Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0-only
2 : /*
3 : * fs/dax.c - Direct Access filesystem code
4 : * Copyright (c) 2013-2014 Intel Corporation
5 : * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 : * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 : */
8 :
9 : #include <linux/atomic.h>
10 : #include <linux/blkdev.h>
11 : #include <linux/buffer_head.h>
12 : #include <linux/dax.h>
13 : #include <linux/fs.h>
14 : #include <linux/highmem.h>
15 : #include <linux/memcontrol.h>
16 : #include <linux/mm.h>
17 : #include <linux/mutex.h>
18 : #include <linux/pagevec.h>
19 : #include <linux/sched.h>
20 : #include <linux/sched/signal.h>
21 : #include <linux/uio.h>
22 : #include <linux/vmstat.h>
23 : #include <linux/pfn_t.h>
24 : #include <linux/sizes.h>
25 : #include <linux/mmu_notifier.h>
26 : #include <linux/iomap.h>
27 : #include <linux/rmap.h>
28 : #include <asm/pgalloc.h>
29 :
30 : #define CREATE_TRACE_POINTS
31 : #include <trace/events/fs_dax.h>
32 :
33 : static inline unsigned int pe_order(enum page_entry_size pe_size)
34 : {
35 0 : if (pe_size == PE_SIZE_PTE)
36 : return PAGE_SHIFT - PAGE_SHIFT;
37 0 : if (pe_size == PE_SIZE_PMD)
38 : return PMD_SHIFT - PAGE_SHIFT;
39 0 : if (pe_size == PE_SIZE_PUD)
40 : return PUD_SHIFT - PAGE_SHIFT;
41 : return ~0;
42 : }
43 :
44 : /* We choose 4096 entries - same as per-zone page wait tables */
45 : #define DAX_WAIT_TABLE_BITS 12
46 : #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47 :
48 : /* The 'colour' (ie low bits) within a PMD of a page offset. */
49 : #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
50 : #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
51 :
52 : /* The order of a PMD entry */
53 : #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
54 :
55 : static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56 :
57 0 : static int __init init_dax_wait_table(void)
58 : {
59 0 : int i;
60 :
61 0 : for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62 0 : init_waitqueue_head(wait_table + i);
63 0 : return 0;
64 : }
65 : fs_initcall(init_dax_wait_table);
66 :
67 : /*
68 : * DAX pagecache entries use XArray value entries so they can't be mistaken
69 : * for pages. We use one bit for locking, one bit for the entry size (PMD)
70 : * and two more to tell us if the entry is a zero page or an empty entry that
71 : * is just used for locking. In total four special bits.
72 : *
73 : * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74 : * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75 : * block allocation.
76 : */
77 : #define DAX_SHIFT (4)
78 : #define DAX_LOCKED (1UL << 0)
79 : #define DAX_PMD (1UL << 1)
80 : #define DAX_ZERO_PAGE (1UL << 2)
81 : #define DAX_EMPTY (1UL << 3)
82 :
83 : static unsigned long dax_to_pfn(void *entry)
84 : {
85 0 : return xa_to_value(entry) >> DAX_SHIFT;
86 : }
87 :
88 : static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89 : {
90 0 : return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91 : }
92 :
93 : static bool dax_is_locked(void *entry)
94 : {
95 0 : return xa_to_value(entry) & DAX_LOCKED;
96 : }
97 :
98 : static unsigned int dax_entry_order(void *entry)
99 : {
100 0 : if (xa_to_value(entry) & DAX_PMD)
101 0 : return PMD_ORDER;
102 : return 0;
103 : }
104 :
105 : static unsigned long dax_is_pmd_entry(void *entry)
106 : {
107 0 : return xa_to_value(entry) & DAX_PMD;
108 : }
109 :
110 : static bool dax_is_pte_entry(void *entry)
111 : {
112 0 : return !(xa_to_value(entry) & DAX_PMD);
113 : }
114 :
115 : static int dax_is_zero_entry(void *entry)
116 : {
117 0 : return xa_to_value(entry) & DAX_ZERO_PAGE;
118 : }
119 :
120 : static int dax_is_empty_entry(void *entry)
121 : {
122 0 : return xa_to_value(entry) & DAX_EMPTY;
123 : }
124 :
125 : /*
126 : * true if the entry that was found is of a smaller order than the entry
127 : * we were looking for
128 : */
129 : static bool dax_is_conflict(void *entry)
130 : {
131 : return entry == XA_RETRY_ENTRY;
132 : }
133 :
134 : /*
135 : * DAX page cache entry locking
136 : */
137 : struct exceptional_entry_key {
138 : struct xarray *xa;
139 : pgoff_t entry_start;
140 : };
141 :
142 : struct wait_exceptional_entry_queue {
143 : wait_queue_entry_t wait;
144 : struct exceptional_entry_key key;
145 : };
146 :
147 : /**
148 : * enum dax_wake_mode: waitqueue wakeup behaviour
149 : * @WAKE_ALL: wake all waiters in the waitqueue
150 : * @WAKE_NEXT: wake only the first waiter in the waitqueue
151 : */
152 : enum dax_wake_mode {
153 : WAKE_ALL,
154 : WAKE_NEXT,
155 : };
156 :
157 0 : static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
158 : void *entry, struct exceptional_entry_key *key)
159 : {
160 0 : unsigned long hash;
161 0 : unsigned long index = xas->xa_index;
162 :
163 : /*
164 : * If 'entry' is a PMD, align the 'index' that we use for the wait
165 : * queue to the start of that PMD. This ensures that all offsets in
166 : * the range covered by the PMD map to the same bit lock.
167 : */
168 0 : if (dax_is_pmd_entry(entry))
169 0 : index &= ~PG_PMD_COLOUR;
170 0 : key->xa = xas->xa;
171 0 : key->entry_start = index;
172 :
173 0 : hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
174 0 : return wait_table + hash;
175 : }
176 :
177 0 : static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
178 : unsigned int mode, int sync, void *keyp)
179 : {
180 0 : struct exceptional_entry_key *key = keyp;
181 0 : struct wait_exceptional_entry_queue *ewait =
182 0 : container_of(wait, struct wait_exceptional_entry_queue, wait);
183 :
184 0 : if (key->xa != ewait->key.xa ||
185 0 : key->entry_start != ewait->key.entry_start)
186 : return 0;
187 0 : return autoremove_wake_function(wait, mode, sync, NULL);
188 : }
189 :
190 : /*
191 : * @entry may no longer be the entry at the index in the mapping.
192 : * The important information it's conveying is whether the entry at
193 : * this index used to be a PMD entry.
194 : */
195 0 : static void dax_wake_entry(struct xa_state *xas, void *entry,
196 : enum dax_wake_mode mode)
197 : {
198 0 : struct exceptional_entry_key key;
199 0 : wait_queue_head_t *wq;
200 :
201 0 : wq = dax_entry_waitqueue(xas, entry, &key);
202 :
203 : /*
204 : * Checking for locked entry and prepare_to_wait_exclusive() happens
205 : * under the i_pages lock, ditto for entry handling in our callers.
206 : * So at this point all tasks that could have seen our entry locked
207 : * must be in the waitqueue and the following check will see them.
208 : */
209 0 : if (waitqueue_active(wq))
210 0 : __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
211 0 : }
212 :
213 : /*
214 : * Look up entry in page cache, wait for it to become unlocked if it
215 : * is a DAX entry and return it. The caller must subsequently call
216 : * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
217 : * if it did. The entry returned may have a larger order than @order.
218 : * If @order is larger than the order of the entry found in i_pages, this
219 : * function returns a dax_is_conflict entry.
220 : *
221 : * Must be called with the i_pages lock held.
222 : */
223 0 : static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
224 : {
225 0 : void *entry;
226 0 : struct wait_exceptional_entry_queue ewait;
227 0 : wait_queue_head_t *wq;
228 :
229 0 : init_wait(&ewait.wait);
230 0 : ewait.wait.func = wake_exceptional_entry_func;
231 :
232 0 : for (;;) {
233 0 : entry = xas_find_conflict(xas);
234 0 : if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
235 0 : return entry;
236 0 : if (dax_entry_order(entry) < order)
237 : return XA_RETRY_ENTRY;
238 0 : if (!dax_is_locked(entry))
239 0 : return entry;
240 :
241 0 : wq = dax_entry_waitqueue(xas, entry, &ewait.key);
242 0 : prepare_to_wait_exclusive(wq, &ewait.wait,
243 : TASK_UNINTERRUPTIBLE);
244 0 : xas_unlock_irq(xas);
245 0 : xas_reset(xas);
246 0 : schedule();
247 0 : finish_wait(wq, &ewait.wait);
248 0 : xas_lock_irq(xas);
249 : }
250 : }
251 :
252 : /*
253 : * The only thing keeping the address space around is the i_pages lock
254 : * (it's cycled in clear_inode() after removing the entries from i_pages)
255 : * After we call xas_unlock_irq(), we cannot touch xas->xa.
256 : */
257 0 : static void wait_entry_unlocked(struct xa_state *xas, void *entry)
258 : {
259 0 : struct wait_exceptional_entry_queue ewait;
260 0 : wait_queue_head_t *wq;
261 :
262 0 : init_wait(&ewait.wait);
263 0 : ewait.wait.func = wake_exceptional_entry_func;
264 :
265 0 : wq = dax_entry_waitqueue(xas, entry, &ewait.key);
266 : /*
267 : * Unlike get_unlocked_entry() there is no guarantee that this
268 : * path ever successfully retrieves an unlocked entry before an
269 : * inode dies. Perform a non-exclusive wait in case this path
270 : * never successfully performs its own wake up.
