179 : mutex_lock(&fs_info->cleaner_mutex);
2940 3179 : ret = btrfs_recover_relocation(fs_info);
2941 3179 : mutex_unlock(&fs_info->cleaner_mutex);
2942 3179 : if (ret < 0) {
2943 0 : btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
2944 0 : goto out;
2945 : }
2946 :
2947 3179 : if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
2948 3170 : !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2949 2 : btrfs_info(fs_info, "creating free space tree");
2950 2 : ret = btrfs_create_free_space_tree(fs_info);
2951 2 : if (ret) {
2952 0 : btrfs_warn(fs_info,
2953 : "failed to create free space tree: %d", ret);
2954 0 : goto out;
2955 : }
2956 : }
2957 :
2958 3179 : if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
2959 2 : ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
2960 2 : if (ret)
2961 0 : goto out;
2962 : }
2963 :
2964 3179 : ret = btrfs_resume_balance_async(fs_info);
2965 3179 : if (ret)
2966 0 : goto out;
2967 :
2968 3179 : ret = btrfs_resume_dev_replace_async(fs_info);
2969 3179 : if (ret) {
2970 0 : btrfs_warn(fs_info, "failed to resume dev_replace");
2971 0 : goto out;
2972 : }
2973 :
2974 3179 : btrfs_qgroup_rescan_resume(fs_info);
2975 :
2976 3179 : if (!fs_info->uuid_root) {
2977 3 : btrfs_info(fs_info, "creating UUID tree");
2978 3 : ret = btrfs_create_uuid_tree(fs_info);
2979 3 : if (ret) {
2980 0 : btrfs_warn(fs_info,
2981 : "failed to create the UUID tree %d", ret);
2982 0 : goto out;
2983 : }
2984 : }
2985 :
2986 3179 : out:
2987 3179 : return ret;
2988 : }
2989 :
2990 : /*
2991 : * Do various sanity and dependency checks of different features.
2992 : *
2993 : * @is_rw_mount: If the mount is read-write.
2994 : *
2995 : * This is the place for less strict checks (like for subpage or artificial
2996 : * feature dependencies).
2997 : *
2998 : * For strict checks or possible corruption detection, see
2999 : * btrfs_validate_super().
3000 : *
3001 : * This should be called after btrfs_parse_options(), as some mount options
3002 : * (space cache related) can modify on-disk format like free space tree and
3003 : * screw up certain feature dependencies.
3004 : */
3005 3334 : int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3006 : {
3007 3334 : struct btrfs_super_block *disk_super = fs_info->super_copy;
3008 3334 : u64 incompat = btrfs_super_incompat_flags(disk_super);
3009 3334 : const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3010 3334 : const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3011 :
3012 3334 : if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3013 0 : btrfs_err(fs_info,
3014 : "cannot mount because of unknown incompat features (0x%llx)",
3015 : incompat);
3016 0 : return -EINVAL;
3017 : }
3018 :
3019 : /* Runtime limitation for mixed block groups. */
3020 3334 : if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3021 30 : (fs_info->sectorsize != fs_info->nodesize)) {
3022 0 : btrfs_err(fs_info,
3023 : "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3024 : fs_info->nodesize, fs_info->sectorsize);
3025 0 : return -EINVAL;
3026 : }
3027 :
3028 : /* Mixed backref is an always-enabled feature. */
3029 3334 : incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3030 :
3031 : /* Set compression related flags just in case. */
3032 3334 : if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3033 19 : incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3034 3315 : else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3035 10 : incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3036 :
3037 : /*
3038 : * An ancient flag, which should really be marked deprecated.
3039 : * Such runtime limitation doesn't really need a incompat flag.
3040 : */
3041 3334 : if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3042 3304 : incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3043 :
3044 3334 : if (compat_ro_unsupp && is_rw_mount) {
3045 0 : btrfs_err(fs_info,
3046 : "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3047 : compat_ro);
3048 0 : return -EINVAL;
3049 : }
3050 :
3051 : /*
3052 : * We have unsupported RO compat features, although RO mounted, we
3053 : * should not cause any metadata writes, including log replay.
3054 : * Or we could screw up whatever the new feature requires.
3055 : */
3056 3334 : if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3057 0 : !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3058 0 : btrfs_err(fs_info,
3059 : "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3060 : compat_ro);
3061 0 : return -EINVAL;
3062 : }
3063 :
3064 : /*
3065 : * Artificial limitations for block group tree, to force
3066 : * block-group-tree to rely on no-holes and free-space-tree.
3067 : */
3068 3334 : if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3069 0 : (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3070 0 : !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3071 0 : btrfs_err(fs_info,
3072 : "block-group-tree feature requires no-holes and free-space-tree features");
3073 0 : return -EINVAL;
3074 : }
3075 :
3076 : /*
3077 : * Subpage runtime limitation on v1 cache.
3078 : *
3079 : * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3080 : * we're already defaulting to v2 cache, no need to bother v1 as it's
3081 : * going to be deprecated anyway.
3082 : */
3083 3334 : if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3084 0 : btrfs_warn(fs_info,
3085 : "v1 space cache is not supported for page size %lu with sectorsize %u",
3086 : PAGE_SIZE, fs_info->sectorsize);
3087 0 : return -EINVAL;
3088 : }
3089 :
3090 : /* This can be called by remount, we need to protect the super block. */
3091 3334 : spin_lock(&fs_info->super_lock);
3092 3334 : btrfs_set_super_incompat_flags(disk_super, incompat);
3093 3334 : spin_unlock(&fs_info->super_lock);
3094 :
3095 3334 : return 0;
3096 : }
3097 :
3098 3242 : int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3099 : char *options)
3100 : {
3101 3242 : u32 sectorsize;
3102 3242 : u32 nodesize;
3103 3242 : u32 stripesize;
3104 3242 : u64 generation;
3105 3242 : u64 features;
3106 3242 : u16 csum_type;
3107 3242 : struct btrfs_super_block *disk_super;
3108 3242 : struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3109 3242 : struct btrfs_root *tree_root;
3110 3242 : struct btrfs_root *chunk_root;
3111 3242 : int ret;
3112 3242 : int level;
3113 :
3114 3242 : ret = init_mount_fs_info(fs_info, sb);
3115 3242 : if (ret)
3116 0 : goto fail;
3117 :
3118 : /* These need to be init'ed before we start creating inodes and such. */
3119 3242 : tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3120 : GFP_KERNEL);
3121 3242 : fs_info->tree_root = tree_root;
3122 3242 : chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3123 : GFP_KERNEL);
3124 3242 : fs_info->chunk_root = chunk_root;
3125 3242 : if (!tree_root || !chunk_root) {
3126 0 : ret = -ENOMEM;
3127 0 : goto fail;
3128 : }
3129 :
3130 3242 : ret = btrfs_init_btree_inode(sb);
3131 3242 : if (ret)
3132 0 : goto fail;
3133 :
3134 3242 : invalidate_bdev(fs_devices->latest_dev->bdev);
3135 :
3136 : /*
3137 : * Read super block and check the signature bytes only
3138 : */
3139 3242 : disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3140 3242 : if (IS_ERR(disk_super)) {
3141 0 : ret = PTR_ERR(disk_super);
3142 0 : goto fail_alloc;
3143 : }
3144 :
3145 : /*
3146 : * Verify the type first, if that or the checksum value are
3147 : * corrupted, we'll find out
3148 : */
3149 3242 : csum_type = btrfs_super_csum_type(disk_super);
3150 3242 : if (!btrfs_supported_super_csum(csum_type)) {
3151 0 : btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3152 : csum_type);
3153 0 : ret = -EINVAL;
3154 0 : btrfs_release_disk_super(disk_super);
3155 0 : goto fail_alloc;
3156 : }
3157 :
3158 3242 : fs_info->csum_size = btrfs_super_csum_size(disk_super);
3159 :
3160 3242 : ret = btrfs_init_csum_hash(fs_info, csum_type);
3161 3242 : if (ret) {
3162 0 : btrfs_release_disk_super(disk_super);
3163 0 : goto fail_alloc;
3164 : }
3165 :
3166 : /*
3167 : * We want to check superblock checksum, the type is stored inside.
3168 : * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3169 : */
3170 3242 : if (btrfs_check_super_csum(fs_info, disk_super)) {
3171 0 : btrfs_err(fs_info, "superblock checksum mismatch");
3172 0 : ret = -EINVAL;
3173 0 : btrfs_release_disk_super(disk_super);
3174 0 : goto fail_alloc;
3175 : }
3176 :
3177 : /*
3178 : * super_copy is zeroed at allocation time and we never touch the
3179 : * following bytes up to INFO_SIZE, the checksum is calculated from
3180 : * the whole block of INFO_SIZE
3181 : */
3182 6484 : memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3183 3242 : btrfs_release_disk_super(disk_super);
3184 :
3185 3242 : disk_super = fs_info->super_copy;
3186 :
3187 :
3188 3242 : features = btrfs_super_flags(disk_super);
3189 3242 : if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3190 0 : features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3191 0 : btrfs_set_super_flags(disk_super, features);
3192 0 : btrfs_info(fs_info,
3193 : "found metadata UUID change in progress flag, clearing");
3194 : }
3195 :
3196 6484 : memcpy(fs_info->super_for_commit, fs_info->super_copy,
3197 : sizeof(*fs_info->super_for_commit));
3198 :
3199 3242 : ret = btrfs_validate_mount_super(fs_info);
3200 3242 : if (ret) {
3201 0 : btrfs_err(fs_info, "superblock contains fatal errors");
3202 0 : ret = -EINVAL;
3203 0 : goto fail_alloc;
3204 : }
3205 :
3206 3242 : if (!btrfs_super_root(disk_super)) {
3207 0 : btrfs_err(fs_info, "invalid superblock tree root bytenr");
3208 0 : ret = -EINVAL;
3209 0 : goto fail_alloc;
3210 : }
3211 :
3212 : /* check FS state, whether FS is broken. */
3213 3242 : if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3214 0 : set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3215 :
3216 : /*
3217 : * In the long term, we'll store the compression type in the super
3218 : * block, and it'll be used for per file compression control.
