Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 : * All Rights Reserved.
5 : */
6 : #include "xfs.h"
7 : #include "xfs_fs.h"
8 : #include "xfs_shared.h"
9 : #include "xfs_format.h"
10 : #include "xfs_log_format.h"
11 : #include "xfs_trans_resv.h"
12 : #include "xfs_bit.h"
13 : #include "xfs_mount.h"
14 : #include "xfs_inode.h"
15 : #include "xfs_btree.h"
16 : #include "xfs_ialloc.h"
17 : #include "xfs_ialloc_btree.h"
18 : #include "xfs_alloc.h"
19 : #include "xfs_errortag.h"
20 : #include "xfs_error.h"
21 : #include "xfs_bmap.h"
22 : #include "xfs_trans.h"
23 : #include "xfs_buf_item.h"
24 : #include "xfs_icreate_item.h"
25 : #include "xfs_icache.h"
26 : #include "xfs_trace.h"
27 : #include "xfs_log.h"
28 : #include "xfs_rmap.h"
29 : #include "xfs_ag.h"
30 :
31 : /*
32 : * Lookup a record by ino in the btree given by cur.
33 : */
34 : int /* error */
35 3113729797 : xfs_inobt_lookup(
36 : struct xfs_btree_cur *cur, /* btree cursor */
37 : xfs_agino_t ino, /* starting inode of chunk */
38 : xfs_lookup_t dir, /* <=, >=, == */
39 : int *stat) /* success/failure */
40 : {
41 6737692876 : cur->bc_rec.i.ir_startino = ino;
42 6737692876 : cur->bc_rec.i.ir_holemask = 0;
43 6737692876 : cur->bc_rec.i.ir_count = 0;
44 6737692876 : cur->bc_rec.i.ir_freecount = 0;
45 6737692876 : cur->bc_rec.i.ir_free = 0;
46 3113729797 : return xfs_btree_lookup(cur, dir, stat);
47 : }
48 :
49 : /*
50 : * Update the record referred to by cur to the value given.
51 : * This either works (return 0) or gets an EFSCORRUPTED error.
52 : */
53 : STATIC int /* error */
54 260237749 : xfs_inobt_update(
55 : struct xfs_btree_cur *cur, /* btree cursor */
56 : xfs_inobt_rec_incore_t *irec) /* btree record */
57 : {
58 260237749 : union xfs_btree_rec rec;
59 :
60 260237749 : rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
61 260237749 : if (xfs_has_sparseinodes(cur->bc_mp)) {
62 260236354 : rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
63 260236354 : rec.inobt.ir_u.sp.ir_count = irec->ir_count;
64 260236354 : rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
65 : } else {
66 : /* ir_holemask/ir_count not supported on-disk */
67 1395 : rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
68 : }
69 260237749 : rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
70 260237749 : return xfs_btree_update(cur, &rec);
71 : }
72 :
73 : /* Convert on-disk btree record to incore inobt record. */
74 : void
75 20012211108 : xfs_inobt_btrec_to_irec(
76 : struct xfs_mount *mp,
77 : const union xfs_btree_rec *rec,
78 : struct xfs_inobt_rec_incore *irec)
79 : {
80 20012211108 : irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
81 20012211108 : if (xfs_has_sparseinodes(mp)) {
82 20012205187 : irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
83 20012205187 : irec->ir_count = rec->inobt.ir_u.sp.ir_count;
84 20012205187 : irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
85 : } else {
86 : /*
87 : * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
88 : * values for full inode chunks.
89 : */
90 5921 : irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
91 5921 : irec->ir_count = XFS_INODES_PER_CHUNK;
92 5921 : irec->ir_freecount =
93 5921 : be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
94 : }
95 20012211108 : irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
96 20012211108 : }
97 :
98 : /* Simple checks for inode records. */
99 : xfs_failaddr_t
100 20027732580 : xfs_inobt_check_irec(
101 : struct xfs_btree_cur *cur,
102 : const struct xfs_inobt_rec_incore *irec)
103 : {
104 20027732580 : uint64_t realfree;
105 :
106 : /* Record has to be properly aligned within the AG. */
107 20027732580 : if (!xfs_verify_agino(cur->bc_ag.pag, irec->ir_startino))
108 0 : return __this_address;
109 20027732580 : if (!xfs_verify_agino(cur->bc_ag.pag,
110 : irec->ir_startino + XFS_INODES_PER_CHUNK - 1))
111 0 : return __this_address;
112 20027732580 : if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
113 : irec->ir_count > XFS_INODES_PER_CHUNK)
114 0 : return __this_address;
115 20027732580 : if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
116 0 : return __this_address;
117 :
118 : /* if there are no holes, return the first available offset */
119 20027732580 : if (!xfs_inobt_issparse(irec->ir_holemask))
120 14180392388 : realfree = irec->ir_free;
121 : else
122 5847340192 : realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
123 40067766554 : if (hweight64(realfree) != irec->ir_freecount)
124 9549006 : return __this_address;
125 :
126 : return NULL;
127 : }
128 :
129 : static inline int
130 0 : xfs_inobt_complain_bad_rec(
131 : struct xfs_btree_cur *cur,
132 : xfs_failaddr_t fa,
133 : const struct xfs_inobt_rec_incore *irec)
134 : {
135 0 : struct xfs_mount *mp = cur->bc_mp;
136 :
137 0 : xfs_warn(mp,
138 : "%s Inode BTree record corruption in AG %d detected at %pS!",
139 : cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free",
140 : cur->bc_ag.pag->pag_agno, fa);
141 0 : xfs_warn(mp,
142 : "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
143 : irec->ir_startino, irec->ir_count, irec->ir_freecount,
144 : irec->ir_free, irec->ir_holemask);
145 0 : return -EFSCORRUPTED;
146 : }
147 :
148 : /*
149 : * Get the data from the pointed-to record.
150 : */
151 : int
152 19858350600 : xfs_inobt_get_rec(
153 : struct xfs_btree_cur *cur,
154 : struct xfs_inobt_rec_incore *irec,
155 : int *stat)
156 : {
157 19858350600 : struct xfs_mount *mp = cur->bc_mp;
158 19858350600 : union xfs_btree_rec *rec;
159 19858350600 : xfs_failaddr_t fa;
160 19858350600 : int error;
161 :
162 19858350600 : error = xfs_btree_get_rec(cur, &rec, stat);
163 19810602292 : if (error || *stat == 0)
164 : return error;
165 :
166 19815442487 : xfs_inobt_btrec_to_irec(mp, rec, irec);
167 19740645514 : fa = xfs_inobt_check_irec(cur, irec);
168 19790739321 : if (fa)
169 0 : return xfs_inobt_complain_bad_rec(cur, fa, irec);
170 :
171 : return 0;
172 : }
173 :
174 : /*
175 : * Insert a single inobt record. Cursor must already point to desired location.
176 : */
177 : int
178 0 : xfs_inobt_insert_rec(
179 : struct xfs_btree_cur *cur,
180 : uint16_t holemask,
181 : uint8_t count,
182 : int32_t freecount,
183 : xfs_inofree_t free,
184 : int *stat)
185 : {
186 13597958 : cur->bc_rec.i.ir_holemask = holemask;
187 13597958 : cur->bc_rec.i.ir_count = count;
188 13597958 : cur->bc_rec.i.ir_freecount = freecount;
189 13597958 : cur->bc_rec.i.ir_free = free;
190 0 : return xfs_btree_insert(cur, stat);
191 : }
192 :
193 : /*
194 : * Insert records describing a newly allocated inode chunk into the inobt.
195 : */
196 : STATIC int
197 1003922 : xfs_inobt_insert(
198 : struct xfs_perag *pag,
199 : struct xfs_trans *tp,
200 : struct xfs_buf *agbp,
201 : xfs_agino_t newino,
202 : xfs_agino_t newlen,
203 : xfs_btnum_t btnum)
204 : {
205 1003922 : struct xfs_btree_cur *cur;
206 1003922 : xfs_agino_t thisino;
207 1003922 : int i;
208 1003922 : int error;
209 :
210 1003922 : cur = xfs_inobt_init_cursor(pag, tp, agbp, btnum);
211 :
212 1003922 : for (thisino = newino;
213 2007893 : thisino < newino + newlen;
214 1003872 : thisino += XFS_INODES_PER_CHUNK) {
215 1003991 : error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
216 1004008 : if (error) {
217 7 : xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
218 7 : return error;
219 : }
220 1004001 : ASSERT(i == 0);
221 :
222 1004001 : error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
223 : XFS_INODES_PER_CHUNK,
224 : XFS_INODES_PER_CHUNK,
225 : XFS_INOBT_ALL_FREE, &i);
226 1003872 : if (error) {
227 0 : xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
228 0 : return error;
229 : }
230 1003872 : ASSERT(i == 1);
231 : }
232 :
233 1003902 : xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
234 :
235 1003902 : return 0;
236 : }
237 :
238 : /*
239 : * Verify that the number of free inodes in the AGI is correct.