271 : */
272 0 : prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
273 0 : xas_unlock_irq(xas);
274 0 : schedule();
275 0 : finish_wait(wq, &ewait.wait);
276 0 : }
277 :
278 0 : static void put_unlocked_entry(struct xa_state *xas, void *entry,
279 : enum dax_wake_mode mode)
280 : {
281 0 : if (entry && !dax_is_conflict(entry))
282 0 : dax_wake_entry(xas, entry, mode);
283 0 : }
284 :
285 : /*
286 : * We used the xa_state to get the entry, but then we locked the entry and
287 : * dropped the xa_lock, so we know the xa_state is stale and must be reset
288 : * before use.
289 : */
290 0 : static void dax_unlock_entry(struct xa_state *xas, void *entry)
291 : {
292 0 : void *old;
293 :
294 0 : BUG_ON(dax_is_locked(entry));
295 0 : xas_reset(xas);
296 0 : xas_lock_irq(xas);
297 0 : old = xas_store(xas, entry);
298 0 : xas_unlock_irq(xas);
299 0 : BUG_ON(!dax_is_locked(old));
300 0 : dax_wake_entry(xas, entry, WAKE_NEXT);
301 0 : }
302 :
303 : /*
304 : * Return: The entry stored at this location before it was locked.
305 : */
306 0 : static void *dax_lock_entry(struct xa_state *xas, void *entry)
307 : {
308 0 : unsigned long v = xa_to_value(entry);
309 0 : return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
310 : }
311 :
312 0 : static unsigned long dax_entry_size(void *entry)
313 : {
314 0 : if (dax_is_zero_entry(entry))
315 : return 0;
316 0 : else if (dax_is_empty_entry(entry))
317 : return 0;
318 0 : else if (dax_is_pmd_entry(entry))
319 : return PMD_SIZE;
320 : else
321 0 : return PAGE_SIZE;
322 : }
323 :
324 : static unsigned long dax_end_pfn(void *entry)
325 : {
326 0 : return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
327 : }
328 :
329 : /*
330 : * Iterate through all mapped pfns represented by an entry, i.e. skip
331 : * 'empty' and 'zero' entries.
332 : */
333 : #define for_each_mapped_pfn(entry, pfn) \
334 : for (pfn = dax_to_pfn(entry); \
335 : pfn < dax_end_pfn(entry); pfn++)
336 :
337 : static inline bool dax_page_is_shared(struct page *page)
338 : {
339 0 : return page->mapping == PAGE_MAPPING_DAX_SHARED;
340 : }
341 :
342 : /*
343 : * Set the page->mapping with PAGE_MAPPING_DAX_SHARED flag, increase the
344 : * refcount.
345 : */
346 : static inline void dax_page_share_get(struct page *page)
347 : {
348 0 : if (page->mapping != PAGE_MAPPING_DAX_SHARED) {
349 : /*
350 : * Reset the index if the page was already mapped
351 : * regularly before.
352 : */
353 0 : if (page->mapping)
354 0 : page->share = 1;
355 0 : page->mapping = PAGE_MAPPING_DAX_SHARED;
356 : }
357 0 : page->share++;
358 0 : }
359 :
360 : static inline unsigned long dax_page_share_put(struct page *page)
361 : {
362 0 : return --page->share;
363 : }
364 :
365 : /*
366 : * When it is called in dax_insert_entry(), the shared flag will indicate that
367 : * whether this entry is shared by multiple files. If so, set the page->mapping
368 : * PAGE_MAPPING_DAX_SHARED, and use page->share as refcount.
369 : */
370 0 : static void dax_associate_entry(void *entry, struct address_space *mapping,
371 : struct vm_area_struct *vma, unsigned long address, bool shared)
372 : {
373 0 : unsigned long size = dax_entry_size(entry), pfn, index;
374 0 : int i = 0;
375 :
376 0 : if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
377 : return;
378 :
379 0 : index = linear_page_index(vma, address & ~(size - 1));
380 0 : for_each_mapped_pfn(entry, pfn) {
381 0 : struct page *page = pfn_to_page(pfn);
382 :
383 0 : if (shared) {
384 0 : dax_page_share_get(page);
385 : } else {
386 0 : WARN_ON_ONCE(page->mapping);
387 0 : page->mapping = mapping;
388 0 : page->index = index + i++;
389 : }
390 : }
391 : }
392 :
393 0 : static void dax_disassociate_entry(void *entry, struct address_space *mapping,
394 : bool trunc)
395 : {
396 0 : unsigned long pfn;
397 :
398 0 : if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
399 : return;
400 :
401 0 : for_each_mapped_pfn(entry, pfn) {
402 0 : struct page *page = pfn_to_page(pfn);
403 :
404 0 : WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
405 0 : if (dax_page_is_shared(page)) {
406 : /* keep the shared flag if this page is still shared */
407 0 : if (dax_page_share_put(page) > 0)
408 0 : continue;
409 : } else
410 0 : WARN_ON_ONCE(page->mapping && page->mapping != mapping);
411 0 : page->mapping = NULL;
412 0 : page->index = 0;
413 : }
414 : }
415 :
416 0 : static struct page *dax_busy_page(void *entry)
417 : {
418 0 : unsigned long pfn;
419 :
420 0 : for_each_mapped_pfn(entry, pfn) {
421 0 : struct page *page = pfn_to_page(pfn);
422 :
423 0 : if (page_ref_count(page) > 1)
424 0 : return page;
425 : }
426 : return NULL;
427 : }
428 :
429 : /*
430 : * dax_lock_page - Lock the DAX entry corresponding to a page
431 : * @page: The page whose entry we want to lock
432 : *
433 : * Context: Process context.
434 : * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
435 : * not be locked.
436 : */
437 0 : dax_entry_t dax_lock_page(struct page *page)
438 : {
439 0 : XA_STATE(xas, NULL, 0);
440 0 : void *entry;
441 :
442 : /* Ensure page->mapping isn't freed while we look at it */
443 0 : rcu_read_lock();
444 0 : for (;;) {
445 0 : struct address_space *mapping = READ_ONCE(page->mapping);
446 :
447 0 : entry = NULL;
448 0 : if (!mapping || !dax_mapping(mapping))
449 : break;
450 :
451 : /*
452 : * In the device-dax case there's no need to lock, a
453 : * struct dev_pagemap pin is sufficient to keep the
454 : * inode alive, and we assume we have dev_pagemap pin
455 : * otherwise we would not have a valid pfn_to_page()
456 : * translation.
457 : */
458 0 : entry = (void *)~0UL;
459 0 : if (S_ISCHR(mapping->host->i_mode))
460 : break;
461 :
462 0 : xas.xa = &mapping->i_pages;
463 0 : xas_lock_irq(&xas);
464 0 : if (mapping != page->mapping) {
465 0 : xas_unlock_irq(&xas);
466 0 : continue;
467 : }
468 0 : xas_set(&xas, page->index);
469 0 : entry = xas_load(&xas);
470 0 : if (dax_is_locked(entry)) {
471 0 : rcu_read_unlock();
472 0 : wait_entry_unlocked(&xas, entry);
473 0 : rcu_read_lock();
474 0 : continue;
475 : }
476 0 : dax_lock_entry(&xas, entry);
477 0 : xas_unlock_irq(&xas);
478 : break;
479 : }
480 0 : rcu_read_unlock();
481 0 : return (dax_entry_t)entry;
482 : }
483 :
484 0 : void dax_unlock_page(struct page *page, dax_entry_t cookie)
485 : {
486 0 : struct address_space *mapping = page->mapping;
487 0 : XA_STATE(xas, &mapping->i_pages, page->index);
488 :
489 0 : if (S_ISCHR(mapping->host->i_mode))
490 0 : return;
491 :
492 0 : dax_unlock_entry(&xas, (void *)cookie);
493 : }
494 :
495 : /*
496 : * dax_lock_mapping_entry - Lock the DAX entry corresponding to a mapping
497 : * @mapping: the file's mapping whose entry we want to lock
498 : * @index: the offset within this file
499 : * @page: output the dax page corresponding to this dax entry
500 : *
501 : * Return: A cookie to pass to dax_unlock_mapping_entry() or 0 if the entry
502 : * could not be locked.
503 : */
504 0 : dax_entry_t dax_lock_mapping_entry(struct address_space *mapping, pgoff_t index,
505 : struct page **page)
506 : {
507 0 : XA_STATE(xas, NULL, 0);
508 0 : void *entry;
509 :
510 0 : rcu_read_lock();
511 0 : for (;;) {
512 0 : entry = NULL;
513 0 : if (!dax_mapping(mapping))
514 : break;
515 :
516 0 : xas.xa = &mapping->i_pages;
517 0 : xas_lock_irq(&xas);
518 0 : xas_set(&xas, index);
519 0 : entry = xas_load(&xas);
520 0 : if (dax_is_locked(entry)) {
521 0 : rcu_read_unlock();
522 0 : wait_entry_unlocked(&xas, entry);
523 0 : rcu_read_lock();
524 0 : continue;
525 : }
526 0 : if (!entry ||
527 0 : dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
528 : /*
529 : * Because we are looking for entry from file's mapping
530 : * and index, so the entry may not be inserted for now,
531 : * or even a zero/empty entry. We don't think this is
532 : * an error case. So, return a special value and do
533 : * not output @page.
534 : */
535 : entry = (void *)~0UL;
536 : } else {
537 0 : *page = pfn_to_page(dax_to_pfn(entry));
538 0 : dax_lock_entry(&xas, entry);
539 : }
540 0 : xas_unlock_irq(&xas);
541 : break;
542 : }
543 0 : rcu_read_unlock();
544 0 : return (dax_entry_t)entry;
545 : }
546 :
547 0 : void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index,
548 : dax_entry_t cookie)
549 : {
550 0 : XA_STATE(xas, &mapping->i_pages, index);
551 :
552 0 : if (cookie == ~0UL)
553 0 : return;
554 :
555 0 : dax_unlock_entry(&xas, (void *)cookie);
556 : }
557 :
558 : /*
559 : * Find page cache entry at given index. If it is a DAX entry, return it
560 : * with the entry locked. If the page cache doesn't contain an entry at
561 : * that index, add a locked empty entry.