3219 : */
3220 3242 : fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3221 :
3222 :
3223 : /* Set up fs_info before parsing mount options */
3224 3242 : nodesize = btrfs_super_nodesize(disk_super);
3225 3242 : sectorsize = btrfs_super_sectorsize(disk_super);
3226 3242 : stripesize = sectorsize;
3227 3242 : fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3228 3242 : fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3229 :
3230 3242 : fs_info->nodesize = nodesize;
3231 3242 : fs_info->sectorsize = sectorsize;
3232 3242 : fs_info->sectorsize_bits = ilog2(sectorsize);
3233 3242 : fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3234 3242 : fs_info->stripesize = stripesize;
3235 :
3236 3242 : ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3237 3242 : if (ret)
3238 26 : goto fail_alloc;
3239 :
3240 3216 : ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3241 3216 : if (ret < 0)
3242 0 : goto fail_alloc;
3243 :
3244 3216 : if (sectorsize < PAGE_SIZE) {
3245 0 : struct btrfs_subpage_info *subpage_info;
3246 :
3247 : /*
3248 : * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3249 : * going to be deprecated.
3250 : *
3251 : * Force to use v2 cache for subpage case.
3252 : */
3253 0 : btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3254 0 : btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3255 : "forcing free space tree for sector size %u with page size %lu",
3256 : sectorsize, PAGE_SIZE);
3257 :
3258 0 : btrfs_warn(fs_info,
3259 : "read-write for sector size %u with page size %lu is experimental",
3260 : sectorsize, PAGE_SIZE);
3261 0 : subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3262 0 : if (!subpage_info) {
3263 0 : ret = -ENOMEM;
3264 0 : goto fail_alloc;
3265 : }
3266 0 : btrfs_init_subpage_info(subpage_info, sectorsize);
3267 0 : fs_info->subpage_info = subpage_info;
3268 : }
3269 :
3270 3216 : ret = btrfs_init_workqueues(fs_info);
3271 3216 : if (ret)
3272 0 : goto fail_sb_buffer;
3273 :
3274 3216 : sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3275 3216 : sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3276 :
3277 3216 : sb->s_blocksize = sectorsize;
3278 3216 : sb->s_blocksize_bits = blksize_bits(sectorsize);
3279 6432 : memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3280 :
3281 3216 : mutex_lock(&fs_info->chunk_mutex);
3282 3216 : ret = btrfs_read_sys_array(fs_info);
3283 3216 : mutex_unlock(&fs_info->chunk_mutex);
3284 3216 : if (ret) {
3285 0 : btrfs_err(fs_info, "failed to read the system array: %d", ret);
3286 0 : goto fail_sb_buffer;
3287 : }
3288 :
3289 3216 : generation = btrfs_super_chunk_root_generation(disk_super);
3290 3216 : level = btrfs_super_chunk_root_level(disk_super);
3291 3216 : ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3292 : generation, level);
3293 3216 : if (ret) {
3294 0 : btrfs_err(fs_info, "failed to read chunk root");
3295 0 : goto fail_tree_roots;
3296 : }
3297 :
3298 3216 : read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3299 : offsetof(struct btrfs_header, chunk_tree_uuid),
3300 : BTRFS_UUID_SIZE);
3301 :
3302 3216 : ret = btrfs_read_chunk_tree(fs_info);
3303 3216 : if (ret) {
3304 0 : btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3305 0 : goto fail_tree_roots;
3306 : }
3307 :
3308 : /*
3309 : * At this point we know all the devices that make this filesystem,
3310 : * including the seed devices but we don't know yet if the replace
3311 : * target is required. So free devices that are not part of this
3312 : * filesystem but skip the replace target device which is checked
3313 : * below in btrfs_init_dev_replace().
3314 : */
3315 3216 : btrfs_free_extra_devids(fs_devices);
3316 3216 : if (!fs_devices->latest_dev->bdev) {
3317 0 : btrfs_err(fs_info, "failed to read devices");
3318 0 : ret = -EIO;
3319 0 : goto fail_tree_roots;
3320 : }
3321 :
3322 3216 : ret = init_tree_roots(fs_info);
3323 3216 : if (ret)
3324 1 : goto fail_tree_roots;
3325 :
3326 : /*
3327 : * Get zone type information of zoned block devices. This will also
3328 : * handle emulation of a zoned filesystem if a regular device has the
3329 : * zoned incompat feature flag set.
3330 : */
3331 3215 : ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3332 3215 : if (ret) {
3333 0 : btrfs_err(fs_info,
3334 : "zoned: failed to read device zone info: %d", ret);
3335 0 : goto fail_block_groups;
3336 : }
3337 :
3338 : /*
3339 : * If we have a uuid root and we're not being told to rescan we need to
3340 : * check the generation here so we can set the
3341 : * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3342 : * transaction during a balance or the log replay without updating the
3343 : * uuid generation, and then if we crash we would rescan the uuid tree,
3344 : * even though it was perfectly fine.
3345 : */
3346 3215 : if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3347 3211 : fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3348 2224 : set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3349 :
3350 3215 : ret = btrfs_verify_dev_extents(fs_info);
3351 3215 : if (ret) {
3352 0 : btrfs_err(fs_info,
3353 : "failed to verify dev extents against chunks: %d",
3354 : ret);
3355 0 : goto fail_block_groups;
3356 : }
3357 3215 : ret = btrfs_recover_balance(fs_info);
3358 3215 : if (ret) {
3359 0 : btrfs_err(fs_info, "failed to recover balance: %d", ret);
3360 0 : goto fail_block_groups;
3361 : }
3362 :
3363 3215 : ret = btrfs_init_dev_stats(fs_info);
3364 3215 : if (ret) {
3365 0 : btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3366 0 : goto fail_block_groups;
3367 : }
3368 :
3369 3215 : ret = btrfs_init_dev_replace(fs_info);
3370 3215 : if (ret) {
3371 0 : btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3372 0 : goto fail_block_groups;
3373 : }
3374 :
3375 3215 : ret = btrfs_check_zoned_mode(fs_info);
3376 3215 : if (ret) {
3377 0 : btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3378 : ret);
3379 0 : goto fail_block_groups;
3380 : }
3381 :
3382 3215 : ret = btrfs_sysfs_add_fsid(fs_devices);
3383 3215 : if (ret) {
3384 0 : btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3385 : ret);
3386 0 : goto fail_block_groups;
3387 : }
3388 :
3389 3215 : ret = btrfs_sysfs_add_mounted(fs_info);
3390 3215 : if (ret) {
3391 0 : btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3392 0 : goto fail_fsdev_sysfs;
3393 : }
3394 :
3395 3215 : ret = btrfs_init_space_info(fs_info);
3396 3215 : if (ret) {
3397 0 : btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3398 0 : goto fail_sysfs;
3399 : }
3400 :
3401 3215 : ret = btrfs_read_block_groups(fs_info);
3402 3215 : if (ret) {
3403 0 : btrfs_err(fs_info, "failed to read block groups: %d", ret);
3404 0 : goto fail_sysfs;
3405 : }
3406 :
3407 3215 : btrfs_free_zone_cache(fs_info);
3408 :
3409 3215 : if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3410 0 : !btrfs_check_rw_degradable(fs_info, NULL)) {
3411 0 : btrfs_warn(fs_info,
3412 : "writable mount is not allowed due to too many missing devices");
3413 0 : ret = -EINVAL;
3414 0 : goto fail_sysfs;
3415 : }
3416 :
3417 3215 : fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3418 : "btrfs-cleaner");
3419 3215 : if (IS_ERR(fs_info->cleaner_kthread)) {
3420 0 : ret = PTR_ERR(fs_info->cleaner_kthread);
3421 0 : goto fail_sysfs;
3422 : }
3423 :
3424 3215 : fs_info->transaction_kthread = kthread_run(transaction_kthread,
3425 : tree_root,
3426 : "btrfs-transaction");
3427 3215 : if (IS_ERR(fs_info->transaction_kthread)) {
3428 0 : ret = PTR_ERR(fs_info->transaction_kthread);
3429 0 : goto fail_cleaner;
3430 : }
3431 :
3432 3215 : if (!btrfs_test_opt(fs_info, NOSSD) &&
3433 3213 : !fs_info->fs_devices->rotating) {
3434 16 : btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3435 : }
3436 :
3437 : /*
3438 : * For devices supporting discard turn on discard=async automatically,
3439 : * unless it's already set or disabled. This could be turned off by
3440 : * nodiscard for the same mount.