240 : */
241 : #ifdef DEBUG
242 : static int
243 511168458 : xfs_check_agi_freecount(
244 : struct xfs_btree_cur *cur)
245 : {
246 511168458 : if (cur->bc_nlevels == 1) {
247 404938323 : xfs_inobt_rec_incore_t rec;
248 404938323 : int freecount = 0;
249 404938323 : int error;
250 404938323 : int i;
251 :
252 404938323 : error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
253 405355999 : if (error)
254 175 : return error;
255 :
256 13615159689 : do {
257 13615159689 : error = xfs_inobt_get_rec(cur, &rec, &i);
258 13620196262 : if (error)
259 0 : return error;
260 :
261 13620196262 : if (i) {
262 13629948468 : freecount += rec.ir_freecount;
263 13629948468 : error = xfs_btree_increment(cur, 0, &i);
264 13625368017 : if (error)
265 0 : return error;
266 : }
267 13615615811 : } while (i == 1);
268 :
269 811623892 : if (!xfs_is_shutdown(cur->bc_mp))
270 405867184 : ASSERT(freecount == cur->bc_ag.pag->pagi_freecount);
271 : }
272 : return 0;
273 : }
274 : #else
275 : #define xfs_check_agi_freecount(cur) 0
276 : #endif
277 :
278 : /*
279 : * Initialise a new set of inodes. When called without a transaction context
280 : * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
281 : * than logging them (which in a transaction context puts them into the AIL
282 : * for writeback rather than the xfsbufd queue).
283 : */
284 : int
285 1045574 : xfs_ialloc_inode_init(
286 : struct xfs_mount *mp,
287 : struct xfs_trans *tp,
288 : struct list_head *buffer_list,
289 : int icount,
290 : xfs_agnumber_t agno,
291 : xfs_agblock_t agbno,
292 : xfs_agblock_t length,
293 : unsigned int gen)
294 : {
295 1045574 : struct xfs_buf *fbuf;
296 1045574 : struct xfs_dinode *free;
297 1045574 : int nbufs;
298 1045574 : int version;
299 1045574 : int i, j;
300 1045574 : xfs_daddr_t d;
301 1045574 : xfs_ino_t ino = 0;
302 1045574 : int error;
303 :
304 : /*
305 : * Loop over the new block(s), filling in the inodes. For small block
306 : * sizes, manipulate the inodes in buffers which are multiples of the
307 : * blocks size.
308 : */
309 1045574 : nbufs = length / M_IGEO(mp)->blocks_per_cluster;
310 :
311 : /*
312 : * Figure out what version number to use in the inodes we create. If
313 : * the superblock version has caught up to the one that supports the new
314 : * inode format, then use the new inode version. Otherwise use the old
315 : * version so that old kernels will continue to be able to use the file
316 : * system.
317 : *
318 : * For v3 inodes, we also need to write the inode number into the inode,
319 : * so calculate the first inode number of the chunk here as
320 : * XFS_AGB_TO_AGINO() only works within a filesystem block, not
321 : * across multiple filesystem blocks (such as a cluster) and so cannot
322 : * be used in the cluster buffer loop below.
323 : *
324 : * Further, because we are writing the inode directly into the buffer
325 : * and calculating a CRC on the entire inode, we have ot log the entire
326 : * inode so that the entire range the CRC covers is present in the log.
327 : * That means for v3 inode we log the entire buffer rather than just the
328 : * inode cores.
329 : */
330 1045574 : if (xfs_has_v3inodes(mp)) {
331 1045017 : version = 3;
332 1045017 : ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
333 :
334 : /*
335 : * log the initialisation that is about to take place as an
336 : * logical operation. This means the transaction does not
337 : * need to log the physical changes to the inode buffers as log
338 : * recovery will know what initialisation is actually needed.
339 : * Hence we only need to log the buffers as "ordered" buffers so
340 : * they track in the AIL as if they were physically logged.
341 : */
342 1045017 : if (tp)
343 1016376 : xfs_icreate_log(tp, agno, agbno, icount,
344 1016376 : mp->m_sb.sb_inodesize, length, gen);
345 : } else
346 : version = 2;
347 :
348 2608047 : for (j = 0; j < nbufs; j++) {
349 : /*
350 : * Get the block.
351 : */
352 1562309 : d = XFS_AGB_TO_DADDR(mp, agno, agbno +
353 : (j * M_IGEO(mp)->blocks_per_cluster));
354 1562309 : error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
355 1562309 : mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
356 : XBF_UNMAPPED, &fbuf);
357 1561829 : if (error)
358 0 : return error;
359 :
360 : /* Initialize the inode buffers and log them appropriately. */
361 1561829 : fbuf->b_ops = &xfs_inode_buf_ops;
362 1561829 : xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
363 53108944 : for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
364 49984978 : int ioffset = i << mp->m_sb.sb_inodelog;
365 :
366 49984978 : free = xfs_make_iptr(mp, fbuf, i);
367 49981112 : free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
368 49981112 : free->di_version = version;
369 49981112 : free->di_gen = cpu_to_be32(gen);
370 49981112 : free->di_next_unlinked = cpu_to_be32(NULLAGINO);
371 :
372 49981112 : if (version == 3) {
373 49980408 : free->di_ino = cpu_to_be64(ino);
374 49980408 : ino++;
375 49980408 : uuid_copy(&free->di_uuid,
376 49980408 : &mp->m_sb.sb_meta_uuid);
377 49981204 : xfs_dinode_calc_crc(mp, free);
378 704 : } else if (tp) {
379 : /* just log the inode core */
380 704 : xfs_trans_log_buf(tp, fbuf, ioffset,
381 1408 : ioffset + XFS_DINODE_SIZE(mp) - 1);
382 : }
383 : }
384 :
385 1562137 : if (tp) {
386 : /*
387 : * Mark the buffer as an inode allocation buffer so it
388 : * sticks in AIL at the point of this allocation
389 : * transaction. This ensures the they are on disk before
390 : * the tail of the log can be moved past this
391 : * transaction (i.e. by preventing relogging from moving
392 : * it forward in the log).
393 : */
394 1519228 : xfs_trans_inode_alloc_buf(tp, fbuf);
395 1518575 : if (version == 3) {
396 : /*
397 : * Mark the buffer as ordered so that they are
398 : * not physically logged in the transaction but
399 : * still tracked in the AIL as part of the
400 : * transaction and pin the log appropriately.
401 : */
402 1518557 : xfs_trans_ordered_buf(tp, fbuf);
403 : }
404 : } else {
405 42909 : fbuf->b_flags |= XBF_DONE;
406 42909 : xfs_buf_delwri_queue(fbuf, buffer_list);
407 42909 : xfs_buf_relse(fbuf);
408 : }
409 : }
410 : return 0;
411 : }
412 :
413 : /*
414 : * Align startino and allocmask for a recently allocated sparse chunk such that
415 : * they are fit for insertion (or merge) into the on-disk inode btrees.
416 : *
417 : * Background:
418 : *
419 : * When enabled, sparse inode support increases the inode alignment from cluster
420 : * size to inode chunk size. This means that the minimum range between two
421 : * non-adjacent inode records in the inobt is large enough for a full inode
422 : * record. This allows for cluster sized, cluster aligned block allocation
423 : * without need to worry about whether the resulting inode record overlaps with
424 : * another record in the tree. Without this basic rule, we would have to deal
425 : * with the consequences of overlap by potentially undoing recent allocations in
426 : * the inode allocation codepath.
427 : *
428 : * Because of this alignment rule (which is enforced on mount), there are two
429 : * inobt possibilities for newly allocated sparse chunks. One is that the
430 : * aligned inode record for the chunk covers a range of inodes not already
431 : * covered in the inobt (i.e., it is safe to insert a new sparse record). The
432 : * other is that a record already exists at the aligned startino that considers
433 : * the newly allocated range as sparse. In the latter case, record content is
434 : * merged in hope that sparse inode chunks fill to full chunks over time.