562 : *
563 : * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
564 : * either return that locked entry or will return VM_FAULT_FALLBACK.
565 : * This will happen if there are any PTE entries within the PMD range
566 : * that we are requesting.
567 : *
568 : * We always favor PTE entries over PMD entries. There isn't a flow where we
569 : * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
570 : * insertion will fail if it finds any PTE entries already in the tree, and a
571 : * PTE insertion will cause an existing PMD entry to be unmapped and
572 : * downgraded to PTE entries. This happens for both PMD zero pages as
573 : * well as PMD empty entries.
574 : *
575 : * The exception to this downgrade path is for PMD entries that have
576 : * real storage backing them. We will leave these real PMD entries in
577 : * the tree, and PTE writes will simply dirty the entire PMD entry.
578 : *
579 : * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
580 : * persistent memory the benefit is doubtful. We can add that later if we can
581 : * show it helps.
582 : *
583 : * On error, this function does not return an ERR_PTR. Instead it returns
584 : * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
585 : * overlap with xarray value entries.
586 : */
587 0 : static void *grab_mapping_entry(struct xa_state *xas,
588 : struct address_space *mapping, unsigned int order)
589 : {
590 0 : unsigned long index = xas->xa_index;
591 0 : bool pmd_downgrade; /* splitting PMD entry into PTE entries? */
592 0 : void *entry;
593 :
594 0 : retry:
595 0 : pmd_downgrade = false;
596 0 : xas_lock_irq(xas);
597 0 : entry = get_unlocked_entry(xas, order);
598 :
599 0 : if (entry) {
600 0 : if (dax_is_conflict(entry))
601 0 : goto fallback;
602 0 : if (!xa_is_value(entry)) {
603 0 : xas_set_err(xas, -EIO);
604 0 : goto out_unlock;
605 : }
606 :
607 0 : if (order == 0) {
608 0 : if (dax_is_pmd_entry(entry) &&
609 0 : (dax_is_zero_entry(entry) ||
610 : dax_is_empty_entry(entry))) {
611 0 : pmd_downgrade = true;
612 : }
613 : }
614 : }
615 :
616 0 : if (pmd_downgrade) {
617 : /*
618 : * Make sure 'entry' remains valid while we drop
619 : * the i_pages lock.
620 : */
621 0 : dax_lock_entry(xas, entry);
622 :
623 : /*
624 : * Besides huge zero pages the only other thing that gets
625 : * downgraded are empty entries which don't need to be
626 : * unmapped.
627 : */
628 0 : if (dax_is_zero_entry(entry)) {
629 0 : xas_unlock_irq(xas);
630 0 : unmap_mapping_pages(mapping,
631 0 : xas->xa_index & ~PG_PMD_COLOUR,
632 : PG_PMD_NR, false);
633 0 : xas_reset(xas);
634 0 : xas_lock_irq(xas);
635 : }
636 :
637 0 : dax_disassociate_entry(entry, mapping, false);
638 0 : xas_store(xas, NULL); /* undo the PMD join */
639 0 : dax_wake_entry(xas, entry, WAKE_ALL);
640 0 : mapping->nrpages -= PG_PMD_NR;
641 0 : entry = NULL;
642 0 : xas_set(xas, index);
643 : }
644 :
645 0 : if (entry) {
646 0 : dax_lock_entry(xas, entry);
647 : } else {
648 0 : unsigned long flags = DAX_EMPTY;
649 :
650 0 : if (order > 0)
651 0 : flags |= DAX_PMD;
652 0 : entry = dax_make_entry(pfn_to_pfn_t(0), flags);
653 0 : dax_lock_entry(xas, entry);
654 0 : if (xas_error(xas))
655 0 : goto out_unlock;
656 0 : mapping->nrpages += 1UL << order;
657 : }
658 :
659 0 : out_unlock:
660 0 : xas_unlock_irq(xas);
661 0 : if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
662 0 : goto retry;
663 0 : if (xas->xa_node == XA_ERROR(-ENOMEM))
664 : return xa_mk_internal(VM_FAULT_OOM);
665 0 : if (xas_error(xas))
666 0 : return xa_mk_internal(VM_FAULT_SIGBUS);
667 : return entry;
668 : fallback:
669 0 : xas_unlock_irq(xas);
670 0 : return xa_mk_internal(VM_FAULT_FALLBACK);
671 : }
672 :
673 : /**
674 : * dax_layout_busy_page_range - find first pinned page in @mapping
675 : * @mapping: address space to scan for a page with ref count > 1
676 : * @start: Starting offset. Page containing 'start' is included.
677 : * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
678 : * pages from 'start' till the end of file are included.
679 : *
680 : * DAX requires ZONE_DEVICE mapped pages. These pages are never
681 : * 'onlined' to the page allocator so they are considered idle when
682 : * page->count == 1. A filesystem uses this interface to determine if
683 : * any page in the mapping is busy, i.e. for DMA, or other
684 : * get_user_pages() usages.
685 : *
686 : * It is expected that the filesystem is holding locks to block the
687 : * establishment of new mappings in this address_space. I.e. it expects
688 : * to be able to run unmap_mapping_range() and subsequently not race
689 : * mapping_mapped() becoming true.
690 : */
691 62649434 : struct page *dax_layout_busy_page_range(struct address_space *mapping,
692 : loff_t start, loff_t end)
693 : {
694 62649434 : void *entry;
695 62649434 : unsigned int scanned = 0;
696 62649434 : struct page *page = NULL;
697 62649434 : pgoff_t start_idx = start >> PAGE_SHIFT;
698 62649434 : pgoff_t end_idx;
699 62649434 : XA_STATE(xas, &mapping->i_pages, start_idx);
700 :
701 : /*
702 : * In the 'limited' case get_user_pages() for dax is disabled.
703 : */
704 62649434 : if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
705 : return NULL;
706 :
707 125298868 : if (!dax_mapping(mapping) || !mapping_mapped(mapping))
708 : return NULL;
709 :
710 : /* If end == LLONG_MAX, all pages from start to till end of file */
711 0 : if (end == LLONG_MAX)
712 : end_idx = ULONG_MAX;
713 : else
714 0 : end_idx = end >> PAGE_SHIFT;
715 : /*
716 : * If we race get_user_pages_fast() here either we'll see the
717 : * elevated page count in the iteration and wait, or
718 : * get_user_pages_fast() will see that the page it took a reference
719 : * against is no longer mapped in the page tables and bail to the
720 : * get_user_pages() slow path. The slow path is protected by
721 : * pte_lock() and pmd_lock(). New references are not taken without
722 : * holding those locks, and unmap_mapping_pages() will not zero the
723 : * pte or pmd without holding the respective lock, so we are
724 : * guaranteed to either see new references or prevent new
725 : * references from being established.
726 : */
727 0 : unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
728 :
729 0 : xas_lock_irq(&xas);
730 0 : xas_for_each(&xas, entry, end_idx) {
731 0 : if (WARN_ON_ONCE(!xa_is_value(entry)))
732 0 : continue;
733 0 : if (unlikely(dax_is_locked(entry)))
734 0 : entry = get_unlocked_entry(&xas, 0);
735 0 : if (entry)
736 0 : page = dax_busy_page(entry);
737 0 : put_unlocked_entry(&xas, entry, WAKE_NEXT);
738 0 : if (page)
739 : break;
740 0 : if (++scanned % XA_CHECK_SCHED)
741 0 : continue;
742 :
743 0 : xas_pause(&xas);
744 0 : xas_unlock_irq(&xas);
745 0 : cond_resched();
746 0 : xas_lock_irq(&xas);
747 : }
748 0 : xas_unlock_irq(&xas);
749 0 : return page;
750 : }
751 : EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
752 :
753 62649857 : struct page *dax_layout_busy_page(struct address_space *mapping)
754 : {
755 62649857 : return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
756 : }
757 : EXPORT_SYMBOL_GPL(dax_layout_busy_page);
758 :
759 0 : static int __dax_invalidate_entry(struct address_space *mapping,
760 : pgoff_t index, bool trunc)
761 : {
762 0 : XA_STATE(xas, &mapping->i_pages, index);
763 0 : int ret = 0;
764 0 : void *entry;
765 :
766 0 : xas_lock_irq(&xas);
767 0 : entry = get_unlocked_entry(&xas, 0);
768 0 : if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
769 0 : goto out;
770 0 : if (!trunc &&
771 0 : (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
772 0 : xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
773 0 : goto out;
774 0 : dax_disassociate_entry(entry, mapping, trunc);
775 0 : xas_store(&xas, NULL);
776 0 : mapping->nrpages -= 1UL << dax_entry_order(entry);
777 0 : ret = 1;
778 0 : out:
779 0 : put_unlocked_entry(&xas, entry, WAKE_ALL);
780 0 : xas_unlock_irq(&xas);
781 0 : return ret;
782 : }
783 :
784 0 : static int __dax_clear_dirty_range(struct address_space *mapping,
785 : pgoff_t start, pgoff_t end)
786 : {
787 0 : XA_STATE(xas, &mapping->i_pages, start);
788 0 : unsigned int scanned = 0;
789 0 : void *entry;
790 :
791 0 : xas_lock_irq(&xas);
792 0 : xas_for_each(&xas, entry, end) {
793 0 : entry = get_unlocked_entry(&xas, 0);
794 0 : xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
795 0 : xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
796 0 : put_unlocked_entry(&xas, entry, WAKE_NEXT);
797 :
798 0 : if (++scanned % XA_CHECK_SCHED)
799 0 : continue;
800 :
801 0 : xas_pause(&xas);
802 0 : xas_unlock_irq(&xas);
803 0 : cond_resched();
804 0 : xas_lock_irq(&xas);
805 : }
806 0 : xas_unlock_irq(&xas);
807 :
808 0 : return 0;
809 : }
810 :
811 : /*
812 : * Delete DAX entry at @index from @mapping. Wait for it
813 : * to be unlocked before deleting it.