3441 : */
3442 3215 : if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
3443 : btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
3444 3206 : btrfs_test_opt(fs_info, NODISCARD)) &&
3445 3206 : fs_info->fs_devices->discardable) {
3446 3198 : btrfs_set_and_info(fs_info, DISCARD_ASYNC,
3447 : "auto enabling async discard");
3448 : }
3449 :
3450 : #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3451 : if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3452 : ret = btrfsic_mount(fs_info, fs_devices,
3453 : btrfs_test_opt(fs_info,
3454 : CHECK_INTEGRITY_DATA) ? 1 : 0,
3455 : fs_info->check_integrity_print_mask);
3456 : if (ret)
3457 : btrfs_warn(fs_info,
3458 : "failed to initialize integrity check module: %d",
3459 : ret);
3460 : }
3461 : #endif
3462 3215 : ret = btrfs_read_qgroup_config(fs_info);
3463 3215 : if (ret)
3464 0 : goto fail_trans_kthread;
3465 :
3466 3215 : if (btrfs_build_ref_tree(fs_info))
3467 : btrfs_err(fs_info, "couldn't build ref tree");
3468 :
3469 : /* do not make disk changes in broken FS or nologreplay is given */
3470 3215 : if (btrfs_super_log_root(disk_super) != 0 &&
3471 283 : !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3472 283 : btrfs_info(fs_info, "start tree-log replay");
3473 283 : ret = btrfs_replay_log(fs_info, fs_devices);
3474 283 : if (ret)
3475 0 : goto fail_qgroup;
3476 : }
3477 :
3478 3215 : fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3479 3215 : if (IS_ERR(fs_info->fs_root)) {
3480 0 : ret = PTR_ERR(fs_info->fs_root);
3481 0 : btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3482 0 : fs_info->fs_root = NULL;
3483 0 : goto fail_qgroup;
3484 : }
3485 :
3486 3215 : if (sb_rdonly(sb))
3487 38 : goto clear_oneshot;
3488 :
3489 3177 : ret = btrfs_start_pre_rw_mount(fs_info);
3490 3177 : if (ret) {
3491 0 : close_ctree(fs_info);
3492 0 : return ret;
3493 : }
3494 3177 : btrfs_discard_resume(fs_info);
3495 :
3496 3177 : if (fs_info->uuid_root &&
3497 3177 : (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3498 3176 : fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3499 991 : btrfs_info(fs_info, "checking UUID tree");
3500 991 : ret = btrfs_check_uuid_tree(fs_info);
3501 991 : if (ret) {
3502 0 : btrfs_warn(fs_info,
3503 : "failed to check the UUID tree: %d", ret);
3504 0 : close_ctree(fs_info);
3505 0 : return ret;
3506 : }
3507 : }
3508 :
3509 3177 : set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3510 :
3511 : /* Kick the cleaner thread so it'll start deleting snapshots. */
3512 6354 : if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3513 0 : wake_up_process(fs_info->cleaner_kthread);
3514 :
3515 3177 : clear_oneshot:
3516 3215 : btrfs_clear_oneshot_options(fs_info);
3517 3215 : return 0;
3518 :
3519 0 : fail_qgroup:
3520 0 : btrfs_free_qgroup_config(fs_info);
3521 0 : fail_trans_kthread:
3522 0 : kthread_stop(fs_info->transaction_kthread);
3523 0 : btrfs_cleanup_transaction(fs_info);
3524 0 : btrfs_free_fs_roots(fs_info);
3525 0 : fail_cleaner:
3526 0 : kthread_stop(fs_info->cleaner_kthread);
3527 :
3528 : /*
3529 : * make sure we're done with the btree inode before we stop our
3530 : * kthreads
3531 : */
3532 0 : filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3533 :
3534 0 : fail_sysfs:
3535 0 : btrfs_sysfs_remove_mounted(fs_info);
3536 :
3537 0 : fail_fsdev_sysfs:
3538 0 : btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3539 :
3540 0 : fail_block_groups:
3541 0 : btrfs_put_block_group_cache(fs_info);
3542 :
3543 1 : fail_tree_roots:
3544 1 : if (fs_info->data_reloc_root)
3545 0 : btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3546 1 : free_root_pointers(fs_info, true);
3547 1 : invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3548 :
3549 1 : fail_sb_buffer:
3550 1 : btrfs_stop_all_workers(fs_info);
3551 1 : btrfs_free_block_groups(fs_info);
3552 27 : fail_alloc:
3553 27 : btrfs_mapping_tree_free(&fs_info->mapping_tree);
3554 :
3555 27 : iput(fs_info->btree_inode);
3556 27 : fail:
3557 27 : btrfs_close_devices(fs_info->fs_devices);
3558 27 : ASSERT(ret < 0);
3559 27 : return ret;
3560 : }
3561 : ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3562 :
3563 645607 : static void btrfs_end_super_write(struct bio *bio)
3564 : {
3565 645607 : struct btrfs_device *device = bio->bi_private;
3566 645607 : struct bio_vec *bvec;
3567 645607 : struct bvec_iter_all iter_all;
3568 645607 : struct page *page;
3569 :
3570 1291214 : bio_for_each_segment_all(bvec, bio, iter_all) {
3571 645607 : page = bvec->bv_page;
3572 :
3573 645607 : if (bio->bi_status) {
3574 0 : btrfs_warn_rl_in_rcu(device->fs_info,
3575 : "lost page write due to IO error on %s (%d)",
3576 : btrfs_dev_name(device),
3577 : blk_status_to_errno(bio->bi_status));
3578 0 : ClearPageUptodate(page);
3579 0 : SetPageError(page);
3580 0 : btrfs_dev_stat_inc_and_print(device,
3581 : BTRFS_DEV_STAT_WRITE_ERRS);
3582 : } else {
3583 645607 : SetPageUptodate(page);
3584 : }
3585 :
3586 645607 : put_page(page);
3587 645607 : unlock_page(page);
3588 : }
3589 :
3590 645607 : bio_put(bio);
3591 645607 : }
3592 :
3593 6530 : struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3594 : int copy_num, bool drop_cache)
3595 : {
3596 6530 : struct btrfs_super_block *super;
3597 6530 : struct page *page;
3598 6530 : u64 bytenr, bytenr_orig;
3599 6530 : struct address_space *mapping = bdev->bd_inode->i_mapping;
3600 6530 : int ret;
3601 :
3602 6530 : bytenr_orig = btrfs_sb_offset(copy_num);
3603 6530 : ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3604 6530 : if (ret == -ENOENT)
3605 : return ERR_PTR(-EINVAL);
3606 6530 : else if (ret)
3607 0 : return ERR_PTR(ret);
3608 :
3609 6530 : if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3610 : return ERR_PTR(-EINVAL);
3611 :
3612 6530 : if (drop_cache) {
3613 : /* This should only be called with the primary sb. */
3614 46 : ASSERT(copy_num == 0);
3615 :
3616 : /*
3617 : * Drop the page of the primary superblock, so later read will
3618 : * always read from the device.
3619 : */
3620 46 : invalidate_inode_pages2_range(mapping,
3621 46 : bytenr >> PAGE_SHIFT,
3622 46 : (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3623 : }
3624 :
3625 6530 : page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3626 6530 : if (IS_ERR(page))
3627 : return ERR_CAST(page);
3628 :
3629 6530 : super = page_address(page);
3630 6530 : if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3631 0 : btrfs_release_disk_super(super);
3632 0 : return ERR_PTR(-ENODATA);
3633 : }
3634 :
3635 6530 : if (btrfs_super_bytenr(super) != bytenr_orig) {
3636 0 : btrfs_release_disk_super(super);
3637 0 : return ERR_PTR(-EINVAL);
3638 : }
3639 :
3640 : return super;
3641 : }
3642 :
3643 :
3644 6484 : struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3645 : {
3646 6484 : struct btrfs_super_block *super, *latest = NULL;
3647 6484 : int i;
3648 6484 : u64 transid = 0;
3649 :
3650 : /* we would like to check all the supers, but that would make
3651 : * a btrfs mount succeed after a mkfs from a different FS.
3652 : * So, we need to add a special mount option to scan for
3653 : * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3654 : */
3655 12968 : for (i = 0; i < 1; i++) {
3656 6484 : super = btrfs_read_dev_one_super(bdev, i, false);
3657 6484 : if (IS_ERR(super))
3658 0 : continue;
3659 :
3660 6484 : if (!latest || btrfs_super_generation(super) > transid) {
3661 6484 : if (latest)
3662 0 : btrfs_release_disk_super(super);
3663 :
3664 6484 : latest = super;
3665 6484 : transid = btrfs_super_generation(super);
3666 : }
3667 : }
3668 :
3669 6484 : return super;
3670 : }
3671 :
3672 : /*
3673 : * Write superblock @sb to the @device. Do not wait for completion, all the
3674 : * pages we use for writing are locked.
3675 : *
3676 : * Write @max_mirrors copies of the superblock, where 0 means default that fit
3677 : * the expected device size at commit time. Note that max_mirrors must be
3678 : * same for write and wait phases.
3679 : *
3680 : * Return number of errors when page is not found or submission fails.
3681 : */
3682 442595 : static int write_dev_supers(struct btrfs_device *device,
3683 : struct btrfs_super_block *sb, int max_mirrors)
3684 : {
3685 442595 : struct btrfs_fs_info *fs_info = device->fs_info;
3686 442595 : struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3687 442595 : SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3688 442595 : int i;
3689 442595 : int errors = 0;
3690 442595 : int ret;
3691 442595 : u64 bytenr, bytenr_orig;
3692 :
3693 442595 : if (max_mirrors == 0)
3694 203010 : max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3695 :
3696 442595 : shash->tfm = fs_info->csum_shash;
3697 :
3698 1088202 : for (i = 0; i < max_mirrors; i++) {
3699 848615 : struct page *page;
3700 848615 : struct bio *bio;
3701 848615 : struct btrfs_super_block *disk_super;
3702 :
3703 848615 : bytenr_orig = btrfs_sb_offset(i);
3704 848615 : ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3705 848615 : if (ret == -ENOENT) {
3706 0 : continue;
3707 848615 : } else if (ret < 0) {
3708 0 : btrfs_err(device->fs_info,
3709 : "couldn't get super block location for mirror %d",
3710 : i);
3711 0 : errors++;
3712 0 : continue;
3713 : }
3714 848615 : if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3715 848615 : device->commit_total_bytes)
3716 : break;
3717 :
3718 645607 : btrfs_set_super_bytenr(sb, bytenr_orig);
3719 :
3720 645607 : crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3721 : BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3722 645607 : sb->csum);
3723 :
3724 645607 : page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3725 : GFP_NOFS);
3726 645607 : if (!page) {
3727 0 : btrfs_err(device->fs_info,
3728 : "couldn't get super block page for bytenr %llu",
3729 : bytenr);
3730 0 : errors++;
3731 0 : continue;
3732 : }
3733 :
3734 : /* Bump the refcount for wait_dev_supers() */
3735 645607 : get_page(page);
3736 :
3737 645607 : disk_super = page_address(page);
3738 1291214 : memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3739 :
3740 : /*
3741 : * Directly use bios here instead of relying on the page cache
3742 : * to do I/O, so we don't lose the ability to do integrity
3743 : * checking.