435 : */
436 : STATIC void
437 515081 : xfs_align_sparse_ino(
438 : struct xfs_mount *mp,
439 : xfs_agino_t *startino,
440 : uint16_t *allocmask)
441 : {
442 515081 : xfs_agblock_t agbno;
443 515081 : xfs_agblock_t mod;
444 515081 : int offset;
445 :
446 515081 : agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
447 515081 : mod = agbno % mp->m_sb.sb_inoalignmt;
448 515081 : if (!mod)
449 : return;
450 :
451 : /* calculate the inode offset and align startino */
452 280439 : offset = XFS_AGB_TO_AGINO(mp, mod);
453 280439 : *startino -= offset;
454 :
455 : /*
456 : * Since startino has been aligned down, left shift allocmask such that
457 : * it continues to represent the same physical inodes relative to the
458 : * new startino.
459 : */
460 280439 : *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
461 : }
462 :
463 : /*
464 : * Determine whether the source inode record can merge into the target. Both
465 : * records must be sparse, the inode ranges must match and there must be no
466 : * allocation overlap between the records.
467 : */
468 : STATIC bool
469 128662 : __xfs_inobt_can_merge(
470 : struct xfs_inobt_rec_incore *trec, /* tgt record */
471 : struct xfs_inobt_rec_incore *srec) /* src record */
472 : {
473 128662 : uint64_t talloc;
474 128662 : uint64_t salloc;
475 :
476 : /* records must cover the same inode range */
477 128662 : if (trec->ir_startino != srec->ir_startino)
478 : return false;
479 :
480 : /* both records must be sparse */
481 128651 : if (!xfs_inobt_issparse(trec->ir_holemask) ||
482 128651 : !xfs_inobt_issparse(srec->ir_holemask))
483 : return false;
484 :
485 : /* both records must track some inodes */
486 128651 : if (!trec->ir_count || !srec->ir_count)
487 : return false;
488 :
489 : /* can't exceed capacity of a full record */
490 128651 : if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
491 : return false;
492 :
493 : /* verify there is no allocation overlap */
494 128646 : talloc = xfs_inobt_irec_to_allocmask(trec);
495 128673 : salloc = xfs_inobt_irec_to_allocmask(srec);
496 128674 : if (talloc & salloc)
497 0 : return false;
498 :
499 : return true;
500 : }
501 :
502 : /*
503 : * Merge the source inode record into the target. The caller must call
504 : * __xfs_inobt_can_merge() to ensure the merge is valid.
505 : */
506 : STATIC void
507 128658 : __xfs_inobt_rec_merge(
508 : struct xfs_inobt_rec_incore *trec, /* target */
509 : struct xfs_inobt_rec_incore *srec) /* src */
510 : {
511 128658 : ASSERT(trec->ir_startino == srec->ir_startino);
512 :
513 : /* combine the counts */
514 128658 : trec->ir_count += srec->ir_count;
515 128658 : trec->ir_freecount += srec->ir_freecount;
516 :
517 : /*
518 : * Merge the holemask and free mask. For both fields, 0 bits refer to
519 : * allocated inodes. We combine the allocated ranges with bitwise AND.
520 : */
521 128658 : trec->ir_holemask &= srec->ir_holemask;
522 128658 : trec->ir_free &= srec->ir_free;
523 128658 : }
524 :
525 : /*
526 : * Insert a new sparse inode chunk into the associated inode btree. The inode
527 : * record for the sparse chunk is pre-aligned to a startino that should match
528 : * any pre-existing sparse inode record in the tree. This allows sparse chunks
529 : * to fill over time.
530 : *
531 : * This function supports two modes of handling preexisting records depending on
532 : * the merge flag. If merge is true, the provided record is merged with the
533 : * existing record and updated in place. The merged record is returned in nrec.
534 : * If merge is false, an existing record is replaced with the provided record.
535 : * If no preexisting record exists, the provided record is always inserted.
536 : *
537 : * It is considered corruption if a merge is requested and not possible. Given
538 : * the sparse inode alignment constraints, this should never happen.
539 : */
540 : STATIC int
541 1030118 : xfs_inobt_insert_sprec(
542 : struct xfs_perag *pag,
543 : struct xfs_trans *tp,
544 : struct xfs_buf *agbp,
545 : int btnum,
546 : struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
547 : bool merge) /* merge or replace */
548 : {
549 1030118 : struct xfs_mount *mp = pag->pag_mount;
550 1030118 : struct xfs_btree_cur *cur;
551 1030118 : int error;
552 1030118 : int i;
553 1030118 : struct xfs_inobt_rec_incore rec;
554 :
555 1030118 : cur = xfs_inobt_init_cursor(pag, tp, agbp, btnum);
556 :
557 : /* the new record is pre-aligned so we know where to look */
558 1030187 : error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
559 1030248 : if (error)
560 4 : goto error;
561 : /* if nothing there, insert a new record and return */
562 1030244 : if (i == 0) {
563 901553 : error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
564 901553 : nrec->ir_count, nrec->ir_freecount,
565 : nrec->ir_free, &i);
566 901503 : if (error)
567 0 : goto error;
568 901503 : if (XFS_IS_CORRUPT(mp, i != 1)) {
569 0 : error = -EFSCORRUPTED;
570 0 : goto error;
571 : }
572 :
573 901503 : goto out;
574 : }
575 :
576 : /*
577 : * A record exists at this startino. Merge or replace the record
578 : * depending on what we've been asked to do.
579 : */
580 128691 : if (merge) {
581 128685 : error = xfs_inobt_get_rec(cur, &rec, &i);
582 128667 : if (error)
583 0 : goto error;
584 128667 : if (XFS_IS_CORRUPT(mp, i != 1)) {
585 0 : error = -EFSCORRUPTED;
586 0 : goto error;
587 : }
588 128667 : if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
589 0 : error = -EFSCORRUPTED;
590 0 : goto error;
591 : }
592 :
593 : /*
594 : * This should never fail. If we have coexisting records that
595 : * cannot merge, something is seriously wrong.
596 : */
597 128667 : if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
598 0 : error = -EFSCORRUPTED;
599 0 : goto error;
600 : }
601 :
602 128676 : trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino,
603 128676 : rec.ir_holemask, nrec->ir_startino,
604 128676 : nrec->ir_holemask);
605 :
606 : /* merge to nrec to output the updated record */
607 128657 : __xfs_inobt_rec_merge(nrec, &rec);
608 :
609 128659 : trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino,
610 128659 : nrec->ir_holemask);
611 :
612 128657 : error = xfs_inobt_rec_check_count(mp, nrec);
613 128688 : if (error)
614 0 : goto error;
615 : }
616 :
617 128694 : error = xfs_inobt_update(cur, nrec);
618 128679 : if (error)
619 0 : goto error;
620 :
621 128679 : out:
622 1030182 : xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
623 1030182 : return 0;
624 4 : error:
625 4 : xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
626 4 : return error;
627 : }
628 :
629 : /*
630 : * Allocate new inodes in the allocation group specified by agbp. Returns 0 if
631 : * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
632 : * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
633 : * inode count threshold, or the usual negative error code for other errors.
634 : */
635 : STATIC int
636 2588947 : xfs_ialloc_ag_alloc(
637 : struct xfs_perag *pag,
638 : struct xfs_trans *tp,
639 : struct xfs_buf *agbp)
640 : {
641 2588947 : struct xfs_agi *agi;
642 2588947 : struct xfs_alloc_arg args;
643 2588947 : int error;
644 2588947 : xfs_agino_t newino; /* new first inode's number */
645 2588947 : xfs_agino_t newlen; /* new number of inodes */
646 2588947 : int isaligned = 0; /* inode allocation at stripe */
647 : /* unit boundary */
648 : /* init. to full chunk */
649 2588947 : struct xfs_inobt_rec_incore rec;
650 2588947 : struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp);
651 2588947 : uint16_t allocmask = (uint16_t) -1;
652 2588947 : int do_sparse = 0;
653 :
654 2588947 : memset(&args, 0, sizeof(args));
655 2588947 : args.tp = tp;
656 2588947 : args.mp = tp->t_mountp;
657 2588947 : args.fsbno = NULLFSBLOCK;
658 2588947 : args.oinfo = XFS_RMAP_OINFO_INODES;
659 2588947 : args.pag = pag;
660 :
661 : #ifdef DEBUG
662 : /* randomly do sparse inode allocations */
663 2588947 : if (xfs_has_sparseinodes(tp->t_mountp) &&
664 2588581 : igeo->ialloc_min_blks < igeo->ialloc_blks)
665 2588536 : do_sparse = get_random_u32_below(2);
666 : #endif
667 :
668 : /*
669 : * Locking will ensure that we don't have two callers in here
670 : * at one time.