814 : */
815 0 : int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
816 : {
817 0 : int ret = __dax_invalidate_entry(mapping, index, true);
818 :
819 : /*
820 : * This gets called from truncate / punch_hole path. As such, the caller
821 : * must hold locks protecting against concurrent modifications of the
822 : * page cache (usually fs-private i_mmap_sem for writing). Since the
823 : * caller has seen a DAX entry for this index, we better find it
824 : * at that index as well...
825 : */
826 0 : WARN_ON_ONCE(!ret);
827 0 : return ret;
828 : }
829 :
830 : /*
831 : * Invalidate DAX entry if it is clean.
832 : */
833 0 : int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
834 : pgoff_t index)
835 : {
836 0 : return __dax_invalidate_entry(mapping, index, false);
837 : }
838 :
839 : static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
840 : {
841 0 : return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
842 : }
843 :
844 0 : static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
845 : {
846 0 : pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
847 0 : void *vto, *kaddr;
848 0 : long rc;
849 0 : int id;
850 :
851 0 : id = dax_read_lock();
852 0 : rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS,
853 : &kaddr, NULL);
854 0 : if (rc < 0) {
855 0 : dax_read_unlock(id);
856 0 : return rc;
857 : }
858 0 : vto = kmap_atomic(vmf->cow_page);
859 0 : copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
860 0 : kunmap_atomic(vto);
861 0 : dax_read_unlock(id);
862 0 : return 0;
863 : }
864 :
865 : /*
866 : * MAP_SYNC on a dax mapping guarantees dirty metadata is
867 : * flushed on write-faults (non-cow), but not read-faults.
868 : */
869 0 : static bool dax_fault_is_synchronous(const struct iomap_iter *iter,
870 : struct vm_area_struct *vma)
871 : {
872 0 : return (iter->flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) &&
873 0 : (iter->iomap.flags & IOMAP_F_DIRTY);
874 : }
875 :
876 : /*
877 : * By this point grab_mapping_entry() has ensured that we have a locked entry
878 : * of the appropriate size so we don't have to worry about downgrading PMDs to
879 : * PTEs. If we happen to be trying to insert a PTE and there is a PMD
880 : * already in the tree, we will skip the insertion and just dirty the PMD as
881 : * appropriate.
882 : */
883 0 : static void *dax_insert_entry(struct xa_state *xas, struct vm_fault *vmf,
884 : const struct iomap_iter *iter, void *entry, pfn_t pfn,
885 : unsigned long flags)
886 : {
887 0 : struct address_space *mapping = vmf->vma->vm_file->f_mapping;
888 0 : void *new_entry = dax_make_entry(pfn, flags);
889 0 : bool write = iter->flags & IOMAP_WRITE;
890 0 : bool dirty = write && !dax_fault_is_synchronous(iter, vmf->vma);
891 0 : bool shared = iter->iomap.flags & IOMAP_F_SHARED;
892 :
893 0 : if (dirty)
894 0 : __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
895 :
896 0 : if (shared || (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE))) {
897 0 : unsigned long index = xas->xa_index;
898 : /* we are replacing a zero page with block mapping */
899 0 : if (dax_is_pmd_entry(entry))
900 0 : unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
901 : PG_PMD_NR, false);
902 : else /* pte entry */
903 0 : unmap_mapping_pages(mapping, index, 1, false);
904 : }
905 :
906 0 : xas_reset(xas);
907 0 : xas_lock_irq(xas);
908 0 : if (shared || dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
909 0 : void *old;
910 :
911 0 : dax_disassociate_entry(entry, mapping, false);
912 0 : dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address,
913 : shared);
914 : /*
915 : * Only swap our new entry into the page cache if the current
916 : * entry is a zero page or an empty entry. If a normal PTE or
917 : * PMD entry is already in the cache, we leave it alone. This
918 : * means that if we are trying to insert a PTE and the
919 : * existing entry is a PMD, we will just leave the PMD in the
920 : * tree and dirty it if necessary.
921 : */
922 0 : old = dax_lock_entry(xas, new_entry);
923 0 : WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
924 : DAX_LOCKED));
925 : entry = new_entry;
926 : } else {
927 0 : xas_load(xas); /* Walk the xa_state */
928 : }
929 :
930 0 : if (dirty)
931 0 : xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
932 :
933 0 : if (write && shared)
934 0 : xas_set_mark(xas, PAGECACHE_TAG_TOWRITE);
935 :
936 0 : xas_unlock_irq(xas);
937 0 : return entry;
938 : }
939 :
940 0 : static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
941 : struct address_space *mapping, void *entry)
942 : {
943 0 : unsigned long pfn, index, count, end;
944 0 : long ret = 0;
945 0 : struct vm_area_struct *vma;
946 :
947 : /*
948 : * A page got tagged dirty in DAX mapping? Something is seriously
949 : * wrong.
950 : */
951 0 : if (WARN_ON(!xa_is_value(entry)))
952 : return -EIO;
953 :
954 0 : if (unlikely(dax_is_locked(entry))) {
955 0 : void *old_entry = entry;
956 :
957 0 : entry = get_unlocked_entry(xas, 0);
958 :
959 : /* Entry got punched out / reallocated? */
960 0 : if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
961 0 : goto put_unlocked;
962 : /*
963 : * Entry got reallocated elsewhere? No need to writeback.
964 : * We have to compare pfns as we must not bail out due to
965 : * difference in lockbit or entry type.
966 : */
967 0 : if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
968 0 : goto put_unlocked;
969 0 : if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
970 : dax_is_zero_entry(entry))) {
971 0 : ret = -EIO;
972 0 : goto put_unlocked;
973 : }
974 :
975 : /* Another fsync thread may have already done this entry */
976 0 : if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
977 0 : goto put_unlocked;
978 : }
979 :
980 : /* Lock the entry to serialize with page faults */
981 0 : dax_lock_entry(xas, entry);
982 :
983 : /*
984 : * We can clear the tag now but we have to be careful so that concurrent
985 : * dax_writeback_one() calls for the same index cannot finish before we
986 : * actually flush the caches. This is achieved as the calls will look
987 : * at the entry only under the i_pages lock and once they do that
988 : * they will see the entry locked and wait for it to unlock.
989 : */
990 0 : xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
991 0 : xas_unlock_irq(xas);
992 :
993 : /*
994 : * If dax_writeback_mapping_range() was given a wbc->range_start
995 : * in the middle of a PMD, the 'index' we use needs to be
996 : * aligned to the start of the PMD.
997 : * This allows us to flush for PMD_SIZE and not have to worry about
998 : * partial PMD writebacks.
999 : */
1000 0 : pfn = dax_to_pfn(entry);
1001 0 : count = 1UL << dax_entry_order(entry);
1002 0 : index = xas->xa_index & ~(count - 1);
1003 0 : end = index + count - 1;
1004 :
1005 : /* Walk all mappings of a given index of a file and writeprotect them */
1006 0 : i_mmap_lock_read(mapping);
1007 0 : vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) {
1008 0 : pfn_mkclean_range(pfn, count, index, vma);
1009 0 : cond_resched();
1010 : }
1011 0 : i_mmap_unlock_read(mapping);
1012 :
1013 0 : dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
1014 : /*
1015 : * After we have flushed the cache, we can clear the dirty tag. There
1016 : * cannot be new dirty data in the pfn after the flush has completed as
1017 : * the pfn mappings are writeprotected and fault waits for mapping
1018 : * entry lock.
1019 : */
1020 0 : xas_reset(xas);
1021 0 : xas_lock_irq(xas);
1022 0 : xas_store(xas, entry);
1023 0 : xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
1024 0 : dax_wake_entry(xas, entry, WAKE_NEXT);
1025 :
1026 0 : trace_dax_writeback_one(mapping->host, index, count);
1027 0 : return ret;
1028 :
1029 0 : put_unlocked:
1030 0 : put_unlocked_entry(xas, entry, WAKE_NEXT);
1031 0 : return ret;
1032 : }
1033 :
1034 : /*
1035 : * Flush the mapping to the persistent domain within the byte range of [start,
1036 : * end]. This is required by data integrity operations to ensure file data is
1037 : * on persistent storage prior to completion of the operation.
1038 : */
1039 0 : int dax_writeback_mapping_range(struct address_space *mapping,
1040 : struct dax_device *dax_dev, struct writeback_control *wbc)
1041 : {
1042 0 : XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
1043 0 : struct inode *inode = mapping->host;
1044 0 : pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
1045 0 : void *entry;
1046 0 : int ret = 0;
1047 0 : unsigned int scanned = 0;
1048 :
1049 0 : if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
1050 : return -EIO;
1051 :
1052 0 : if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
1053 : return 0;
1054 :
1055 0 : trace_dax_writeback_range(inode, xas.xa_index, end_index);
1056 :
1057 0 : tag_pages_for_writeback(mapping, xas.xa_index, end_index);
1058 :
1059 0 : xas_lock_irq(&xas);
1060 0 : xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
1061 0 : ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
1062 0 : if (ret < 0) {
1063 0 : mapping_set_error(mapping, ret);
1064 0 : break;
1065 : }
1066 0 : if (++scanned % XA_CHECK_SCHED)
1067 0 : continue;
1068 :
1069 0 : xas_pause(&xas);
1070 0 : xas_unlock_irq(&xas);
1071 0 : cond_resched();
1072 0 : xas_lock_irq(&xas);
1073 : }
1074 0 : xas_unlock_irq(&xas);
1075 0 : trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1076 0 : return ret;
1077 : }
1078 : EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1079 :
1080 0 : static int dax_iomap_direct_access(const struct iomap *iomap, loff_t pos,
1081 : size_t size, void **kaddr, pfn_t *pfnp)
1082 : {
1083 0 : pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1084 0 : int id, rc = 0;
1085 0 : long length;
1086 :
1087 0 : id = dax_read_lock();
1088 0 : length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1089 : DAX_ACCESS, kaddr, pfnp);
1090 0 : if (length < 0) {
1091 0 : rc = length;
1092 0 : goto out;
1093 : }
1094 0 : if (!pfnp)
1095 0 : goto out_check_addr;
1096 0 : rc = -EINVAL;
1097 0 : if (PFN_PHYS(length) < size)
1098 0 : goto out;
1099 0 : if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1100 0 : goto out;
1101 : /* For larger pages we need devmap */
1102 0 : if (length > 1 && !pfn_t_devmap(*pfnp))
1103 0 : goto out;
1104 : rc = 0;
1105 :
1106 0 : out_check_addr:
1107 0 : if (!kaddr)
1108 0 : goto out;
1109 0 : if (!*kaddr)
1110 0 : rc = -EFAULT;
1111 0 : out:
1112 0 : dax_read_unlock(id);
1113 0 : return rc;
1114 : }
1115 :
1116 : /**
1117 : * dax_iomap_copy_around - Prepare for an unaligned write to a shared/cow page
1118 : * by copying the data before and after the range to be written.