3744 : */
3745 645607 : bio = bio_alloc(device->bdev, 1,
3746 : REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3747 : GFP_NOFS);
3748 645607 : bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3749 645607 : bio->bi_private = device;
3750 645607 : bio->bi_end_io = btrfs_end_super_write;
3751 645607 : __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3752 : offset_in_page(bytenr));
3753 :
3754 : /*
3755 : * We FUA only the first super block. The others we allow to
3756 : * go down lazy and there's a short window where the on-disk
3757 : * copies might still contain the older version.
3758 : */
3759 645607 : if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3760 442594 : bio->bi_opf |= REQ_FUA;
3761 :
3762 645607 : btrfsic_check_bio(bio);
3763 645607 : submit_bio(bio);
3764 :
3765 645607 : if (btrfs_advance_sb_log(device, i))
3766 0 : errors++;
3767 : }
3768 442595 : return errors < i ? 0 : -1;
3769 : }
3770 :
3771 : /*
3772 : * Wait for write completion of superblocks done by write_dev_supers,
3773 : * @max_mirrors same for write and wait phases.
3774 : *
3775 : * Return number of errors when page is not found or not marked up to
3776 : * date.
3777 : */
3778 442595 : static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3779 : {
3780 442595 : int i;
3781 442595 : int errors = 0;
3782 442595 : bool primary_failed = false;
3783 442595 : int ret;
3784 442595 : u64 bytenr;
3785 :
3786 442595 : if (max_mirrors == 0)
3787 203010 : max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3788 :
3789 1088202 : for (i = 0; i < max_mirrors; i++) {
3790 848615 : struct page *page;
3791 :
3792 848615 : ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3793 848615 : if (ret == -ENOENT) {
3794 : break;
3795 848615 : } else if (ret < 0) {
3796 0 : errors++;
3797 0 : if (i == 0)
3798 0 : primary_failed = true;
3799 0 : continue;
3800 : }
3801 848615 : if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3802 848615 : device->commit_total_bytes)
3803 : break;
3804 :
3805 645607 : page = find_get_page(device->bdev->bd_inode->i_mapping,
3806 645607 : bytenr >> PAGE_SHIFT);
3807 645607 : if (!page) {
3808 0 : errors++;
3809 0 : if (i == 0)
3810 0 : primary_failed = true;
3811 0 : continue;
3812 : }
3813 : /* Page is submitted locked and unlocked once the IO completes */
3814 645607 : wait_on_page_locked(page);
3815 1291214 : if (PageError(page)) {
3816 0 : errors++;
3817 0 : if (i == 0)
3818 0 : primary_failed = true;
3819 : }
3820 :
3821 : /* Drop our reference */
3822 645607 : put_page(page);
3823 :
3824 : /* Drop the reference from the writing run */
3825 645607 : put_page(page);
3826 : }
3827 :
3828 : /* log error, force error return */
3829 442595 : if (primary_failed) {
3830 0 : btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3831 : device->devid);
3832 0 : return -1;
3833 : }
3834 :
3835 442595 : return errors < i ? 0 : -1;
3836 : }
3837 :
3838 : /*
3839 : * endio for the write_dev_flush, this will wake anyone waiting
3840 : * for the barrier when it is done
3841 : */
3842 732 : static void btrfs_end_empty_barrier(struct bio *bio)
3843 : {
3844 732 : bio_uninit(bio);
3845 732 : complete(bio->bi_private);
3846 732 : }
3847 :
3848 : /*
3849 : * Submit a flush request to the device if it supports it. Error handling is
3850 : * done in the waiting counterpart.
3851 : */
3852 442594 : static void write_dev_flush(struct btrfs_device *device)
3853 : {
3854 442594 : struct bio *bio = &device->flush_bio;
3855 :
3856 442594 : device->last_flush_error = BLK_STS_OK;
3857 :
3858 : #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3859 : /*
3860 : * When a disk has write caching disabled, we skip submission of a bio
3861 : * with flush and sync requests before writing the superblock, since
3862 : * it's not needed. However when the integrity checker is enabled, this
3863 : * results in reports that there are metadata blocks referred by a
3864 : * superblock that were not properly flushed. So don't skip the bio
3865 : * submission only when the integrity checker is enabled for the sake
3866 : * of simplicity, since this is a debug tool and not meant for use in
3867 : * non-debug builds.
3868 : */
3869 442594 : if (!bdev_write_cache(device->bdev))
3870 : return;
3871 : #endif
3872 :
3873 732 : bio_init(bio, device->bdev, NULL, 0,
3874 : REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3875 732 : bio->bi_end_io = btrfs_end_empty_barrier;
3876 732 : init_completion(&device->flush_wait);
3877 732 : bio->bi_private = &device->flush_wait;
3878 :
3879 732 : btrfsic_check_bio(bio);
3880 732 : submit_bio(bio);
3881 732 : set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3882 : }
3883 :
3884 : /*
3885 : * If the flush bio has been submitted by write_dev_flush, wait for it.
3886 : * Return true for any error, and false otherwise.
3887 : */
3888 442594 : static bool wait_dev_flush(struct btrfs_device *device)
3889 : {
3890 442594 : struct bio *bio = &device->flush_bio;
3891 :
3892 442594 : if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3893 : return false;
3894 :
3895 732 : wait_for_completion_io(&device->flush_wait);
3896 :
3897 732 : if (bio->bi_status) {
3898 0 : device->last_flush_error = bio->bi_status;
3899 0 : btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3900 0 : return true;
3901 : }
3902 :
3903 : return false;
3904 : }
3905 :
3906 : /*
3907 : * send an empty flush down to each device in parallel,
3908 : * then wait for them
3909 : */
3910 442594 : static int barrier_all_devices(struct btrfs_fs_info *info)
3911 : {
3912 442594 : struct list_head *head;
3913 442594 : struct btrfs_device *dev;
3914 442594 : int errors_wait = 0;
3915 :
3916 442594 : lockdep_assert_held(&info->fs_devices->device_list_mutex);
3917 : /* send down all the barriers */
3918 442594 : head = &info->fs_devices->devices;
3919 885188 : list_for_each_entry(dev, head, dev_list) {
3920 885188 : if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3921 0 : continue;
3922 442594 : if (!dev->bdev)
3923 0 : continue;
3924 442594 : if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3925 0 : !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3926 0 : continue;
3927 :
3928 442594 : write_dev_flush(dev);
3929 : }
3930 :
3931 : /* wait for all the barriers */
3932 885188 : list_for_each_entry(dev, head, dev_list) {
3933 885188 : if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3934 0 : continue;
3935 442594 : if (!dev->bdev) {
3936 0 : errors_wait++;
3937 0 : continue;
3938 : }
3939 442594 : if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3940 0 : !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3941 0 : continue;
3942 :
3943 442594 : if (wait_dev_flush(dev))
3944 0 : errors_wait++;
3945 : }
3946 :
3947 : /*
3948 : * Checks last_flush_error of disks in order to determine the device
3949 : * state.
3950 : */
3951 442594 : if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3952 0 : return -EIO;
3953 :
3954 : return 0;
3955 : }
3956 :
3957 396 : int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3958 : {
3959 396 : int raid_type;
3960 396 : int min_tolerated = INT_MAX;
3961 :
3962 396 : if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3963 197 : (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3964 199 : min_tolerated = min_t(int, min_tolerated,
3965 : btrfs_raid_array[BTRFS_RAID_SINGLE].
3966 : tolerated_failures);
3967 :
3968 3960 : for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3969 3564 : if (raid_type == BTRFS_RAID_SINGLE)
3970 396 : continue;
3971 3168 : if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3972 2971 : continue;
3973 197 : min_tolerated = min_t(int, min_tolerated,
3974 : btrfs_raid_array[raid_type].
3975 : tolerated_failures);
3976 : }
3977 :
3978 396 : if (min_tolerated == INT_MAX) {
3979 0 : pr_warn("BTRFS: unknown raid flag: %llu", flags);
3980 0 : min_tolerated = 0;
3981 : }
3982 :
3983 396 : return min_tolerated;
3984 : }
3985 :
3986 442595 : int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3987 : {
3988 442595 : struct list_head *head;
3989 442595 : struct btrfs_device *dev;
3990 442595 : struct btrfs_super_block *sb;
3991 442595 : struct btrfs_dev_item *dev_item;
3992 442595 : int ret;
3993 442595 : int do_barriers;
3994 442595 : int max_errors;
3995 442595 : int total_errors = 0;
3996 442595 : u64 flags;
3997 :
3998 442595 : do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3999 :
4000 : /*
4001 : * max_mirrors == 0 indicates we're from commit_transaction,
4002 : * not from fsync where the tree roots in fs_info have not
4003 : * been consistent on disk.