671 : */
672 2588787 : newlen = igeo->ialloc_inos;
673 2588787 : if (igeo->maxicount &&
674 2588565 : percpu_counter_read_positive(&args.mp->m_icount) + newlen >
675 : igeo->maxicount)
676 : return -ENOSPC;
677 2588666 : args.minlen = args.maxlen = igeo->ialloc_blks;
678 : /*
679 : * First try to allocate inodes contiguous with the last-allocated
680 : * chunk of inodes. If the filesystem is striped, this will fill
681 : * an entire stripe unit with inodes.
682 : */
683 2588666 : agi = agbp->b_addr;
684 2588666 : newino = be32_to_cpu(agi->agi_newino);
685 2588666 : args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
686 2588666 : igeo->ialloc_blks;
687 2588666 : if (do_sparse)
688 1294289 : goto sparse_alloc;
689 1294377 : if (likely(newino != NULLAGINO &&
690 : (args.agbno < be32_to_cpu(agi->agi_length)))) {
691 1237828 : args.prod = 1;
692 :
693 : /*
694 : * We need to take into account alignment here to ensure that
695 : * we don't modify the free list if we fail to have an exact
696 : * block. If we don't have an exact match, and every oher
697 : * attempt allocation attempt fails, we'll end up cancelling
698 : * a dirty transaction and shutting down.
699 : *
700 : * For an exact allocation, alignment must be 1,
701 : * however we need to take cluster alignment into account when
702 : * fixing up the freelist. Use the minalignslop field to
703 : * indicate that extra blocks might be required for alignment,
704 : * but not to use them in the actual exact allocation.
705 : */
706 1237828 : args.alignment = 1;
707 1237828 : args.minalignslop = igeo->cluster_align - 1;
708 :
709 : /* Allow space for the inode btree to split. */
710 1237828 : args.minleft = igeo->inobt_maxlevels;
711 2475656 : error = xfs_alloc_vextent_exact_bno(&args,
712 1237828 : XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
713 : args.agbno));
714 1237895 : if (error)
715 : return error;
716 :
717 : /*
718 : * This request might have dirtied the transaction if the AG can
719 : * satisfy the request, but the exact block was not available.
720 : * If the allocation did fail, subsequent requests will relax
721 : * the exact agbno requirement and increase the alignment
722 : * instead. It is critical that the total size of the request
723 : * (len + alignment + slop) does not increase from this point
724 : * on, so reset minalignslop to ensure it is not included in
725 : * subsequent requests.
726 : */
727 1237894 : args.minalignslop = 0;
728 : }
729 :
730 1294443 : if (unlikely(args.fsbno == NULLFSBLOCK)) {
731 : /*
732 : * Set the alignment for the allocation.
733 : * If stripe alignment is turned on then align at stripe unit
734 : * boundary.
735 : * If the cluster size is smaller than a filesystem block
736 : * then we're doing I/O for inodes in filesystem block size
737 : * pieces, so don't need alignment anyway.
738 : */
739 1019800 : isaligned = 0;
740 1019800 : if (igeo->ialloc_align) {
741 0 : ASSERT(!xfs_has_noalign(args.mp));
742 0 : args.alignment = args.mp->m_dalign;
743 0 : isaligned = 1;
744 : } else
745 1019800 : args.alignment = igeo->cluster_align;
746 : /*
747 : * Allocate a fixed-size extent of inodes.
748 : */
749 1019800 : args.prod = 1;
750 : /*
751 : * Allow space for the inode btree to split.
752 : */
753 1019800 : args.minleft = igeo->inobt_maxlevels;
754 2039600 : error = xfs_alloc_vextent_near_bno(&args,
755 1019800 : XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
756 : be32_to_cpu(agi->agi_root)));
757 1019803 : if (error)
758 : return error;
759 : }
760 :
761 : /*
762 : * If stripe alignment is turned on, then try again with cluster
763 : * alignment.
764 : */
765 1019796 : if (isaligned && args.fsbno == NULLFSBLOCK) {
766 0 : args.alignment = igeo->cluster_align;
767 0 : error = xfs_alloc_vextent_near_bno(&args,
768 0 : XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
769 : be32_to_cpu(agi->agi_root)));
770 0 : if (error)
771 : return error;
772 : }
773 :
774 : /*
775 : * Finally, try a sparse allocation if the filesystem supports it and
776 : * the sparse allocation length is smaller than a full chunk.
777 : */
778 1294439 : if (xfs_has_sparseinodes(args.mp) &&
779 1294380 : igeo->ialloc_min_blks < igeo->ialloc_blks &&
780 1294362 : args.fsbno == NULLFSBLOCK) {
781 792448 : sparse_alloc:
782 2086737 : args.alignment = args.mp->m_sb.sb_spino_align;
783 2086737 : args.prod = 1;
784 :
785 2086737 : args.minlen = igeo->ialloc_min_blks;
786 2086737 : args.maxlen = args.minlen;
787 :
788 : /*
789 : * The inode record will be aligned to full chunk size. We must
790 : * prevent sparse allocation from AG boundaries that result in
791 : * invalid inode records, such as records that start at agbno 0
792 : * or extend beyond the AG.
793 : *
794 : * Set min agbno to the first aligned, non-zero agbno and max to
795 : * the last aligned agbno that is at least one full chunk from
796 : * the end of the AG.
797 : */
798 2086737 : args.min_agbno = args.mp->m_sb.sb_inoalignmt;
799 2086737 : args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
800 2086737 : args.mp->m_sb.sb_inoalignmt) -
801 2086737 : igeo->ialloc_blks;
802 :
803 4173474 : error = xfs_alloc_vextent_near_bno(&args,
804 2086737 : XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
805 : be32_to_cpu(agi->agi_root)));
806 2086797 : if (error)
807 : return error;
808 :
809 2086788 : newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
810 2086788 : ASSERT(newlen <= XFS_INODES_PER_CHUNK);
811 2086788 : allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
812 : }
813 :
814 2588779 : if (args.fsbno == NULLFSBLOCK)
815 : return -EAGAIN;
816 :
817 1017060 : ASSERT(args.len == args.minlen);
818 :
819 : /*
820 : * Stamp and write the inode buffers.
821 : *
822 : * Seed the new inode cluster with a random generation number. This
823 : * prevents short-term reuse of generation numbers if a chunk is
824 : * freed and then immediately reallocated. We use random numbers
825 : * rather than a linear progression to prevent the next generation
826 : * number from being easily guessable.
827 : */
828 1017060 : error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno,
829 : args.agbno, args.len, get_random_u32());
830 :
831 1017104 : if (error)
832 : return error;
833 : /*
834 : * Convert the results.
835 : */
836 1017104 : newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
837 :
838 1017104 : if (xfs_inobt_issparse(~allocmask)) {
839 : /*
840 : * We've allocated a sparse chunk. Align the startino and mask.
841 : */
842 515082 : xfs_align_sparse_ino(args.mp, &newino, &allocmask);
843 :
844 514953 : rec.ir_startino = newino;
845 514953 : rec.ir_holemask = ~allocmask;
846 514953 : rec.ir_count = newlen;
847 514953 : rec.ir_freecount = newlen;
848 514953 : rec.ir_free = XFS_INOBT_ALL_FREE;
849 :
850 : /*
851 : * Insert the sparse record into the inobt and allow for a merge
852 : * if necessary. If a merge does occur, rec is updated to the
853 : * merged record.
854 : */
855 514953 : error = xfs_inobt_insert_sprec(pag, tp, agbp,
856 : XFS_BTNUM_INO, &rec, true);
857 515129 : if (error == -EFSCORRUPTED) {
858 0 : xfs_alert(args.mp,
859 : "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
860 : XFS_AGINO_TO_INO(args.mp, pag->pag_agno,
861 : rec.ir_startino),
862 : rec.ir_holemask, rec.ir_count);
863 0 : xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
864 : }
865 515129 : if (error)
866 : return error;
867 :
868 : /*
869 : * We can't merge the part we've just allocated as for the inobt
870 : * due to finobt semantics. The original record may or may not
871 : * exist independent of whether physical inodes exist in this
872 : * sparse chunk.
873 : *
874 : * We must update the finobt record based on the inobt record.
875 : * rec contains the fully merged and up to date inobt record
876 : * from the previous call. Set merge false to replace any
877 : * existing record with this one.