1119 : * @pos: address to do copy from.
1120 : * @length: size of copy operation.
1121 : * @align_size: aligned w.r.t align_size (either PMD_SIZE or PAGE_SIZE)
1122 : * @srcmap: iomap srcmap
1123 : * @daddr: destination address to copy to.
1124 : *
1125 : * This can be called from two places. Either during DAX write fault (page
1126 : * aligned), to copy the length size data to daddr. Or, while doing normal DAX
1127 : * write operation, dax_iomap_iter() might call this to do the copy of either
1128 : * start or end unaligned address. In the latter case the rest of the copy of
1129 : * aligned ranges is taken care by dax_iomap_iter() itself.
1130 : * If the srcmap contains invalid data, such as HOLE and UNWRITTEN, zero the
1131 : * area to make sure no old data remains.
1132 : */
1133 0 : static int dax_iomap_copy_around(loff_t pos, uint64_t length, size_t align_size,
1134 : const struct iomap *srcmap, void *daddr)
1135 : {
1136 0 : loff_t head_off = pos & (align_size - 1);
1137 0 : size_t size = ALIGN(head_off + length, align_size);
1138 0 : loff_t end = pos + length;
1139 0 : loff_t pg_end = round_up(end, align_size);
1140 : /* copy_all is usually in page fault case */
1141 0 : bool copy_all = head_off == 0 && end == pg_end;
1142 : /* zero the edges if srcmap is a HOLE or IOMAP_UNWRITTEN */
1143 0 : bool zero_edge = srcmap->flags & IOMAP_F_SHARED ||
1144 0 : srcmap->type == IOMAP_UNWRITTEN;
1145 0 : void *saddr = 0;
1146 0 : int ret = 0;
1147 :
1148 0 : if (!zero_edge) {
1149 0 : ret = dax_iomap_direct_access(srcmap, pos, size, &saddr, NULL);
1150 0 : if (ret)
1151 0 : return dax_mem2blk_err(ret);
1152 : }
1153 :
1154 0 : if (copy_all) {
1155 0 : if (zero_edge)
1156 0 : memset(daddr, 0, size);
1157 : else
1158 0 : ret = copy_mc_to_kernel(daddr, saddr, length);
1159 0 : goto out;
1160 : }
1161 :
1162 : /* Copy the head part of the range */
1163 0 : if (head_off) {
1164 0 : if (zero_edge)
1165 0 : memset(daddr, 0, head_off);
1166 : else {
1167 0 : ret = copy_mc_to_kernel(daddr, saddr, head_off);
1168 0 : if (ret)
1169 : return -EIO;
1170 : }
1171 : }
1172 :
1173 : /* Copy the tail part of the range */
1174 0 : if (end < pg_end) {
1175 0 : loff_t tail_off = head_off + length;
1176 0 : loff_t tail_len = pg_end - end;
1177 :
1178 0 : if (zero_edge)
1179 0 : memset(daddr + tail_off, 0, tail_len);
1180 : else {
1181 0 : ret = copy_mc_to_kernel(daddr + tail_off,
1182 0 : saddr + tail_off, tail_len);
1183 0 : if (ret)
1184 : return -EIO;
1185 : }
1186 : }
1187 0 : out:
1188 0 : if (zero_edge)
1189 0 : dax_flush(srcmap->dax_dev, daddr, size);
1190 0 : return ret ? -EIO : 0;
1191 : }
1192 :
1193 : /*
1194 : * The user has performed a load from a hole in the file. Allocating a new
1195 : * page in the file would cause excessive storage usage for workloads with
1196 : * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1197 : * If this page is ever written to we will re-fault and change the mapping to
1198 : * point to real DAX storage instead.
1199 : */
1200 0 : static vm_fault_t dax_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1201 : const struct iomap_iter *iter, void **entry)
1202 : {
1203 0 : struct inode *inode = iter->inode;
1204 0 : unsigned long vaddr = vmf->address;
1205 0 : pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1206 0 : vm_fault_t ret;
1207 :
1208 0 : *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, DAX_ZERO_PAGE);
1209 :
1210 0 : ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1211 0 : trace_dax_load_hole(inode, vmf, ret);
1212 0 : return ret;
1213 : }
1214 :
1215 : #ifdef CONFIG_FS_DAX_PMD
1216 0 : static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1217 : const struct iomap_iter *iter, void **entry)
1218 : {
1219 0 : struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1220 0 : unsigned long pmd_addr = vmf->address & PMD_MASK;
1221 0 : struct vm_area_struct *vma = vmf->vma;
1222 0 : struct inode *inode = mapping->host;
1223 0 : pgtable_t pgtable = NULL;
1224 0 : struct page *zero_page;
1225 0 : spinlock_t *ptl;
1226 0 : pmd_t pmd_entry;
1227 0 : pfn_t pfn;
1228 :
1229 0 : zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1230 :
1231 0 : if (unlikely(!zero_page))
1232 0 : goto fallback;
1233 :
1234 0 : pfn = page_to_pfn_t(zero_page);
1235 0 : *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn,
1236 : DAX_PMD | DAX_ZERO_PAGE);
1237 :
1238 0 : if (arch_needs_pgtable_deposit()) {
1239 : pgtable = pte_alloc_one(vma->vm_mm);
1240 : if (!pgtable)
1241 : return VM_FAULT_OOM;
1242 : }
1243 :
1244 0 : ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1245 0 : if (!pmd_none(*(vmf->pmd))) {
1246 0 : spin_unlock(ptl);
1247 0 : goto fallback;
1248 : }
1249 :
1250 0 : if (pgtable) {
1251 : pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1252 : mm_inc_nr_ptes(vma->vm_mm);
1253 : }
1254 0 : pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1255 0 : pmd_entry = pmd_mkhuge(pmd_entry);
1256 0 : set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1257 0 : spin_unlock(ptl);
1258 0 : trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1259 0 : return VM_FAULT_NOPAGE;
1260 :
1261 0 : fallback:
1262 0 : if (pgtable)
1263 : pte_free(vma->vm_mm, pgtable);
1264 0 : trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1265 0 : return VM_FAULT_FALLBACK;
1266 : }
1267 : #else
1268 : static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1269 : const struct iomap_iter *iter, void **entry)
1270 : {
1271 : return VM_FAULT_FALLBACK;
1272 : }
1273 : #endif /* CONFIG_FS_DAX_PMD */
1274 :
1275 0 : static s64 dax_unshare_iter(struct iomap_iter *iter)
1276 : {
1277 0 : struct iomap *iomap = &iter->iomap;
1278 0 : const struct iomap *srcmap = iomap_iter_srcmap(iter);
1279 0 : loff_t pos = iter->pos;
1280 0 : loff_t length = iomap_length(iter);
1281 0 : int id = 0;
1282 0 : s64 ret = 0;
1283 0 : void *daddr = NULL, *saddr = NULL;
1284 :
1285 : /* don't bother with blocks that are not shared to start with */
1286 0 : if (!(iomap->flags & IOMAP_F_SHARED))
1287 : return length;
1288 :
1289 0 : id = dax_read_lock();
1290 0 : ret = dax_iomap_direct_access(iomap, pos, length, &daddr, NULL);
1291 0 : if (ret < 0)
1292 0 : goto out_unlock;
1293 :
1294 : /* zero the distance if srcmap is HOLE or UNWRITTEN */
1295 0 : if (srcmap->flags & IOMAP_F_SHARED || srcmap->type == IOMAP_UNWRITTEN) {
1296 0 : memset(daddr, 0, length);
1297 0 : dax_flush(iomap->dax_dev, daddr, length);
1298 0 : ret = length;
1299 0 : goto out_unlock;
1300 : }
1301 :
1302 0 : ret = dax_iomap_direct_access(srcmap, pos, length, &saddr, NULL);
1303 0 : if (ret < 0)
1304 0 : goto out_unlock;
1305 :
1306 0 : if (copy_mc_to_kernel(daddr, saddr, length) == 0)
1307 : ret = length;
1308 : else
1309 0 : ret = -EIO;
1310 :
1311 0 : out_unlock:
1312 0 : dax_read_unlock(id);
1313 0 : return dax_mem2blk_err(ret);
1314 : }
1315 :
1316 0 : int dax_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1317 : const struct iomap_ops *ops)
1318 : {
1319 0 : struct iomap_iter iter = {
1320 : .inode = inode,
1321 : .pos = pos,
1322 : .len = len,
1323 : .flags = IOMAP_WRITE | IOMAP_UNSHARE | IOMAP_DAX,
1324 : };
1325 0 : int ret;
1326 :
1327 0 : while ((ret = iomap_iter(&iter, ops)) > 0)
1328 0 : iter.processed = dax_unshare_iter(&iter);
1329 0 : return ret;
1330 : }
1331 : EXPORT_SYMBOL_GPL(dax_file_unshare);
1332 :
1333 0 : static int dax_memzero(struct iomap_iter *iter, loff_t pos, size_t size)
1334 : {
1335 0 : const struct iomap *iomap = &iter->iomap;
1336 0 : const struct iomap *srcmap = iomap_iter_srcmap(iter);
1337 0 : unsigned offset = offset_in_page(pos);
1338 0 : pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1339 0 : void *kaddr;
1340 0 : long ret;
1341 :
1342 0 : ret = dax_direct_access(iomap->dax_dev, pgoff, 1, DAX_ACCESS, &kaddr,
1343 : NULL);
1344 0 : if (ret < 0)
1345 0 : return dax_mem2blk_err(ret);
1346 :
1347 0 : memset(kaddr + offset, 0, size);
1348 0 : if (iomap->flags & IOMAP_F_SHARED)
1349 0 : ret = dax_iomap_copy_around(pos, size, PAGE_SIZE, srcmap,
1350 : kaddr);
1351 : else
1352 0 : dax_flush(iomap->dax_dev, kaddr + offset, size);
1353 0 : return ret;
1354 : }
1355 :
1356 0 : static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
1357 : {
1358 0 : const struct iomap *iomap = &iter->iomap;
1359 0 : const struct iomap *srcmap = iomap_iter_srcmap(iter);
1360 0 : loff_t pos = iter->pos;
1361 0 : u64 length = iomap_length(iter);
1362 0 : s64 written = 0;
1363 :
1364 : /* already zeroed? we're done. */
1365 0 : if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1366 0 : return length;
1367 :
1368 : /*
1369 : * invalidate the pages whose sharing state is to be changed
1370 : * because of CoW.