4004 : */
4005 442595 : if (max_mirrors == 0)
4006 203010 : backup_super_roots(fs_info);
4007 :
4008 442595 : sb = fs_info->super_for_commit;
4009 442595 : dev_item = &sb->dev_item;
4010 :
4011 442595 : mutex_lock(&fs_info->fs_devices->device_list_mutex);
4012 442595 : head = &fs_info->fs_devices->devices;
4013 442595 : max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4014 :
4015 442595 : if (do_barriers) {
4016 442594 : ret = barrier_all_devices(fs_info);
4017 442594 : if (ret) {
4018 0 : mutex_unlock(
4019 0 : &fs_info->fs_devices->device_list_mutex);
4020 0 : btrfs_handle_fs_error(fs_info, ret,
4021 : "errors while submitting device barriers.");
4022 0 : return ret;
4023 : }
4024 : }
4025 :
4026 885190 : list_for_each_entry(dev, head, dev_list) {
4027 442595 : if (!dev->bdev) {
4028 0 : total_errors++;
4029 0 : continue;
4030 : }
4031 442595 : if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4032 0 : !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4033 0 : continue;
4034 :
4035 442595 : btrfs_set_stack_device_generation(dev_item, 0);
4036 442595 : btrfs_set_stack_device_type(dev_item, dev->type);
4037 442595 : btrfs_set_stack_device_id(dev_item, dev->devid);
4038 442595 : btrfs_set_stack_device_total_bytes(dev_item,
4039 : dev->commit_total_bytes);
4040 442595 : btrfs_set_stack_device_bytes_used(dev_item,
4041 : dev->commit_bytes_used);
4042 442595 : btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4043 442595 : btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4044 442595 : btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4045 885190 : memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4046 885190 : memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4047 : BTRFS_FSID_SIZE);
4048 :
4049 442595 : flags = btrfs_super_flags(sb);
4050 442595 : btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4051 :
4052 442595 : ret = btrfs_validate_write_super(fs_info, sb);
4053 442595 : if (ret < 0) {
4054 0 : mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4055 0 : btrfs_handle_fs_error(fs_info, -EUCLEAN,
4056 : "unexpected superblock corruption detected");
4057 0 : return -EUCLEAN;
4058 : }
4059 :
4060 442595 : ret = write_dev_supers(dev, sb, max_mirrors);
4061 442595 : if (ret)
4062 0 : total_errors++;
4063 : }
4064 442595 : if (total_errors > max_errors) {
4065 0 : btrfs_err(fs_info, "%d errors while writing supers",
4066 : total_errors);
4067 0 : mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4068 :
4069 : /* FUA is masked off if unsupported and can't be the reason */
4070 0 : btrfs_handle_fs_error(fs_info, -EIO,
4071 : "%d errors while writing supers",
4072 : total_errors);
4073 0 : return -EIO;
4074 : }
4075 :
4076 442595 : total_errors = 0;
4077 885190 : list_for_each_entry(dev, head, dev_list) {
4078 442595 : if (!dev->bdev)
4079 0 : continue;
4080 442595 : if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4081 0 : !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4082 0 : continue;
4083 :
4084 442595 : ret = wait_dev_supers(dev, max_mirrors);
4085 442595 : if (ret)
4086 0 : total_errors++;
4087 : }
4088 442595 : mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4089 442595 : if (total_errors > max_errors) {
4090 0 : btrfs_handle_fs_error(fs_info, -EIO,
4091 : "%d errors while writing supers",
4092 : total_errors);
4093 0 : return -EIO;
4094 : }
4095 : return 0;
4096 : }
4097 :
4098 : /* Drop a fs root from the radix tree and free it. */
4099 12121 : void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4100 : struct btrfs_root *root)
4101 : {
4102 12121 : bool drop_ref = false;
4103 :
4104 12121 : spin_lock(&fs_info->fs_roots_radix_lock);
4105 12121 : radix_tree_delete(&fs_info->fs_roots_radix,
4106 12121 : (unsigned long)root->root_key.objectid);
4107 12121 : if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4108 12121 : drop_ref = true;
4109 12121 : spin_unlock(&fs_info->fs_roots_radix_lock);
4110 :
4111 12121 : if (BTRFS_FS_ERROR(fs_info)) {
4112 34 : ASSERT(root->log_root == NULL);
4113 34 : if (root->reloc_root) {
4114 0 : btrfs_put_root(root->reloc_root);
4115 0 : root->reloc_root = NULL;
4116 : }
4117 : }
4118 :
4119 12121 : if (drop_ref)
4120 12121 : btrfs_put_root(root);
4121 12121 : }
4122 :
4123 3179 : int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4124 : {
4125 3179 : u64 root_objectid = 0;
4126 3179 : struct btrfs_root *gang[8];
4127 3179 : int i = 0;
4128 3179 : int err = 0;
4129 3179 : unsigned int ret = 0;
4130 :
4131 10583 : while (1) {
4132 6881 : spin_lock(&fs_info->fs_roots_radix_lock);
4133 6881 : ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4134 : (void **)gang, root_objectid,
4135 : ARRAY_SIZE(gang));
4136 6881 : if (!ret) {
4137 3179 : spin_unlock(&fs_info->fs_roots_radix_lock);
4138 : break;
4139 : }
4140 3702 : root_objectid = gang[ret - 1]->root_key.objectid + 1;
4141 :
4142 14463 : for (i = 0; i < ret; i++) {
4143 : /* Avoid to grab roots in dead_roots */
4144 10761 : if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4145 151 : gang[i] = NULL;
4146 151 : continue;
4147 : }
4148 : /* grab all the search result for later use */
4149 10610 : gang[i] = btrfs_grab_root(gang[i]);
4150 : }
4151 3702 : spin_unlock(&fs_info->fs_roots_radix_lock);
4152 :
4153 18165 : for (i = 0; i < ret; i++) {
4154 10761 : if (!gang[i])
4155 151 : continue;
4156 10610 : root_objectid = gang[i]->root_key.objectid;
4157 10610 : err = btrfs_orphan_cleanup(gang[i]);
4158 10610 : if (err)
4159 0 : goto out;
4160 10610 : btrfs_put_root(gang[i]);
4161 : }
4162 3702 : root_objectid++;
4163 : }
4164 3179 : out:
4165 : /* release the uncleaned roots due to error */
4166 3179 : for (; i < ret; i++) {
4167 0 : if (gang[i])
4168 0 : btrfs_put_root(gang[i]);
4169 : }
4170 3179 : return err;
4171 : }
4172 :
4173 3164 : int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4174 : {
4175 3164 : struct btrfs_root *root = fs_info->tree_root;
4176 3164 : struct btrfs_trans_handle *trans;
4177 :
4178 3164 : mutex_lock(&fs_info->cleaner_mutex);
4179 3164 : btrfs_run_delayed_iputs(fs_info);
4180 3164 : mutex_unlock(&fs_info->cleaner_mutex);
4181 3164 : wake_up_process(fs_info->cleaner_kthread);
4182 :
4183 : /* wait until ongoing cleanup work done */
4184 3164 : down_write(&fs_info->cleanup_work_sem);
4185 3164 : up_write(&fs_info->cleanup_work_sem);
4186 :
4187 3164 : trans = btrfs_join_transaction(root);
4188 3164 : if (IS_ERR(trans))
4189 0 : return PTR_ERR(trans);
4190 3164 : return btrfs_commit_transaction(trans);
4191 : }
4192 :
4193 3215 : static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4194 : {
4195 3215 : struct btrfs_transaction *trans;
4196 3215 : struct btrfs_transaction *tmp;
4197 3215 : bool found = false;
4198 :
4199 3215 : if (list_empty(&fs_info->trans_list))
4200 : return;
4201 :
4202 : /*
4203 : * This function is only called at the very end of close_ctree(),
4204 : * thus no other running transaction, no need to take trans_lock.
4205 : */
4206 0 : ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4207 0 : list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4208 0 : struct extent_state *cached = NULL;
4209 0 : u64 dirty_bytes = 0;
4210 0 : u64 cur = 0;
4211 0 : u64 found_start;
4212 0 : u64 found_end;
4213 :
4214 0 : found = true;
4215 0 : while (!find_first_extent_bit(&trans->dirty_pages, cur,
4216 : &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4217 0 : dirty_bytes += found_end + 1 - found_start;
4218 0 : cur = found_end + 1;
4219 : }
4220 0 : btrfs_warn(fs_info,
4221 : "transaction %llu (with %llu dirty metadata bytes) is not committed",
4222 : trans->transid, dirty_bytes);
4223 0 : btrfs_cleanup_one_transaction(trans, fs_info);
4224 :
4225 0 : if (trans == fs_info->running_transaction)
4226 0 : fs_info->running_transaction = NULL;
4227 0 : list_del_init(&trans->list);
4228 :
4229 0 : btrfs_put_transaction(trans);
4230 0 : trace_btrfs_transaction_commit(fs_info);
4231 : }
4232 3215 : ASSERT(!found);
4233 : }
4234 :
4235 3215 : void __cold close_ctree(struct btrfs_fs_info *fs_info)
4236 : {
4237 3215 : int ret;
4238 :
4239 3215 : set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4240 :
4241 : /*
4242 : * If we had UNFINISHED_DROPS we could still be processing them, so
4243 : * clear that bit and wake up relocation so it can stop.
4244 : * We must do this before stopping the block group reclaim task, because
4245 : * at btrfs_relocate_block_group() we wait for this bit, and after the
4246 : * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4247 : * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4248 : * return 1.
4249 : */
4250 3215 : btrfs_wake_unfinished_drop(fs_info);
4251 :
4252 : /*
4253 : * We may have the reclaim task running and relocating a data block group,
4254 : * in which case it may create delayed iputs. So stop it before we park
4255 : * the cleaner kthread otherwise we can get new delayed iputs after
4256 : * parking the cleaner, and that can make the async reclaim task to hang
4257 : * if it's waiting for delayed iputs to complete, since the cleaner is
4258 : * parked and can not run delayed iputs - this will make us hang when
4259 : * trying to stop the async reclaim task.