878 : */
879 515129 : if (xfs_has_finobt(args.mp)) {
880 515108 : error = xfs_inobt_insert_sprec(pag, tp, agbp,
881 : XFS_BTNUM_FINO, &rec, false);
882 515131 : if (error)
883 : return error;
884 : }
885 : } else {
886 : /* full chunk - insert new records to both btrees */
887 502022 : error = xfs_inobt_insert(pag, tp, agbp, newino, newlen,
888 : XFS_BTNUM_INO);
889 502037 : if (error)
890 : return error;
891 :
892 502035 : if (xfs_has_finobt(args.mp)) {
893 502020 : error = xfs_inobt_insert(pag, tp, agbp, newino,
894 : newlen, XFS_BTNUM_FINO);
895 502021 : if (error)
896 : return error;
897 : }
898 : }
899 :
900 : /*
901 : * Update AGI counts and newino.
902 : */
903 1017179 : be32_add_cpu(&agi->agi_count, newlen);
904 1017179 : be32_add_cpu(&agi->agi_freecount, newlen);
905 1017179 : pag->pagi_freecount += newlen;
906 1017179 : pag->pagi_count += newlen;
907 1017179 : agi->agi_newino = cpu_to_be32(newino);
908 :
909 : /*
910 : * Log allocation group header fields
911 : */
912 1017179 : xfs_ialloc_log_agi(tp, agbp,
913 : XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
914 : /*
915 : * Modify/log superblock values for inode count and inode free count.
916 : */
917 1017136 : xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
918 1016964 : xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
919 1016964 : return 0;
920 : }
921 :
922 : /*
923 : * Try to retrieve the next record to the left/right from the current one.
924 : */
925 : STATIC int
926 162 : xfs_ialloc_next_rec(
927 : struct xfs_btree_cur *cur,
928 : xfs_inobt_rec_incore_t *rec,
929 : int *done,
930 : int left)
931 : {
932 162 : int error;
933 162 : int i;
934 :
935 162 : if (left)
936 81 : error = xfs_btree_decrement(cur, 0, &i);
937 : else
938 81 : error = xfs_btree_increment(cur, 0, &i);
939 :
940 162 : if (error)
941 : return error;
942 162 : *done = !i;
943 162 : if (i) {
944 21 : error = xfs_inobt_get_rec(cur, rec, &i);
945 21 : if (error)
946 : return error;
947 21 : if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
948 0 : return -EFSCORRUPTED;
949 : }
950 :
951 : return 0;
952 : }
953 :
954 : STATIC int
955 856 : xfs_ialloc_get_rec(
956 : struct xfs_btree_cur *cur,
957 : xfs_agino_t agino,
958 : xfs_inobt_rec_incore_t *rec,
959 : int *done)
960 : {
961 856 : int error;
962 856 : int i;
963 :
964 856 : error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
965 856 : if (error)
966 : return error;
967 856 : *done = !i;
968 856 : if (i) {
969 428 : error = xfs_inobt_get_rec(cur, rec, &i);
970 428 : if (error)
971 : return error;
972 428 : if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
973 0 : return -EFSCORRUPTED;
974 : }
975 :
976 : return 0;
977 : }
978 :
979 : /*
980 : * Return the offset of the first free inode in the record. If the inode chunk
981 : * is sparsely allocated, we convert the record holemask to inode granularity
982 : * and mask off the unallocated regions from the inode free mask.
983 : */
984 : STATIC int
985 84435483 : xfs_inobt_first_free_inode(
986 : struct xfs_inobt_rec_incore *rec)
987 : {
988 84435483 : xfs_inofree_t realfree;
989 :
990 : /* if there are no holes, return the first available offset */
991 84435483 : if (!xfs_inobt_issparse(rec->ir_holemask))
992 59992845 : return xfs_lowbit64(rec->ir_free);
993 :
994 24442638 : realfree = xfs_inobt_irec_to_allocmask(rec);
995 24442583 : realfree &= rec->ir_free;
996 :
997 24442583 : return xfs_lowbit64(realfree);
998 : }
999 :
1000 : /*
1001 : * Allocate an inode using the inobt-only algorithm.
1002 : */
1003 : STATIC int
1004 2092 : xfs_dialloc_ag_inobt(
1005 : struct xfs_perag *pag,
1006 : struct xfs_trans *tp,
1007 : struct xfs_buf *agbp,
1008 : xfs_ino_t parent,
1009 : xfs_ino_t *inop)
1010 : {
1011 2092 : struct xfs_mount *mp = tp->t_mountp;
1012 2092 : struct xfs_agi *agi = agbp->b_addr;
1013 2092 : xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1014 2092 : xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1015 2092 : struct xfs_btree_cur *cur, *tcur;
1016 2092 : struct xfs_inobt_rec_incore rec, trec;
1017 2092 : xfs_ino_t ino;
1018 2092 : int error;
1019 2092 : int offset;
1020 2092 : int i, j;
1021 2092 : int searchdistance = 10;
1022 :
1023 4184 : ASSERT(xfs_perag_initialised_agi(pag));
1024 4184 : ASSERT(xfs_perag_allows_inodes(pag));
1025 2092 : ASSERT(pag->pagi_freecount > 0);
1026 :
1027 2092 : restart_pagno:
1028 2146 : cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
1029 : /*
1030 : * If pagino is 0 (this is the root inode allocation) use newino.
1031 : * This must work because we've just allocated some.
1032 : */
1033 2146 : if (!pagino)
1034 57 : pagino = be32_to_cpu(agi->agi_newino);
1035 :
1036 2146 : error = xfs_check_agi_freecount(cur);
1037 2146 : if (error)
1038 0 : goto error0;
1039 :
1040 : /*
1041 : * If in the same AG as the parent, try to get near the parent.
1042 : */
1043 2146 : if (pagno == pag->pag_agno) {
1044 2146 : int doneleft; /* done, to the left */
1045 2146 : int doneright; /* done, to the right */
1046 :
1047 2146 : error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1048 2146 : if (error)
1049 0 : goto error0;
1050 2146 : if (XFS_IS_CORRUPT(mp, i != 1)) {
1051 0 : error = -EFSCORRUPTED;
1052 0 : goto error0;
1053 : }
1054 :
1055 2146 : error = xfs_inobt_get_rec(cur, &rec, &j);
1056 2146 : if (error)
1057 0 : goto error0;
1058 2146 : if (XFS_IS_CORRUPT(mp, j != 1)) {
1059 0 : error = -EFSCORRUPTED;
1060 0 : goto error0;
1061 : }
1062 :
1063 2146 : if (rec.ir_freecount > 0) {
1064 : /*
1065 : * Found a free inode in the same chunk
1066 : * as the parent, done.
1067 : */
1068 2086 : goto alloc_inode;
1069 : }
1070 :
1071 :
1072 : /*
1073 : * In the same AG as parent, but parent's chunk is full.
1074 : */
1075 :
1076 : /* duplicate the cursor, search left & right simultaneously */
1077 509 : error = xfs_btree_dup_cursor(cur, &tcur);
1078 509 : if (error)
1079 0 : goto error0;
1080 :
1081 : /*
1082 : * Skip to last blocks looked up if same parent inode.
1083 : */
1084 509 : if (pagino != NULLAGINO &&
1085 509 : pag->pagl_pagino == pagino &&
1086 428 : pag->pagl_leftrec != NULLAGINO &&
1087 428 : pag->pagl_rightrec != NULLAGINO) {
1088 428 : error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1089 : &trec, &doneleft);
1090 428 : if (error)
1091 0 : goto error1;
1092 :
1093 428 : error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1094 : &rec, &doneright);
1095 428 : if (error)
1096 0 : goto error1;
1097 : } else {
1098 : /* search left with tcur, back up 1 record */
1099 81 : error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1100 81 : if (error)
1101 0 : goto error1;
1102 :
1103 : /* search right with cur, go forward 1 record. */
1104 81 : error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1105 81 : if (error)
1106 0 : goto error1;
1107 : }
1108 :
1109 : /*
1110 : * Loop until we find an inode chunk with a free inode.