1371 : */
1372 0 : if (iomap->flags & IOMAP_F_SHARED)
1373 0 : invalidate_inode_pages2_range(iter->inode->i_mapping,
1374 0 : pos >> PAGE_SHIFT,
1375 0 : (pos + length - 1) >> PAGE_SHIFT);
1376 :
1377 0 : do {
1378 0 : unsigned offset = offset_in_page(pos);
1379 0 : unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1380 0 : pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1381 0 : long rc;
1382 0 : int id;
1383 :
1384 0 : id = dax_read_lock();
1385 0 : if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE)
1386 0 : rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1387 : else
1388 0 : rc = dax_memzero(iter, pos, size);
1389 0 : dax_read_unlock(id);
1390 :
1391 0 : if (rc < 0)
1392 0 : return rc;
1393 0 : pos += size;
1394 0 : length -= size;
1395 0 : written += size;
1396 0 : } while (length > 0);
1397 :
1398 0 : if (did_zero)
1399 0 : *did_zero = true;
1400 : return written;
1401 : }
1402 :
1403 0 : int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1404 : const struct iomap_ops *ops)
1405 : {
1406 0 : struct iomap_iter iter = {
1407 : .inode = inode,
1408 : .pos = pos,
1409 : .len = len,
1410 : .flags = IOMAP_DAX | IOMAP_ZERO,
1411 : };
1412 0 : int ret;
1413 :
1414 0 : while ((ret = iomap_iter(&iter, ops)) > 0)
1415 0 : iter.processed = dax_zero_iter(&iter, did_zero);
1416 0 : return ret;
1417 : }
1418 : EXPORT_SYMBOL_GPL(dax_zero_range);
1419 :
1420 0 : int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1421 : const struct iomap_ops *ops)
1422 : {
1423 0 : unsigned int blocksize = i_blocksize(inode);
1424 0 : unsigned int off = pos & (blocksize - 1);
1425 :
1426 : /* Block boundary? Nothing to do */
1427 0 : if (!off)
1428 : return 0;
1429 0 : return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
1430 : }
1431 : EXPORT_SYMBOL_GPL(dax_truncate_page);
1432 :
1433 0 : static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
1434 : struct iov_iter *iter)
1435 : {
1436 0 : const struct iomap *iomap = &iomi->iomap;
1437 0 : const struct iomap *srcmap = iomap_iter_srcmap(iomi);
1438 0 : loff_t length = iomap_length(iomi);
1439 0 : loff_t pos = iomi->pos;
1440 0 : struct dax_device *dax_dev = iomap->dax_dev;
1441 0 : loff_t end = pos + length, done = 0;
1442 0 : bool write = iov_iter_rw(iter) == WRITE;
1443 0 : bool cow = write && iomap->flags & IOMAP_F_SHARED;
1444 0 : ssize_t ret = 0;
1445 0 : size_t xfer;
1446 0 : int id;
1447 :
1448 0 : if (!write) {
1449 0 : end = min(end, i_size_read(iomi->inode));
1450 0 : if (pos >= end)
1451 : return 0;
1452 :
1453 0 : if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1454 0 : return iov_iter_zero(min(length, end - pos), iter);
1455 : }
1456 :
1457 : /*
1458 : * In DAX mode, enforce either pure overwrites of written extents, or
1459 : * writes to unwritten extents as part of a copy-on-write operation.
1460 : */
1461 0 : if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED &&
1462 : !(iomap->flags & IOMAP_F_SHARED)))
1463 : return -EIO;
1464 :
1465 : /*
1466 : * Write can allocate block for an area which has a hole page mapped
1467 : * into page tables. We have to tear down these mappings so that data
1468 : * written by write(2) is visible in mmap.
1469 : */
1470 0 : if (iomap->flags & IOMAP_F_NEW || cow) {
1471 : /*
1472 : * Filesystem allows CoW on non-shared extents. The src extents
1473 : * may have been mmapped with dirty mark before. To be able to
1474 : * invalidate its dax entries, we need to clear the dirty mark
1475 : * in advance.
1476 : */
1477 0 : if (cow)
1478 0 : __dax_clear_dirty_range(iomi->inode->i_mapping,
1479 0 : pos >> PAGE_SHIFT,
1480 0 : (end - 1) >> PAGE_SHIFT);
1481 0 : invalidate_inode_pages2_range(iomi->inode->i_mapping,
1482 0 : pos >> PAGE_SHIFT,
1483 0 : (end - 1) >> PAGE_SHIFT);
1484 : }
1485 :
1486 0 : id = dax_read_lock();
1487 0 : while (pos < end) {
1488 0 : unsigned offset = pos & (PAGE_SIZE - 1);
1489 0 : const size_t size = ALIGN(length + offset, PAGE_SIZE);
1490 0 : pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1491 0 : ssize_t map_len;
1492 0 : bool recovery = false;
1493 0 : void *kaddr;
1494 :
1495 0 : if (fatal_signal_pending(current)) {
1496 : ret = -EINTR;
1497 0 : break;
1498 : }
1499 :
1500 0 : map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1501 : DAX_ACCESS, &kaddr, NULL);
1502 0 : if (map_len == -EHWPOISON && iov_iter_rw(iter) == WRITE) {
1503 0 : map_len = dax_direct_access(dax_dev, pgoff,
1504 : PHYS_PFN(size), DAX_RECOVERY_WRITE,
1505 : &kaddr, NULL);
1506 0 : if (map_len > 0)
1507 0 : recovery = true;
1508 : }
1509 0 : if (map_len < 0) {
1510 0 : ret = dax_mem2blk_err(map_len);
1511 0 : break;
1512 : }
1513 :
1514 0 : if (cow) {
1515 0 : ret = dax_iomap_copy_around(pos, length, PAGE_SIZE,
1516 : srcmap, kaddr);
1517 0 : if (ret)
1518 : break;
1519 : }
1520 :
1521 0 : map_len = PFN_PHYS(map_len);
1522 0 : kaddr += offset;
1523 0 : map_len -= offset;
1524 0 : if (map_len > end - pos)
1525 : map_len = end - pos;
1526 :
1527 0 : if (recovery)
1528 0 : xfer = dax_recovery_write(dax_dev, pgoff, kaddr,
1529 : map_len, iter);
1530 0 : else if (write)
1531 0 : xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1532 : map_len, iter);
1533 : else
1534 0 : xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1535 : map_len, iter);
1536 :
1537 0 : pos += xfer;
1538 0 : length -= xfer;
1539 0 : done += xfer;
1540 :
1541 0 : if (xfer == 0)
1542 0 : ret = -EFAULT;
1543 0 : if (xfer < map_len)
1544 : break;
1545 : }
1546 0 : dax_read_unlock(id);
1547 :
1548 0 : return done ? done : ret;
1549 : }
1550 :
1551 : /**
1552 : * dax_iomap_rw - Perform I/O to a DAX file
1553 : * @iocb: The control block for this I/O
1554 : * @iter: The addresses to do I/O from or to
1555 : * @ops: iomap ops passed from the file system
1556 : *
1557 : * This function performs read and write operations to directly mapped
1558 : * persistent memory. The callers needs to take care of read/write exclusion
1559 : * and evicting any page cache pages in the region under I/O.