4260 : */
4261 3215 : cancel_work_sync(&fs_info->reclaim_bgs_work);
4262 : /*
4263 : * We don't want the cleaner to start new transactions, add more delayed
4264 : * iputs, etc. while we're closing. We can't use kthread_stop() yet
4265 : * because that frees the task_struct, and the transaction kthread might
4266 : * still try to wake up the cleaner.
4267 : */
4268 3215 : kthread_park(fs_info->cleaner_kthread);
4269 :
4270 : /* wait for the qgroup rescan worker to stop */
4271 3215 : btrfs_qgroup_wait_for_completion(fs_info, false);
4272 :
4273 : /* wait for the uuid_scan task to finish */
4274 3215 : down(&fs_info->uuid_tree_rescan_sem);
4275 : /* avoid complains from lockdep et al., set sem back to initial state */
4276 3215 : up(&fs_info->uuid_tree_rescan_sem);
4277 :
4278 : /* pause restriper - we want to resume on mount */
4279 3215 : btrfs_pause_balance(fs_info);
4280 :
4281 3215 : btrfs_dev_replace_suspend_for_unmount(fs_info);
4282 :
4283 3215 : btrfs_scrub_cancel(fs_info);
4284 :
4285 : /* wait for any defraggers to finish */
4286 3215 : wait_event(fs_info->transaction_wait,
4287 : (atomic_read(&fs_info->defrag_running) == 0));
4288 :
4289 : /* clear out the rbtree of defraggable inodes */
4290 3215 : btrfs_cleanup_defrag_inodes(fs_info);
4291 :
4292 : /*
4293 : * After we parked the cleaner kthread, ordered extents may have
4294 : * completed and created new delayed iputs. If one of the async reclaim
4295 : * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4296 : * can hang forever trying to stop it, because if a delayed iput is
4297 : * added after it ran btrfs_run_delayed_iputs() and before it called
4298 : * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4299 : * no one else to run iputs.
4300 : *
4301 : * So wait for all ongoing ordered extents to complete and then run
4302 : * delayed iputs. This works because once we reach this point no one
4303 : * can either create new ordered extents nor create delayed iputs
4304 : * through some other means.
4305 : *
4306 : * Also note that btrfs_wait_ordered_roots() is not safe here, because
4307 : * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4308 : * but the delayed iput for the respective inode is made only when doing
4309 : * the final btrfs_put_ordered_extent() (which must happen at
4310 : * btrfs_finish_ordered_io() when we are unmounting).
4311 : */
4312 3215 : btrfs_flush_workqueue(fs_info->endio_write_workers);
4313 : /* Ordered extents for free space inodes. */
4314 3215 : btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4315 3215 : btrfs_run_delayed_iputs(fs_info);
4316 :
4317 3215 : cancel_work_sync(&fs_info->async_reclaim_work);
4318 3215 : cancel_work_sync(&fs_info->async_data_reclaim_work);
4319 3215 : cancel_work_sync(&fs_info->preempt_reclaim_work);
4320 :
4321 : /* Cancel or finish ongoing discard work */
4322 3215 : btrfs_discard_cleanup(fs_info);
4323 :
4324 3215 : if (!sb_rdonly(fs_info->sb)) {
4325 : /*
4326 : * The cleaner kthread is stopped, so do one final pass over
4327 : * unused block groups.
4328 : */
4329 3160 : btrfs_delete_unused_bgs(fs_info);
4330 :
4331 : /*
4332 : * There might be existing delayed inode workers still running
4333 : * and holding an empty delayed inode item. We must wait for
4334 : * them to complete first because they can create a transaction.
4335 : * This happens when someone calls btrfs_balance_delayed_items()
4336 : * and then a transaction commit runs the same delayed nodes
4337 : * before any delayed worker has done something with the nodes.
4338 : * We must wait for any worker here and not at transaction
4339 : * commit time since that could cause a deadlock.
4340 : * This is a very rare case.
4341 : */
4342 3160 : btrfs_flush_workqueue(fs_info->delayed_workers);
4343 :
4344 3160 : ret = btrfs_commit_super(fs_info);
4345 3160 : if (ret)
4346 2 : btrfs_err(fs_info, "commit super ret %d", ret);
4347 : }
4348 :
4349 3215 : if (BTRFS_FS_ERROR(fs_info))
4350 17 : btrfs_error_commit_super(fs_info);
4351 :
4352 3215 : kthread_stop(fs_info->transaction_kthread);
4353 3215 : kthread_stop(fs_info->cleaner_kthread);
4354 :
4355 3215 : ASSERT(list_empty(&fs_info->delayed_iputs));
4356 3215 : set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4357 :
4358 3215 : if (btrfs_check_quota_leak(fs_info)) {
4359 0 : WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4360 0 : btrfs_err(fs_info, "qgroup reserved space leaked");
4361 : }
4362 :
4363 3215 : btrfs_free_qgroup_config(fs_info);
4364 3215 : ASSERT(list_empty(&fs_info->delalloc_roots));
4365 :
4366 3215 : if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4367 0 : btrfs_info(fs_info, "at unmount delalloc count %lld",
4368 : percpu_counter_sum(&fs_info->delalloc_bytes));
4369 : }
4370 :
4371 3215 : if (percpu_counter_sum(&fs_info->ordered_bytes))
4372 0 : btrfs_info(fs_info, "at unmount dio bytes count %lld",
4373 : percpu_counter_sum(&fs_info->ordered_bytes));
4374 :
4375 3215 : btrfs_sysfs_remove_mounted(fs_info);
4376 3215 : btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4377 :
4378 3215 : btrfs_put_block_group_cache(fs_info);
4379 :
4380 : /*
4381 : * we must make sure there is not any read request to
4382 : * submit after we stopping all workers.
4383 : */
4384 3215 : invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4385 3215 : btrfs_stop_all_workers(fs_info);
4386 :
4387 : /* We shouldn't have any transaction open at this point */
4388 3215 : warn_about_uncommitted_trans(fs_info);
4389 :
4390 3215 : clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4391 3215 : free_root_pointers(fs_info, true);
4392 3215 : btrfs_free_fs_roots(fs_info);
4393 :
4394 : /*
4395 : * We must free the block groups after dropping the fs_roots as we could
4396 : * have had an IO error and have left over tree log blocks that aren't
4397 : * cleaned up until the fs roots are freed. This makes the block group
4398 : * accounting appear to be wrong because there's pending reserved bytes,
4399 : * so make sure we do the block group cleanup afterwards.
4400 : */
4401 3215 : btrfs_free_block_groups(fs_info);
4402 :
4403 3215 : iput(fs_info->btree_inode);
4404 :
4405 : #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4406 : if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4407 : btrfsic_unmount(fs_info->fs_devices);
4408 : #endif
4409 :
4410 3215 : btrfs_mapping_tree_free(&fs_info->mapping_tree);
4411 3215 : btrfs_close_devices(fs_info->fs_devices);
4412 3215 : }
4413 :
4414 303649136 : void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4415 : {
4416 303649136 : struct btrfs_fs_info *fs_info = buf->fs_info;
4417 303649136 : u64 transid = btrfs_header_generation(buf);
4418 :
4419 : #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4420 : /*
4421 : * This is a fast path so only do this check if we have sanity tests
4422 : * enabled. Normal people shouldn't be using unmapped buffers as dirty
4423 : * outside of the sanity tests.
4424 : */
4425 : if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4426 : return;
4427 : #endif
4428 303649136 : btrfs_assert_tree_write_locked(buf);
4429 303649136 : if (transid != fs_info->generation)
4430 0 : WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4431 : buf->start, transid, fs_info->generation);
4432 303649136 : set_extent_buffer_dirty(buf);
4433 : #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4434 : /*
4435 : * btrfs_check_leaf() won't check item data if we don't have WRITTEN
4436 : * set, so this will only validate the basic structure of the items.
4437 : */
4438 : if (btrfs_header_level(buf) == 0 && btrfs_check_leaf(buf)) {
4439 : btrfs_print_leaf(buf);
4440 : ASSERT(0);
4441 : }
4442 : #endif
4443 303706414 : }
4444 :
4445 19206145 : static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4446 : int flush_delayed)
4447 : {
4448 : /*
4449 : * looks as though older kernels can get into trouble with
4450 : * this code, they end up stuck in balance_dirty_pages forever
4451 : */
4452 19206145 : int ret;
4453 :
4454 19206145 : if (current->flags & PF_MEMALLOC)
4455 : return;
4456 :
4457 19206145 : if (flush_delayed)
4458 12512624 : btrfs_balance_delayed_items(fs_info);
4459 :
4460 19205934 : ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4461 : BTRFS_DIRTY_METADATA_THRESH,
4462 : fs_info->dirty_metadata_batch);
4463 19206420 : if (ret > 0) {
4464 3694690 : balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4465 : }
4466 : }
4467 :
4468 12513603 : void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4469 : {
4470 12513603 : __btrfs_btree_balance_dirty(fs_info, 1);
4471 12512241 : }
4472 :
4473 6696061 : void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4474 : {
4475 6696061 : __btrfs_btree_balance_dirty(fs_info, 0);
4476 6693708 : }
4477 :
4478 17 : static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4479 : {
4480 : /* cleanup FS via transaction */
4481 17 : btrfs_cleanup_transaction(fs_info);
4482 :
4483 17 : mutex_lock(&fs_info->cleaner_mutex);
4484 17 : btrfs_run_delayed_iputs(fs_info);
4485 17 : mutex_unlock(&fs_info->cleaner_mutex);
4486 :
4487 17 : down_write(&fs_info->cleanup_work_sem);
4488 17 : up_write(&fs_info->cleanup_work_sem);
4489 17 : }
4490 :
4491 20 : static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4492 : {
4493 20 : struct btrfs_root *gang[8];
4494 20 : u64 root_objectid = 0;
4495 20 : int ret;
4496 :
4497 20 : spin_lock(&fs_info->fs_roots_radix_lock);
4498 80 : while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4499 : (void **)gang, root_objectid,
4500 40 : ARRAY_SIZE(gang))) != 0) {
4501 : int i;
4502 :
4503 60 : for (i = 0; i < ret; i++)
4504 40 : gang[i] = btrfs_grab_root(gang[i]);
4505 20 : spin_unlock(&fs_info->fs_roots_radix_lock);
4506 :
4507 80 : for (i = 0; i < ret; i++) {
4508 40 : if (!gang[i])
4509 0 : continue;
4510 40 : root_objectid = gang[i]->root_key.objectid;
4511 40 : btrfs_free_log(NULL, gang[i]);
4512 40 : btrfs_put_root(gang[i]);
4513 : }
4514 20 : root_objectid++;
4515 20 : spin_lock(&fs_info->fs_roots_radix_lock);
4516 : }
4517 20 : spin_unlock(&fs_info->fs_roots_radix_lock);
4518 20 : btrfs_free_log_root_tree(NULL, fs_info);
4519 20 : }
4520 :
4521 0 : static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4522 : {
4523 0 : struct btrfs_ordered_extent *ordered;
4524 :
4525 0 : spin_lock(&root->ordered_extent_lock);
4526 : /*
4527 : * This will just short circuit the ordered completion stuff which will
4528 : * make sure the ordered extent gets properly cleaned up.