1111 : */
1112 509 : while (--searchdistance > 0 && (!doneleft || !doneright)) {
1113 449 : int useleft; /* using left inode chunk this time */
1114 :
1115 : /* figure out the closer block if both are valid. */
1116 449 : if (!doneleft && !doneright) {
1117 0 : useleft = pagino -
1118 0 : (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1119 0 : rec.ir_startino - pagino;
1120 : } else {
1121 449 : useleft = !doneleft;
1122 : }
1123 :
1124 : /* free inodes to the left? */
1125 449 : if (useleft && trec.ir_freecount) {
1126 0 : xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1127 0 : cur = tcur;
1128 :
1129 0 : pag->pagl_leftrec = trec.ir_startino;
1130 0 : pag->pagl_rightrec = rec.ir_startino;
1131 0 : pag->pagl_pagino = pagino;
1132 0 : rec = trec;
1133 0 : goto alloc_inode;
1134 : }
1135 :
1136 : /* free inodes to the right? */
1137 449 : if (!useleft && rec.ir_freecount) {
1138 449 : xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1139 :
1140 449 : pag->pagl_leftrec = trec.ir_startino;
1141 449 : pag->pagl_rightrec = rec.ir_startino;
1142 449 : pag->pagl_pagino = pagino;
1143 449 : goto alloc_inode;
1144 : }
1145 :
1146 : /* get next record to check */
1147 0 : if (useleft) {
1148 0 : error = xfs_ialloc_next_rec(tcur, &trec,
1149 : &doneleft, 1);
1150 : } else {
1151 0 : error = xfs_ialloc_next_rec(cur, &rec,
1152 : &doneright, 0);
1153 : }
1154 0 : if (error)
1155 0 : goto error1;
1156 : }
1157 :
1158 60 : if (searchdistance <= 0) {
1159 : /*
1160 : * Not in range - save last search
1161 : * location and allocate a new inode
1162 : */
1163 6 : xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1164 6 : pag->pagl_leftrec = trec.ir_startino;
1165 6 : pag->pagl_rightrec = rec.ir_startino;
1166 6 : pag->pagl_pagino = pagino;
1167 :
1168 : } else {
1169 : /*
1170 : * We've reached the end of the btree. because
1171 : * we are only searching a small chunk of the
1172 : * btree each search, there is obviously free
1173 : * inodes closer to the parent inode than we
1174 : * are now. restart the search again.
1175 : */
1176 54 : pag->pagl_pagino = NULLAGINO;
1177 54 : pag->pagl_leftrec = NULLAGINO;
1178 54 : pag->pagl_rightrec = NULLAGINO;
1179 54 : xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1180 54 : xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1181 54 : goto restart_pagno;
1182 : }
1183 : }
1184 :
1185 : /*
1186 : * In a different AG from the parent.
1187 : * See if the most recently allocated block has any free.
1188 : */
1189 6 : if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1190 6 : error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1191 : XFS_LOOKUP_EQ, &i);
1192 6 : if (error)
1193 0 : goto error0;
1194 :
1195 6 : if (i == 1) {
1196 6 : error = xfs_inobt_get_rec(cur, &rec, &j);
1197 6 : if (error)
1198 0 : goto error0;
1199 :
1200 6 : if (j == 1 && rec.ir_freecount > 0) {
1201 : /*
1202 : * The last chunk allocated in the group
1203 : * still has a free inode.
1204 : */
1205 0 : goto alloc_inode;
1206 : }
1207 : }
1208 : }
1209 :
1210 : /*
1211 : * None left in the last group, search the whole AG
1212 : */
1213 6 : error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1214 6 : if (error)
1215 0 : goto error0;
1216 6 : if (XFS_IS_CORRUPT(mp, i != 1)) {
1217 0 : error = -EFSCORRUPTED;
1218 0 : goto error0;
1219 : }
1220 :
1221 6 : for (;;) {
1222 6 : error = xfs_inobt_get_rec(cur, &rec, &i);
1223 6 : if (error)
1224 0 : goto error0;
1225 6 : if (XFS_IS_CORRUPT(mp, i != 1)) {
1226 0 : error = -EFSCORRUPTED;
1227 0 : goto error0;
1228 : }
1229 6 : if (rec.ir_freecount > 0)
1230 : break;
1231 6 : error = xfs_btree_increment(cur, 0, &i);
1232 6 : if (error)
1233 0 : goto error0;
1234 6 : if (XFS_IS_CORRUPT(mp, i != 1)) {
1235 6 : error = -EFSCORRUPTED;
1236 6 : goto error0;
1237 : }
1238 : }
1239 :
1240 0 : alloc_inode:
1241 2086 : offset = xfs_inobt_first_free_inode(&rec);
1242 2086 : ASSERT(offset >= 0);
1243 2086 : ASSERT(offset < XFS_INODES_PER_CHUNK);
1244 2086 : ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1245 : XFS_INODES_PER_CHUNK) == 0);
1246 2086 : ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1247 2086 : rec.ir_free &= ~XFS_INOBT_MASK(offset);
1248 2086 : rec.ir_freecount--;
1249 2086 : error = xfs_inobt_update(cur, &rec);
1250 2086 : if (error)
1251 0 : goto error0;
1252 2086 : be32_add_cpu(&agi->agi_freecount, -1);
1253 2086 : xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1254 2086 : pag->pagi_freecount--;
1255 :
1256 2086 : error = xfs_check_agi_freecount(cur);
1257 2086 : if (error)
1258 0 : goto error0;
1259 :
1260 2086 : xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1261 2086 : xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1262 2086 : *inop = ino;
1263 2086 : return 0;
1264 : error1:
1265 0 : xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1266 6 : error0:
1267 6 : xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1268 6 : return error;
1269 : }
1270 :
1271 : /*
1272 : * Use the free inode btree to allocate an inode based on distance from the
1273 : * parent. Note that the provided cursor may be deleted and replaced.
1274 : */
1275 : STATIC int
1276 78196872 : xfs_dialloc_ag_finobt_near(
1277 : xfs_agino_t pagino,
1278 : struct xfs_btree_cur **ocur,
1279 : struct xfs_inobt_rec_incore *rec)
1280 : {
1281 78196872 : struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1282 78196872 : struct xfs_btree_cur *rcur; /* right search cursor */
1283 78196872 : struct xfs_inobt_rec_incore rrec;
1284 78196872 : int error;
1285 78196872 : int i, j;
1286 :
1287 78196872 : error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1288 78173196 : if (error)
1289 : return error;
1290 :
1291 78173196 : if (i == 1) {
1292 12445598 : error = xfs_inobt_get_rec(lcur, rec, &i);
1293 12446512 : if (error)
1294 : return error;
1295 12446512 : if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1))
1296 0 : return -EFSCORRUPTED;
1297 :
1298 : /*
1299 : * See if we've landed in the parent inode record. The finobt
1300 : * only tracks chunks with at least one free inode, so record
1301 : * existence is enough.
1302 : */
1303 12446512 : if (pagino >= rec->ir_startino &&
1304 12446474 : pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1305 : return 0;
1306 : }
1307 :
1308 72293944 : error = xfs_btree_dup_cursor(lcur, &rcur);
1309 71678748 : if (error)
1310 : return error;
1311 :
1312 71694862 : error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1313 72207926 : if (error)
1314 0 : goto error_rcur;
1315 72207926 : if (j == 1) {
1316 69336324 : error = xfs_inobt_get_rec(rcur, &rrec, &j);
1317 69551083 : if (error)
1318 0 : goto error_rcur;
1319 69551083 : if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1320 0 : error = -EFSCORRUPTED;
1321 0 : goto error_rcur;
1322 : }
1323 : }
1324 :
1325 72422685 : if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1326 0 : error = -EFSCORRUPTED;
1327 0 : goto error_rcur;
1328 : }
1329 72422685 : if (i == 1 && j == 1) {
1330 : /*
1331 : * Both the left and right records are valid. Choose the closer
1332 : * inode chunk to the target.
1333 : */
1334 3549836 : if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1335 3549836 : (rrec.ir_startino - pagino)) {
1336 1976476 : *rec = rrec;
1337 1976476 : xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1338 1976450 : *ocur = rcur;
1339 : } else {
1340 1573360 : xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1341 : }
1342 68872849 : } else if (j == 1) {
1343 : /* only the right record is valid */
1344 65857058 : *rec = rrec;
1345 65857058 : xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1346 66053729 : *ocur = rcur;
1347 3015791 : } else if (i == 1) {
1348 : /* only the left record is valid */
1349 3015516 : xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1350 : }
1351 :
1352 : return 0;
1353 :
1354 0 : error_rcur:
1355 0 : xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1356 0 : return error;
1357 : }
1358 :
1359 : /*
1360 : * Use the free inode btree to find a free inode based on a newino hint. If
1361 : * the hint is NULL, find the first free inode in the AG.