1560 : */
1561 : ssize_t
1562 0 : dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1563 : const struct iomap_ops *ops)
1564 : {
1565 0 : struct iomap_iter iomi = {
1566 0 : .inode = iocb->ki_filp->f_mapping->host,
1567 0 : .pos = iocb->ki_pos,
1568 : .len = iov_iter_count(iter),
1569 : .flags = IOMAP_DAX,
1570 : };
1571 0 : loff_t done = 0;
1572 0 : int ret;
1573 :
1574 0 : if (!iomi.len)
1575 : return 0;
1576 :
1577 0 : if (iov_iter_rw(iter) == WRITE) {
1578 0 : lockdep_assert_held_write(&iomi.inode->i_rwsem);
1579 0 : iomi.flags |= IOMAP_WRITE;
1580 : } else {
1581 0 : lockdep_assert_held(&iomi.inode->i_rwsem);
1582 : }
1583 :
1584 0 : if (iocb->ki_flags & IOCB_NOWAIT)
1585 0 : iomi.flags |= IOMAP_NOWAIT;
1586 :
1587 0 : while ((ret = iomap_iter(&iomi, ops)) > 0)
1588 0 : iomi.processed = dax_iomap_iter(&iomi, iter);
1589 :
1590 0 : done = iomi.pos - iocb->ki_pos;
1591 0 : iocb->ki_pos = iomi.pos;
1592 0 : return done ? done : ret;
1593 : }
1594 : EXPORT_SYMBOL_GPL(dax_iomap_rw);
1595 :
1596 : static vm_fault_t dax_fault_return(int error)
1597 : {
1598 0 : if (error == 0)
1599 : return VM_FAULT_NOPAGE;
1600 0 : return vmf_error(error);
1601 : }
1602 :
1603 : /*
1604 : * When handling a synchronous page fault and the inode need a fsync, we can
1605 : * insert the PTE/PMD into page tables only after that fsync happened. Skip
1606 : * insertion for now and return the pfn so that caller can insert it after the
1607 : * fsync is done.
1608 : */
1609 : static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
1610 : {
1611 0 : if (WARN_ON_ONCE(!pfnp))
1612 : return VM_FAULT_SIGBUS;
1613 0 : *pfnp = pfn;
1614 0 : return VM_FAULT_NEEDDSYNC;
1615 : }
1616 :
1617 0 : static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
1618 : const struct iomap_iter *iter)
1619 : {
1620 0 : vm_fault_t ret;
1621 0 : int error = 0;
1622 :
1623 0 : switch (iter->iomap.type) {
1624 0 : case IOMAP_HOLE:
1625 : case IOMAP_UNWRITTEN:
1626 0 : clear_user_highpage(vmf->cow_page, vmf->address);
1627 : break;
1628 0 : case IOMAP_MAPPED:
1629 0 : error = copy_cow_page_dax(vmf, iter);
1630 0 : break;
1631 : default:
1632 0 : WARN_ON_ONCE(1);
1633 0 : error = -EIO;
1634 0 : break;
1635 : }
1636 :
1637 0 : if (error)
1638 0 : return dax_fault_return(error);
1639 :
1640 0 : __SetPageUptodate(vmf->cow_page);
1641 0 : ret = finish_fault(vmf);
1642 0 : if (!ret)
1643 0 : return VM_FAULT_DONE_COW;
1644 : return ret;
1645 : }
1646 :
1647 : /**
1648 : * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
1649 : * @vmf: vm fault instance
1650 : * @iter: iomap iter
1651 : * @pfnp: pfn to be returned
1652 : * @xas: the dax mapping tree of a file
1653 : * @entry: an unlocked dax entry to be inserted
1654 : * @pmd: distinguish whether it is a pmd fault
1655 : */
1656 0 : static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
1657 : const struct iomap_iter *iter, pfn_t *pfnp,
1658 : struct xa_state *xas, void **entry, bool pmd)
1659 : {
1660 0 : const struct iomap *iomap = &iter->iomap;
1661 0 : const struct iomap *srcmap = iomap_iter_srcmap(iter);
1662 0 : size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
1663 0 : loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
1664 0 : bool write = iter->flags & IOMAP_WRITE;
1665 0 : unsigned long entry_flags = pmd ? DAX_PMD : 0;
1666 0 : int err = 0;
1667 0 : pfn_t pfn;
1668 0 : void *kaddr;
1669 :
1670 0 : if (!pmd && vmf->cow_page)
1671 0 : return dax_fault_cow_page(vmf, iter);
1672 :
1673 : /* if we are reading UNWRITTEN and HOLE, return a hole. */
1674 0 : if (!write &&
1675 0 : (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
1676 0 : if (!pmd)
1677 0 : return dax_load_hole(xas, vmf, iter, entry);
1678 0 : return dax_pmd_load_hole(xas, vmf, iter, entry);
1679 : }
1680 :
1681 0 : if (iomap->type != IOMAP_MAPPED && !(iomap->flags & IOMAP_F_SHARED)) {
1682 0 : WARN_ON_ONCE(1);
1683 0 : return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
1684 : }
1685 :
1686 0 : err = dax_iomap_direct_access(iomap, pos, size, &kaddr, &pfn);
1687 0 : if (err)
1688 0 : return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
1689 :
1690 0 : *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, entry_flags);
1691 :
1692 0 : if (write && iomap->flags & IOMAP_F_SHARED) {
1693 0 : err = dax_iomap_copy_around(pos, size, size, srcmap, kaddr);
1694 0 : if (err)
1695 0 : return dax_fault_return(err);
1696 : }
1697 :
1698 0 : if (dax_fault_is_synchronous(iter, vmf->vma))
1699 0 : return dax_fault_synchronous_pfnp(pfnp, pfn);
1700 :
1701 : /* insert PMD pfn */
1702 0 : if (pmd)
1703 0 : return vmf_insert_pfn_pmd(vmf, pfn, write);
1704 :
1705 : /* insert PTE pfn */
1706 0 : if (write)
1707 0 : return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1708 0 : return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
1709 : }
1710 :
1711 0 : static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1712 : int *iomap_errp, const struct iomap_ops *ops)
1713 : {
1714 0 : struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1715 0 : XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1716 0 : struct iomap_iter iter = {
1717 0 : .inode = mapping->host,
1718 0 : .pos = (loff_t)vmf->pgoff << PAGE_SHIFT,
1719 : .len = PAGE_SIZE,
1720 : .flags = IOMAP_DAX | IOMAP_FAULT,
1721 : };
1722 0 : vm_fault_t ret = 0;
1723 0 : void *entry;
1724 0 : int error;
1725 :
1726 0 : trace_dax_pte_fault(iter.inode, vmf, ret);
1727 : /*
1728 : * Check whether offset isn't beyond end of file now. Caller is supposed
1729 : * to hold locks serializing us with truncate / punch hole so this is
1730 : * a reliable test.
1731 : */
1732 0 : if (iter.pos >= i_size_read(iter.inode)) {
1733 0 : ret = VM_FAULT_SIGBUS;
1734 0 : goto out;
1735 : }
1736 :
1737 0 : if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1738 0 : iter.flags |= IOMAP_WRITE;
1739 :
1740 0 : entry = grab_mapping_entry(&xas, mapping, 0);
1741 0 : if (xa_is_internal(entry)) {
1742 0 : ret = xa_to_internal(entry);
1743 0 : goto out;
1744 : }
1745 :
1746 : /*
1747 : * It is possible, particularly with mixed reads & writes to private
1748 : * mappings, that we have raced with a PMD fault that overlaps with
1749 : * the PTE we need to set up. If so just return and the fault will be
1750 : * retried.
1751 : */
1752 0 : if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1753 0 : ret = VM_FAULT_NOPAGE;
1754 0 : goto unlock_entry;
1755 : }
1756 :
1757 0 : while ((error = iomap_iter(&iter, ops)) > 0) {
1758 0 : if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
1759 0 : iter.processed = -EIO; /* fs corruption? */
1760 0 : continue;
1761 : }
1762 :
1763 0 : ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
1764 0 : if (ret != VM_FAULT_SIGBUS &&
1765 0 : (iter.iomap.flags & IOMAP_F_NEW)) {
1766 0 : count_vm_event(PGMAJFAULT);
1767 0 : count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1768 0 : ret |= VM_FAULT_MAJOR;
1769 : }
1770 :
1771 0 : if (!(ret & VM_FAULT_ERROR))
1772 0 : iter.processed = PAGE_SIZE;
1773 : }
1774 :
1775 0 : if (iomap_errp)
1776 0 : *iomap_errp = error;
1777 0 : if (!ret && error)
1778 0 : ret = dax_fault_return(error);
1779 :
1780 0 : unlock_entry:
1781 0 : dax_unlock_entry(&xas, entry);
1782 0 : out:
1783 0 : trace_dax_pte_fault_done(iter.inode, vmf, ret);
1784 0 : return ret;
1785 : }
1786 :
1787 : #ifdef CONFIG_FS_DAX_PMD
1788 0 : static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
1789 : pgoff_t max_pgoff)
1790 : {
1791 0 : unsigned long pmd_addr = vmf->address & PMD_MASK;
1792 0 : bool write = vmf->flags & FAULT_FLAG_WRITE;
1793 :
1794 : /*
1795 : * Make sure that the faulting address's PMD offset (color) matches
1796 : * the PMD offset from the start of the file. This is necessary so
1797 : * that a PMD range in the page table overlaps exactly with a PMD
1798 : * range in the page cache.
1799 : */
1800 0 : if ((vmf->pgoff & PG_PMD_COLOUR) !=
1801 0 : ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1802 : return true;
1803 :
1804 : /* Fall back to PTEs if we're going to COW */
1805 0 : if (write && !(vmf->vma->vm_flags & VM_SHARED))
1806 : return true;
1807 :
1808 : /* If the PMD would extend outside the VMA */
1809 0 : if (pmd_addr < vmf->vma->vm_start)
1810 : return true;
1811 0 : if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
1812 : return true;
1813 :
1814 : /* If the PMD would extend beyond the file size */
1815 0 : if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
1816 0 : return true;
1817 :
1818 : return false;
1819 : }
1820 :
1821 0 : static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1822 : const struct iomap_ops *ops)
1823 : {
1824 0 : struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1825 0 : XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1826 0 : struct iomap_iter iter = {
1827 0 : .inode = mapping->host,
1828 : .len = PMD_SIZE,
1829 : .flags = IOMAP_DAX | IOMAP_FAULT,
1830 : };
1831 0 : vm_fault_t ret = VM_FAULT_FALLBACK;
1832 0 : pgoff_t max_pgoff;
1833 0 : void *entry;
1834 :
1835 0 : if (vmf->flags & FAULT_FLAG_WRITE)
1836 0 : iter.flags |= IOMAP_WRITE;
1837 :
1838 : /*
1839 : * Check whether offset isn't beyond end of file now. Caller is
1840 : * supposed to hold locks serializing us with truncate / punch hole so
1841 : * this is a reliable test.