4529 : */
4530 0 : list_for_each_entry(ordered, &root->ordered_extents,
4531 : root_extent_list)
4532 0 : set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4533 0 : spin_unlock(&root->ordered_extent_lock);
4534 0 : }
4535 :
4536 20 : static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4537 : {
4538 20 : struct btrfs_root *root;
4539 20 : struct list_head splice;
4540 :
4541 20 : INIT_LIST_HEAD(&splice);
4542 :
4543 20 : spin_lock(&fs_info->ordered_root_lock);
4544 20 : list_splice_init(&fs_info->ordered_roots, &splice);
4545 20 : while (!list_empty(&splice)) {
4546 0 : root = list_first_entry(&splice, struct btrfs_root,
4547 : ordered_root);
4548 0 : list_move_tail(&root->ordered_root,
4549 : &fs_info->ordered_roots);
4550 :
4551 0 : spin_unlock(&fs_info->ordered_root_lock);
4552 0 : btrfs_destroy_ordered_extents(root);
4553 :
4554 0 : cond_resched();
4555 0 : spin_lock(&fs_info->ordered_root_lock);
4556 : }
4557 20 : spin_unlock(&fs_info->ordered_root_lock);
4558 :
4559 : /*
4560 : * We need this here because if we've been flipped read-only we won't
4561 : * get sync() from the umount, so we need to make sure any ordered
4562 : * extents that haven't had their dirty pages IO start writeout yet
4563 : * actually get run and error out properly.
4564 : */
4565 20 : btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4566 20 : }
4567 :
4568 17 : static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4569 : struct btrfs_fs_info *fs_info)
4570 : {
4571 17 : struct rb_node *node;
4572 17 : struct btrfs_delayed_ref_root *delayed_refs;
4573 17 : struct btrfs_delayed_ref_node *ref;
4574 :
4575 17 : delayed_refs = &trans->delayed_refs;
4576 :
4577 17 : spin_lock(&delayed_refs->lock);
4578 17 : if (atomic_read(&delayed_refs->num_entries) == 0) {
4579 15 : spin_unlock(&delayed_refs->lock);
4580 15 : btrfs_debug(fs_info, "delayed_refs has NO entry");
4581 15 : return;
4582 : }
4583 :
4584 32 : while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4585 30 : struct btrfs_delayed_ref_head *head;
4586 30 : struct rb_node *n;
4587 30 : bool pin_bytes = false;
4588 :
4589 30 : head = rb_entry(node, struct btrfs_delayed_ref_head,
4590 : href_node);
4591 30 : if (btrfs_delayed_ref_lock(delayed_refs, head))
4592 0 : continue;
4593 :
4594 30 : spin_lock(&head->lock);
4595 59 : while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4596 29 : ref = rb_entry(n, struct btrfs_delayed_ref_node,
4597 : ref_node);
4598 29 : rb_erase_cached(&ref->ref_node, &head->ref_tree);
4599 29 : RB_CLEAR_NODE(&ref->ref_node);
4600 29 : if (!list_empty(&ref->add_list))
4601 28 : list_del(&ref->add_list);
4602 29 : atomic_dec(&delayed_refs->num_entries);
4603 29 : btrfs_put_delayed_ref(ref);
4604 : }
4605 30 : if (head->must_insert_reserved)
4606 28 : pin_bytes = true;
4607 30 : btrfs_free_delayed_extent_op(head->extent_op);
4608 30 : btrfs_delete_ref_head(delayed_refs, head);
4609 30 : spin_unlock(&head->lock);
4610 30 : spin_unlock(&delayed_refs->lock);
4611 30 : mutex_unlock(&head->mutex);
4612 :
4613 30 : if (pin_bytes) {
4614 28 : struct btrfs_block_group *cache;
4615 :
4616 28 : cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4617 28 : BUG_ON(!cache);
4618 :
4619 28 : spin_lock(&cache->space_info->lock);
4620 28 : spin_lock(&cache->lock);
4621 28 : cache->pinned += head->num_bytes;
4622 28 : btrfs_space_info_update_bytes_pinned(fs_info,
4623 28 : cache->space_info, head->num_bytes);
4624 28 : cache->reserved -= head->num_bytes;
4625 28 : cache->space_info->bytes_reserved -= head->num_bytes;
4626 28 : spin_unlock(&cache->lock);
4627 28 : spin_unlock(&cache->space_info->lock);
4628 :
4629 28 : btrfs_put_block_group(cache);
4630 :
4631 28 : btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4632 28 : head->bytenr + head->num_bytes - 1);
4633 : }
4634 30 : btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4635 30 : btrfs_put_delayed_ref_head(head);
4636 30 : cond_resched();
4637 30 : spin_lock(&delayed_refs->lock);
4638 : }
4639 2 : btrfs_qgroup_destroy_extent_records(trans);
4640 :
4641 2 : spin_unlock(&delayed_refs->lock);
4642 : }
4643 :
4644 0 : static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4645 : {
4646 0 : struct btrfs_inode *btrfs_inode;
4647 0 : struct list_head splice;
4648 :
4649 0 : INIT_LIST_HEAD(&splice);
4650 :
4651 0 : spin_lock(&root->delalloc_lock);
4652 0 : list_splice_init(&root->delalloc_inodes, &splice);
4653 :
4654 0 : while (!list_empty(&splice)) {
4655 0 : struct inode *inode = NULL;
4656 0 : btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4657 : delalloc_inodes);
4658 0 : __btrfs_del_delalloc_inode(root, btrfs_inode);
4659 0 : spin_unlock(&root->delalloc_lock);
4660 :
4661 : /*
4662 : * Make sure we get a live inode and that it'll not disappear
4663 : * meanwhile.
4664 : */
4665 0 : inode = igrab(&btrfs_inode->vfs_inode);
4666 0 : if (inode) {
4667 0 : unsigned int nofs_flag;
4668 :
4669 0 : nofs_flag = memalloc_nofs_save();
4670 0 : invalidate_inode_pages2(inode->i_mapping);
4671 0 : memalloc_nofs_restore(nofs_flag);
4672 0 : iput(inode);
4673 : }
4674 0 : spin_lock(&root->delalloc_lock);
4675 : }
4676 0 : spin_unlock(&root->delalloc_lock);
4677 0 : }
4678 :
4679 20 : static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4680 : {
4681 20 : struct btrfs_root *root;
4682 20 : struct list_head splice;
4683 :
4684 20 : INIT_LIST_HEAD(&splice);
4685 :
4686 20 : spin_lock(&fs_info->delalloc_root_lock);
4687 20 : list_splice_init(&fs_info->delalloc_roots, &splice);
4688 20 : while (!list_empty(&splice)) {
4689 0 : root = list_first_entry(&splice, struct btrfs_root,
4690 : delalloc_root);
4691 0 : root = btrfs_grab_root(root);
4692 0 : BUG_ON(!root);
4693 0 : spin_unlock(&fs_info->delalloc_root_lock);
4694 :
4695 0 : btrfs_destroy_delalloc_inodes(root);
4696 0 : btrfs_put_root(root);
4697 :
4698 0 : spin_lock(&fs_info->delalloc_root_lock);
4699 : }
4700 20 : spin_unlock(&fs_info->delalloc_root_lock);
4701 20 : }
4702 :
4703 17 : static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4704 : struct extent_io_tree *dirty_pages,
4705 : int mark)
4706 : {
4707 17 : int ret;
4708 17 : struct extent_buffer *eb;
4709 17 : u64 start = 0;
4710 83 : u64 end;
4711 :
4712 83 : while (1) {
4713 83 : ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4714 : mark, NULL);
4715 83 : if (ret)
4716 : break;
4717 :
4718 66 : clear_extent_bits(dirty_pages, start, end, mark);
4719 172 : while (start <= end) {
4720 106 : eb = find_extent_buffer(fs_info, start);
4721 106 : start += fs_info->nodesize;
4722 106 : if (!eb)
4723 0 : continue;
4724 :
4725 106 : btrfs_tree_lock(eb);
4726 106 : wait_on_extent_buffer_writeback(eb);
4727 106 : btrfs_clear_buffer_dirty(NULL, eb);
4728 106 : btrfs_tree_unlock(eb);
4729 :
4730 106 : free_extent_buffer_stale(eb);
4731 : }
4732 : }
4733 :
4734 17 : return ret;
4735 : }
4736 :
4737 17 : static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4738 : struct extent_io_tree *unpin)
4739 : {
4740 130 : u64 start;
4741 130 : u64 end;
4742 130 : int ret;
4743 :
4744 243 : while (1) {
4745 130 : struct extent_state *cached_state = NULL;
4746 :
4747 : /*
4748 : * The btrfs_finish_extent_commit() may get the same range as
4749 : * ours between find_first_extent_bit and clear_extent_dirty.