1362 : */
1363 : STATIC int
1364 6448343 : xfs_dialloc_ag_finobt_newino(
1365 : struct xfs_agi *agi,
1366 : struct xfs_btree_cur *cur,
1367 : struct xfs_inobt_rec_incore *rec)
1368 : {
1369 6448343 : int error;
1370 6448343 : int i;
1371 :
1372 6448343 : if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1373 6386644 : error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1374 : XFS_LOOKUP_EQ, &i);
1375 6387322 : if (error)
1376 : return error;
1377 6387322 : if (i == 1) {
1378 6214534 : error = xfs_inobt_get_rec(cur, rec, &i);
1379 6215251 : if (error)
1380 : return error;
1381 6215251 : if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1382 0 : return -EFSCORRUPTED;
1383 : return 0;
1384 : }
1385 : }
1386 :
1387 : /*
1388 : * Find the first inode available in the AG.
1389 : */
1390 234487 : error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1391 234112 : if (error)
1392 : return error;
1393 234112 : if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1394 0 : return -EFSCORRUPTED;
1395 :
1396 234112 : error = xfs_inobt_get_rec(cur, rec, &i);
1397 234116 : if (error)
1398 : return error;
1399 234116 : if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1400 0 : return -EFSCORRUPTED;
1401 :
1402 : return 0;
1403 : }
1404 :
1405 : /*
1406 : * Update the inobt based on a modification made to the finobt. Also ensure that
1407 : * the records from both trees are equivalent post-modification.
1408 : */
1409 : STATIC int
1410 84855594 : xfs_dialloc_ag_update_inobt(
1411 : struct xfs_btree_cur *cur, /* inobt cursor */
1412 : struct xfs_inobt_rec_incore *frec, /* finobt record */
1413 : int offset) /* inode offset */
1414 : {
1415 84855594 : struct xfs_inobt_rec_incore rec;
1416 84855594 : int error;
1417 84855594 : int i;
1418 :
1419 84855594 : error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1420 85039853 : if (error)
1421 : return error;
1422 85039809 : if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1423 0 : return -EFSCORRUPTED;
1424 :
1425 85039809 : error = xfs_inobt_get_rec(cur, &rec, &i);
1426 85041244 : if (error)
1427 : return error;
1428 85041244 : if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1429 0 : return -EFSCORRUPTED;
1430 85041244 : ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1431 : XFS_INODES_PER_CHUNK) == 0);
1432 :
1433 85041244 : rec.ir_free &= ~XFS_INOBT_MASK(offset);
1434 85041244 : rec.ir_freecount--;
1435 :
1436 85041244 : if (XFS_IS_CORRUPT(cur->bc_mp,
1437 : rec.ir_free != frec->ir_free ||
1438 : rec.ir_freecount != frec->ir_freecount))
1439 0 : return -EFSCORRUPTED;
1440 :
1441 85041244 : return xfs_inobt_update(cur, &rec);
1442 : }
1443 :
1444 : /*
1445 : * Allocate an inode using the free inode btree, if available. Otherwise, fall
1446 : * back to the inobt search algorithm.
1447 : *
1448 : * The caller selected an AG for us, and made sure that free inodes are
1449 : * available.
1450 : */
1451 : static int
1452 84663549 : xfs_dialloc_ag(
1453 : struct xfs_perag *pag,
1454 : struct xfs_trans *tp,
1455 : struct xfs_buf *agbp,
1456 : xfs_ino_t parent,
1457 : xfs_ino_t *inop)
1458 : {
1459 84663549 : struct xfs_mount *mp = tp->t_mountp;
1460 84663549 : struct xfs_agi *agi = agbp->b_addr;
1461 84663549 : xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1462 84663549 : xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1463 84663549 : struct xfs_btree_cur *cur; /* finobt cursor */
1464 84663549 : struct xfs_btree_cur *icur; /* inobt cursor */
1465 84663549 : struct xfs_inobt_rec_incore rec;
1466 84663549 : xfs_ino_t ino;
1467 84663549 : int error;
1468 84663549 : int offset;
1469 84663549 : int i;
1470 :
1471 84663549 : if (!xfs_has_finobt(mp))
1472 2092 : return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop);
1473 :
1474 : /*
1475 : * If pagino is 0 (this is the root inode allocation) use newino.
1476 : * This must work because we've just allocated some.
1477 : */
1478 84661457 : if (!pagino)
1479 19364 : pagino = be32_to_cpu(agi->agi_newino);
1480 :
1481 84661457 : cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_FINO);
1482 :
1483 84811728 : error = xfs_check_agi_freecount(cur);
1484 84599663 : if (error)
1485 165 : goto error_cur;
1486 :
1487 : /*
1488 : * The search algorithm depends on whether we're in the same AG as the
1489 : * parent. If so, find the closest available inode to the parent. If
1490 : * not, consider the agi hint or find the first free inode in the AG.
1491 : */
1492 84599498 : if (pag->pag_agno == pagno)
1493 78150536 : error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1494 : else
1495 6448962 : error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1496 84521147 : if (error)
1497 0 : goto error_cur;
1498 :
1499 84521147 : offset = xfs_inobt_first_free_inode(&rec);
1500 84210890 : ASSERT(offset >= 0);
1501 84210890 : ASSERT(offset < XFS_INODES_PER_CHUNK);
1502 84210890 : ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1503 : XFS_INODES_PER_CHUNK) == 0);
1504 84210890 : ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1505 :
1506 : /*
1507 : * Modify or remove the finobt record.
1508 : */
1509 84210890 : rec.ir_free &= ~XFS_INOBT_MASK(offset);
1510 84210890 : rec.ir_freecount--;
1511 84210890 : if (rec.ir_freecount)
1512 71879067 : error = xfs_inobt_update(cur, &rec);
1513 : else
1514 12331823 : error = xfs_btree_delete(cur, &i);
1515 83827354 : if (error)
1516 0 : goto error_cur;
1517 :
1518 : /*
1519 : * The finobt has now been updated appropriately. We haven't updated the
1520 : * agi and superblock yet, so we can create an inobt cursor and validate
1521 : * the original freecount. If all is well, make the equivalent update to
1522 : * the inobt using the finobt record and offset information.
1523 : */
1524 83827354 : icur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
1525 :
1526 84707676 : error = xfs_check_agi_freecount(icur);
1527 84857104 : if (error)
1528 7 : goto error_icur;
1529 :
1530 84857097 : error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1531 84865413 : if (error)
1532 44 : goto error_icur;
1533 :
1534 : /*
1535 : * Both trees have now been updated. We must update the perag and
1536 : * superblock before we can check the freecount for each btree.
1537 : */
1538 84865369 : be32_add_cpu(&agi->agi_freecount, -1);
1539 84865369 : xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1540 84884494 : pag->pagi_freecount--;
1541 :
1542 84884494 : xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1543 :
1544 84372298 : error = xfs_check_agi_freecount(icur);
1545 84500563 : if (error)
1546 0 : goto error_icur;
1547 84500563 : error = xfs_check_agi_freecount(cur);
1548 85009983 : if (error)
1549 0 : goto error_icur;
1550 :
1551 85009983 : xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1552 85034121 : xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1553 84985410 : *inop = ino;
1554 84985410 : return 0;
1555 :
1556 51 : error_icur:
1557 51 : xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1558 216 : error_cur:
1559 216 : xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1560 216 : return error;
1561 : }
1562 :
1563 : static int
1564 1016850 : xfs_dialloc_roll(
1565 : struct xfs_trans **tpp,
1566 : struct xfs_buf *agibp)
1567 : {
1568 1016850 : struct xfs_trans *tp = *tpp;
1569 1016850 : struct xfs_dquot_acct *dqinfo;
1570 1016850 : int error;
1571 :
1572 : /*
1573 : * Hold to on to the agibp across the commit so no other allocation can
1574 : * come in and take the free inodes we just allocated for our caller.
1575 : */
1576 1016850 : xfs_trans_bhold(tp, agibp);
1577 :
1578 : /*
1579 : * We want the quota changes to be associated with the next transaction,
1580 : * NOT this one. So, detach the dqinfo from this and attach it to the
1581 : * next transaction.
1582 : */
1583 1016861 : dqinfo = tp->t_dqinfo;
1584 1016861 : tp->t_dqinfo = NULL;
1585 :
1586 1016861 : error = xfs_trans_roll(&tp);
1587 :
1588 : /* Re-attach the quota info that we detached from prev trx. */
1589 1016927 : tp->t_dqinfo = dqinfo;
1590 :
1591 : /*
1592 : * Join the buffer even on commit error so that the buffer is released
1593 : * when the caller cancels the transaction and doesn't have to handle
1594 : * this error case specially.