1842 : */
1843 0 : max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
1844 :
1845 0 : trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
1846 :
1847 0 : if (xas.xa_index >= max_pgoff) {
1848 0 : ret = VM_FAULT_SIGBUS;
1849 0 : goto out;
1850 : }
1851 :
1852 0 : if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
1853 0 : goto fallback;
1854 :
1855 : /*
1856 : * grab_mapping_entry() will make sure we get an empty PMD entry,
1857 : * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1858 : * entry is already in the array, for instance), it will return
1859 : * VM_FAULT_FALLBACK.
1860 : */
1861 0 : entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1862 0 : if (xa_is_internal(entry)) {
1863 0 : ret = xa_to_internal(entry);
1864 0 : goto fallback;
1865 : }
1866 :
1867 : /*
1868 : * It is possible, particularly with mixed reads & writes to private
1869 : * mappings, that we have raced with a PTE fault that overlaps with
1870 : * the PMD we need to set up. If so just return and the fault will be
1871 : * retried.
1872 : */
1873 0 : if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1874 : !pmd_devmap(*vmf->pmd)) {
1875 0 : ret = 0;
1876 0 : goto unlock_entry;
1877 : }
1878 :
1879 0 : iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1880 0 : while (iomap_iter(&iter, ops) > 0) {
1881 0 : if (iomap_length(&iter) < PMD_SIZE)
1882 0 : continue; /* actually breaks out of the loop */
1883 :
1884 0 : ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
1885 0 : if (ret != VM_FAULT_FALLBACK)
1886 0 : iter.processed = PMD_SIZE;
1887 : }
1888 :
1889 0 : unlock_entry:
1890 0 : dax_unlock_entry(&xas, entry);
1891 0 : fallback:
1892 0 : if (ret == VM_FAULT_FALLBACK) {
1893 0 : split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
1894 0 : count_vm_event(THP_FAULT_FALLBACK);
1895 : }
1896 0 : out:
1897 0 : trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
1898 0 : return ret;
1899 : }
1900 : #else
1901 : static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1902 : const struct iomap_ops *ops)
1903 : {
1904 : return VM_FAULT_FALLBACK;
1905 : }
1906 : #endif /* CONFIG_FS_DAX_PMD */
1907 :
1908 : /**
1909 : * dax_iomap_fault - handle a page fault on a DAX file
1910 : * @vmf: The description of the fault
1911 : * @pe_size: Size of the page to fault in
1912 : * @pfnp: PFN to insert for synchronous faults if fsync is required
1913 : * @iomap_errp: Storage for detailed error code in case of error
1914 : * @ops: Iomap ops passed from the file system
1915 : *
1916 : * When a page fault occurs, filesystems may call this helper in
1917 : * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1918 : * has done all the necessary locking for page fault to proceed
1919 : * successfully.
1920 : */
1921 0 : vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1922 : pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1923 : {
1924 0 : switch (pe_size) {
1925 0 : case PE_SIZE_PTE:
1926 0 : return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1927 0 : case PE_SIZE_PMD:
1928 0 : return dax_iomap_pmd_fault(vmf, pfnp, ops);
1929 : default:
1930 : return VM_FAULT_FALLBACK;
1931 : }
1932 : }
1933 : EXPORT_SYMBOL_GPL(dax_iomap_fault);
1934 :
1935 : /*
1936 : * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1937 : * @vmf: The description of the fault
1938 : * @pfn: PFN to insert
1939 : * @order: Order of entry to insert.
1940 : *
1941 : * This function inserts a writeable PTE or PMD entry into the page tables
1942 : * for an mmaped DAX file. It also marks the page cache entry as dirty.
1943 : */
1944 : static vm_fault_t
1945 0 : dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1946 : {
1947 0 : struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1948 0 : XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1949 0 : void *entry;
1950 0 : vm_fault_t ret;
1951 :
1952 0 : xas_lock_irq(&xas);
1953 0 : entry = get_unlocked_entry(&xas, order);
1954 : /* Did we race with someone splitting entry or so? */
1955 0 : if (!entry || dax_is_conflict(entry) ||
1956 0 : (order == 0 && !dax_is_pte_entry(entry))) {
1957 0 : put_unlocked_entry(&xas, entry, WAKE_NEXT);
1958 0 : xas_unlock_irq(&xas);
1959 0 : trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1960 : VM_FAULT_NOPAGE);
1961 0 : return VM_FAULT_NOPAGE;
1962 : }
1963 0 : xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1964 0 : dax_lock_entry(&xas, entry);
1965 0 : xas_unlock_irq(&xas);
1966 0 : if (order == 0)
1967 0 : ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1968 : #ifdef CONFIG_FS_DAX_PMD
1969 0 : else if (order == PMD_ORDER)
1970 0 : ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1971 : #endif
1972 : else
1973 : ret = VM_FAULT_FALLBACK;
1974 0 : dax_unlock_entry(&xas, entry);
1975 0 : trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1976 0 : return ret;
1977 : }
1978 :
1979 : /**
1980 : * dax_finish_sync_fault - finish synchronous page fault
1981 : * @vmf: The description of the fault
1982 : * @pe_size: Size of entry to be inserted
1983 : * @pfn: PFN to insert
1984 : *
1985 : * This function ensures that the file range touched by the page fault is
1986 : * stored persistently on the media and handles inserting of appropriate page
1987 : * table entry.
1988 : */
1989 0 : vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1990 : enum page_entry_size pe_size, pfn_t pfn)
1991 : {
1992 0 : int err;
1993 0 : loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1994 0 : unsigned int order = pe_order(pe_size);
1995 0 : size_t len = PAGE_SIZE << order;
1996 :
1997 0 : err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1998 0 : if (err)
1999 : return VM_FAULT_SIGBUS;
2000 0 : return dax_insert_pfn_mkwrite(vmf, pfn, order);
2001 : }
2002 : EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
2003 :
2004 0 : static loff_t dax_range_compare_iter(struct iomap_iter *it_src,
2005 : struct iomap_iter *it_dest, u64 len, bool *same)
2006 : {
2007 0 : const struct iomap *smap = &it_src->iomap;
2008 0 : const struct iomap *dmap = &it_dest->iomap;
2009 0 : loff_t pos1 = it_src->pos, pos2 = it_dest->pos;
2010 0 : void *saddr, *daddr;
2011 0 : int id, ret;
2012 :
2013 0 : len = min(len, min(smap->length, dmap->length));
2014 :
2015 0 : if (smap->type == IOMAP_HOLE && dmap->type == IOMAP_HOLE) {
2016 0 : *same = true;
2017 0 : return len;
2018 : }
2019 :
2020 0 : if (smap->type == IOMAP_HOLE || dmap->type == IOMAP_HOLE) {
2021 0 : *same = false;
2022 0 : return 0;
2023 : }
2024 :
2025 0 : id = dax_read_lock();
2026 0 : ret = dax_iomap_direct_access(smap, pos1, ALIGN(pos1 + len, PAGE_SIZE),
2027 : &saddr, NULL);
2028 0 : if (ret < 0)
2029 0 : goto out_unlock;
2030 :
2031 0 : ret = dax_iomap_direct_access(dmap, pos2, ALIGN(pos2 + len, PAGE_SIZE),
2032 : &daddr, NULL);
2033 0 : if (ret < 0)
2034 0 : goto out_unlock;
2035 :
2036 0 : *same = !memcmp(saddr, daddr, len);
2037 0 : if (!*same)
2038 0 : len = 0;
2039 0 : dax_read_unlock(id);
2040 0 : return len;
2041 :
2042 0 : out_unlock:
2043 0 : dax_read_unlock(id);
2044 0 : return -EIO;
2045 : }
2046 :
2047 0 : int dax_dedupe_file_range_compare(struct inode *src, loff_t srcoff,
2048 : struct inode *dst, loff_t dstoff, loff_t len, bool *same,
2049 : const struct iomap_ops *ops)
2050 : {
2051 0 : struct iomap_iter src_iter = {
2052 : .inode = src,
2053 : .pos = srcoff,
2054 : .len = len,
2055 : .flags = IOMAP_DAX,
2056 : };
2057 0 : struct iomap_iter dst_iter = {
2058 : .inode = dst,
2059 : .pos = dstoff,
2060 : .len = len,
2061 : .flags = IOMAP_DAX,
2062 : };
2063 0 : int ret, compared = 0;
2064 :
2065 0 : while ((ret = iomap_iter(&src_iter, ops)) > 0 &&
2066 0 : (ret = iomap_iter(&dst_iter, ops)) > 0) {
2067 0 : compared = dax_range_compare_iter(&src_iter, &dst_iter,
2068 0 : min(src_iter.len, dst_iter.len), same);
2069 0 : if (compared < 0)
2070 0 : return ret;
2071 0 : src_iter.processed = dst_iter.processed = compared;
2072 : }
2073 : return ret;
2074 : }
2075 :
2076 0 : int dax_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2077 : struct file *file_out, loff_t pos_out,
2078 : loff_t *len, unsigned int remap_flags,
2079 : const struct iomap_ops *ops)
2080 : {
2081 0 : return __generic_remap_file_range_prep(file_in, pos_in, file_out,
2082 : pos_out, len, remap_flags, ops);
2083 : }
2084 : EXPORT_SYMBOL_GPL(dax_remap_file_range_prep);
|