4750 : * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4751 : * the same extent range.
4752 : */
4753 130 : mutex_lock(&fs_info->unused_bg_unpin_mutex);
4754 130 : ret = find_first_extent_bit(unpin, 0, &start, &end,
4755 : EXTENT_DIRTY, &cached_state);
4756 130 : if (ret) {
4757 17 : mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4758 17 : break;
4759 : }
4760 :
4761 113 : clear_extent_dirty(unpin, start, end, &cached_state);
4762 113 : free_extent_state(cached_state);
4763 113 : btrfs_error_unpin_extent_range(fs_info, start, end);
4764 113 : mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4765 113 : cond_resched();
4766 : }
4767 :
4768 17 : return 0;
4769 : }
4770 :
4771 0 : static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4772 : {
4773 0 : struct inode *inode;
4774 :
4775 0 : inode = cache->io_ctl.inode;
4776 0 : if (inode) {
4777 0 : unsigned int nofs_flag;
4778 :
4779 0 : nofs_flag = memalloc_nofs_save();
4780 0 : invalidate_inode_pages2(inode->i_mapping);
4781 0 : memalloc_nofs_restore(nofs_flag);
4782 :
4783 0 : BTRFS_I(inode)->generation = 0;
4784 0 : cache->io_ctl.inode = NULL;
4785 0 : iput(inode);
4786 : }
4787 0 : ASSERT(cache->io_ctl.pages == NULL);
4788 0 : btrfs_put_block_group(cache);
4789 0 : }
4790 :
4791 17 : void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4792 : struct btrfs_fs_info *fs_info)
4793 : {
4794 17 : struct btrfs_block_group *cache;
4795 :
4796 17 : spin_lock(&cur_trans->dirty_bgs_lock);
4797 25 : while (!list_empty(&cur_trans->dirty_bgs)) {
4798 8 : cache = list_first_entry(&cur_trans->dirty_bgs,
4799 : struct btrfs_block_group,
4800 : dirty_list);
4801 :
4802 8 : if (!list_empty(&cache->io_list)) {
4803 0 : spin_unlock(&cur_trans->dirty_bgs_lock);
4804 0 : list_del_init(&cache->io_list);
4805 0 : btrfs_cleanup_bg_io(cache);
4806 0 : spin_lock(&cur_trans->dirty_bgs_lock);
4807 : }
4808 :
4809 8 : list_del_init(&cache->dirty_list);
4810 8 : spin_lock(&cache->lock);
4811 8 : cache->disk_cache_state = BTRFS_DC_ERROR;
4812 8 : spin_unlock(&cache->lock);
4813 :
4814 8 : spin_unlock(&cur_trans->dirty_bgs_lock);
4815 8 : btrfs_put_block_group(cache);
4816 8 : btrfs_delayed_refs_rsv_release(fs_info, 1);
4817 8 : spin_lock(&cur_trans->dirty_bgs_lock);
4818 : }
4819 17 : spin_unlock(&cur_trans->dirty_bgs_lock);
4820 :
4821 : /*
4822 : * Refer to the definition of io_bgs member for details why it's safe
4823 : * to use it without any locking
4824 : */
4825 17 : while (!list_empty(&cur_trans->io_bgs)) {
4826 0 : cache = list_first_entry(&cur_trans->io_bgs,
4827 : struct btrfs_block_group,
4828 : io_list);
4829 :
4830 0 : list_del_init(&cache->io_list);
4831 0 : spin_lock(&cache->lock);
4832 0 : cache->disk_cache_state = BTRFS_DC_ERROR;
4833 0 : spin_unlock(&cache->lock);
4834 0 : btrfs_cleanup_bg_io(cache);
4835 : }
4836 17 : }
4837 :
4838 17 : void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4839 : struct btrfs_fs_info *fs_info)
4840 : {
4841 17 : struct btrfs_device *dev, *tmp;
4842 :
4843 17 : btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4844 17 : ASSERT(list_empty(&cur_trans->dirty_bgs));
4845 17 : ASSERT(list_empty(&cur_trans->io_bgs));
4846 :
4847 18 : list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4848 : post_commit_list) {
4849 1 : list_del_init(&dev->post_commit_list);
4850 : }
4851 :
4852 17 : btrfs_destroy_delayed_refs(cur_trans, fs_info);
4853 :
4854 17 : cur_trans->state = TRANS_STATE_COMMIT_START;
4855 17 : wake_up(&fs_info->transaction_blocked_wait);
4856 :
4857 17 : cur_trans->state = TRANS_STATE_UNBLOCKED;
4858 17 : wake_up(&fs_info->transaction_wait);
4859 :
4860 17 : btrfs_destroy_delayed_inodes(fs_info);
4861 :
4862 17 : btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4863 : EXTENT_DIRTY);
4864 17 : btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4865 :
4866 17 : cur_trans->state =TRANS_STATE_COMPLETED;
4867 17 : wake_up(&cur_trans->commit_wait);
4868 17 : }
4869 :
4870 20 : static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4871 : {
4872 20 : struct btrfs_transaction *t;
4873 :
4874 20 : mutex_lock(&fs_info->transaction_kthread_mutex);
4875 :
4876 20 : spin_lock(&fs_info->trans_lock);
4877 21 : while (!list_empty(&fs_info->trans_list)) {
4878 1 : t = list_first_entry(&fs_info->trans_list,
4879 : struct btrfs_transaction, list);
4880 1 : if (t->state >= TRANS_STATE_COMMIT_START) {
4881 0 : refcount_inc(&t->use_count);
4882 0 : spin_unlock(&fs_info->trans_lock);
4883 0 : btrfs_wait_for_commit(fs_info, t->transid);
4884 0 : btrfs_put_transaction(t);
4885 0 : spin_lock(&fs_info->trans_lock);
4886 0 : continue;
4887 : }
4888 1 : if (t == fs_info->running_transaction) {
4889 1 : t->state = TRANS_STATE_COMMIT_DOING;
4890 1 : spin_unlock(&fs_info->trans_lock);
4891 : /*
4892 : * We wait for 0 num_writers since we don't hold a trans
4893 : * handle open currently for this transaction.
4894 : */
4895 1 : wait_event(t->writer_wait,
4896 : atomic_read(&t->num_writers) == 0);
4897 : } else {
4898 0 : spin_unlock(&fs_info->trans_lock);
4899 : }
4900 1 : btrfs_cleanup_one_transaction(t, fs_info);
4901 :
4902 1 : spin_lock(&fs_info->trans_lock);
4903 1 : if (t == fs_info->running_transaction)
4904 1 : fs_info->running_transaction = NULL;
4905 1 : list_del_init(&t->list);
4906 1 : spin_unlock(&fs_info->trans_lock);
4907 :
4908 1 : btrfs_put_transaction(t);
4909 1 : trace_btrfs_transaction_commit(fs_info);
4910 1 : spin_lock(&fs_info->trans_lock);
4911 : }
4912 20 : spin_unlock(&fs_info->trans_lock);
4913 20 : btrfs_destroy_all_ordered_extents(fs_info);
4914 20 : btrfs_destroy_delayed_inodes(fs_info);
4915 20 : btrfs_assert_delayed_root_empty(fs_info);
4916 20 : btrfs_destroy_all_delalloc_inodes(fs_info);
4917 20 : btrfs_drop_all_logs(fs_info);
4918 20 : mutex_unlock(&fs_info->transaction_kthread_mutex);
4919 :
4920 20 : return 0;
4921 : }
4922 :
4923 19784 : int btrfs_init_root_free_objectid(struct btrfs_root *root)
4924 : {
4925 19784 : struct btrfs_path *path;
4926 19784 : int ret;
4927 19784 : struct extent_buffer *l;
4928 19784 : struct btrfs_key search_key;
4929 19784 : struct btrfs_key found_key;
4930 19784 : int slot;
4931 :
4932 19784 : path = btrfs_alloc_path();
4933 19784 : if (!path)
4934 : return -ENOMEM;
4935 :
4936 19784 : search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4937 19784 : search_key.type = -1;
4938 19784 : search_key.offset = (u64)-1;
4939 19784 : ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4940 19784 : if (ret < 0)
4941 0 : goto error;
4942 19784 : BUG_ON(ret == 0); /* Corruption */
4943 19784 : if (path->slots[0] > 0) {
4944 19532 : slot = path->slots[0] - 1;
4945 19532 : l = path->nodes[0];
4946 19532 : btrfs_item_key_to_cpu(l, &found_key, slot);
4947 19532 : root->free_objectid = max_t(u64, found_key.objectid + 1,
4948 : BTRFS_FIRST_FREE_OBJECTID);
4949 : } else {
4950 252 : root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4951 : }
4952 : ret = 0;
4953 19784 : error:
4954 19784 : btrfs_free_path(path);
4955 19784 : return ret;
4956 : }
4957 :
4958 3256648 : int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4959 : {
4960 3256648 : int ret;
4961 3256648 : mutex_lock(&root->objectid_mutex);
4962 :
4963 3256985 : if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4964 0 : btrfs_warn(root->fs_info,
4965 : "the objectid of root %llu reaches its highest value",
4966 : root->root_key.objectid);
4967 0 : ret = -ENOSPC;
4968 0 : goto out;
4969 : }
4970 :
4971 3256985 : *objectid = root->free_objectid++;
4972 3256985 : ret = 0;
4973 3256985 : out:
4974 3256985 : mutex_unlock(&root->objectid_mutex);
4975 3256513 : return ret;
4976 : }
|