1595 : */
1596 1016927 : xfs_trans_bjoin(tp, agibp);
1597 1016799 : *tpp = tp;
1598 1016799 : return error;
1599 : }
1600 :
1601 : static bool
1602 88476992 : xfs_dialloc_good_ag(
1603 : struct xfs_perag *pag,
1604 : struct xfs_trans *tp,
1605 : umode_t mode,
1606 : int flags,
1607 : bool ok_alloc)
1608 : {
1609 88476992 : struct xfs_mount *mp = tp->t_mountp;
1610 88476992 : xfs_extlen_t ineed;
1611 88476992 : xfs_extlen_t longest = 0;
1612 88476992 : int needspace;
1613 88476992 : int error;
1614 :
1615 88476992 : if (!pag)
1616 : return false;
1617 176953984 : if (!xfs_perag_allows_inodes(pag))
1618 : return false;
1619 :
1620 176953984 : if (!xfs_perag_initialised_agi(pag)) {
1621 53 : error = xfs_ialloc_read_agi(pag, tp, NULL);
1622 53 : if (error)
1623 : return false;
1624 : }
1625 :
1626 88476992 : if (pag->pagi_freecount)
1627 : return true;
1628 4716141 : if (!ok_alloc)
1629 : return false;
1630 :
1631 5919644 : if (!xfs_perag_initialised_agf(pag)) {
1632 17 : error = xfs_alloc_read_agf(pag, tp, flags, NULL);
1633 17 : if (error)
1634 : return false;
1635 : }
1636 :
1637 : /*
1638 : * Check that there is enough free space for the file plus a chunk of
1639 : * inodes if we need to allocate some. If this is the first pass across
1640 : * the AGs, take into account the potential space needed for alignment
1641 : * of inode chunks when checking the longest contiguous free space in
1642 : * the AG - this prevents us from getting ENOSPC because we have free
1643 : * space larger than ialloc_blks but alignment constraints prevent us
1644 : * from using it.
1645 : *
1646 : * If we can't find an AG with space for full alignment slack to be
1647 : * taken into account, we must be near ENOSPC in all AGs. Hence we
1648 : * don't include alignment for the second pass and so if we fail
1649 : * allocation due to alignment issues then it is most likely a real
1650 : * ENOSPC condition.
1651 : *
1652 : * XXX(dgc): this calculation is now bogus thanks to the per-ag
1653 : * reservations that xfs_alloc_fix_freelist() now does via
1654 : * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1655 : * be more than large enough for the check below to succeed, but
1656 : * xfs_alloc_space_available() will fail because of the non-zero
1657 : * metadata reservation and hence we won't actually be able to allocate
1658 : * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1659 : * because of this.
1660 : */
1661 2959806 : ineed = M_IGEO(mp)->ialloc_min_blks;
1662 2959806 : if (flags && ineed > 1)
1663 2900949 : ineed += M_IGEO(mp)->cluster_align;
1664 2959806 : longest = pag->pagf_longest;
1665 2959806 : if (!longest)
1666 122 : longest = pag->pagf_flcount > 0;
1667 2959806 : needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1668 :
1669 2959806 : if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1670 346739 : return false;
1671 : return true;
1672 : }
1673 :
1674 : static int
1675 86248888 : xfs_dialloc_try_ag(
1676 : struct xfs_perag *pag,
1677 : struct xfs_trans **tpp,
1678 : xfs_ino_t parent,
1679 : xfs_ino_t *new_ino,
1680 : bool ok_alloc)
1681 : {
1682 86248888 : struct xfs_buf *agbp;
1683 86248888 : xfs_ino_t ino;
1684 86248888 : int error;
1685 :
1686 : /*
1687 : * Then read in the AGI buffer and recheck with the AGI buffer
1688 : * lock held.
1689 : */
1690 86248888 : error = xfs_ialloc_read_agi(pag, *tpp, &agbp);
1691 86354117 : if (error)
1692 : return error;
1693 :
1694 86354086 : if (!pag->pagi_freecount) {
1695 2655072 : if (!ok_alloc) {
1696 66275 : error = -EAGAIN;
1697 66275 : goto out_release;
1698 : }
1699 :
1700 2588797 : error = xfs_ialloc_ag_alloc(pag, *tpp, agbp);
1701 2588915 : if (error < 0)
1702 1571868 : goto out_release;
1703 :
1704 : /*
1705 : * We successfully allocated space for an inode cluster in this
1706 : * AG. Roll the transaction so that we can allocate one of the
1707 : * new inodes.
1708 : */
1709 1017047 : ASSERT(pag->pagi_freecount > 0);
1710 1017047 : error = xfs_dialloc_roll(tpp, agbp);
1711 1016789 : if (error)
1712 0 : goto out_release;
1713 : }
1714 :
1715 : /* Allocate an inode in the found AG */
1716 84715803 : error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino);
1717 84896627 : if (!error)
1718 84908780 : *new_ino = ino;
1719 : return error;
1720 :
1721 1638143 : out_release:
1722 1638143 : xfs_trans_brelse(*tpp, agbp);
1723 1638143 : return error;
1724 : }
1725 :
1726 : /*
1727 : * Allocate an on-disk inode.
1728 : *
1729 : * Mode is used to tell whether the new inode is a directory and hence where to
1730 : * locate it. The on-disk inode that is allocated will be returned in @new_ino
1731 : * on success, otherwise an error will be set to indicate the failure (e.g.
1732 : * -ENOSPC).
1733 : */
1734 : int
1735 84847091 : xfs_dialloc(
1736 : struct xfs_trans **tpp,
1737 : xfs_ino_t parent,
1738 : umode_t mode,
1739 : xfs_ino_t *new_ino)
1740 : {
1741 84847091 : struct xfs_mount *mp = (*tpp)->t_mountp;
1742 84847091 : xfs_agnumber_t agno;
1743 84847091 : int error = 0;
1744 84847091 : xfs_agnumber_t start_agno;
1745 84847091 : struct xfs_perag *pag;
1746 84847091 : struct xfs_ino_geometry *igeo = M_IGEO(mp);
1747 84847091 : bool ok_alloc = true;
1748 84847091 : bool low_space = false;
1749 84847091 : int flags;
1750 84847091 : xfs_ino_t ino = NULLFSINO;
1751 :
1752 : /*
1753 : * Directories, symlinks, and regular files frequently allocate at least
1754 : * one block, so factor that potential expansion when we examine whether
1755 : * an AG has enough space for file creation.
1756 : */
1757 84847091 : if (S_ISDIR(mode))
1758 6564927 : start_agno = (atomic_inc_return(&mp->m_agirotor) - 1) %
1759 6565059 : mp->m_maxagi;
1760 : else {
1761 78282032 : start_agno = XFS_INO_TO_AGNO(mp, parent);
1762 78282032 : if (start_agno >= mp->m_maxagi)
1763 0 : start_agno = 0;
1764 : }
1765 :
1766 : /*
1767 : * If we have already hit the ceiling of inode blocks then clear
1768 : * ok_alloc so we scan all available agi structures for a free
1769 : * inode.
1770 : *
1771 : * Read rough value of mp->m_icount by percpu_counter_read_positive,
1772 : * which will sacrifice the preciseness but improve the performance.
1773 : */
1774 84846959 : if (igeo->maxicount &&
1775 84788875 : percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1776 : > igeo->maxicount) {
1777 156982 : ok_alloc = false;
1778 : }
1779 :
1780 : /*
1781 : * If we are near to ENOSPC, we want to prefer allocation from AGs that
1782 : * have free inodes in them rather than use up free space allocating new
1783 : * inode chunks. Hence we turn off allocation for the first non-blocking
1784 : * pass through the AGs if we are near ENOSPC to consume free inodes
1785 : * that we can immediately allocate, but then we allow allocation on the
1786 : * second pass if we fail to find an AG with free inodes in it.
1787 : */
1788 84846959 : if (percpu_counter_read_positive(&mp->m_fdblocks) <
1789 84846959 : mp->m_low_space[XFS_LOWSP_1_PCNT]) {
1790 982649 : ok_alloc = false;
1791 982649 : low_space = true;
1792 : }
1793 :
1794 : /*
1795 : * Loop until we find an allocation group that either has free inodes
1796 : * or in which we can allocate some inodes. Iterate through the
1797 : * allocation groups upward, wrapping at the end.
1798 : */
1799 84846959 : flags = XFS_ALLOC_FLAG_TRYLOCK;
1800 85045404 : retry:
1801 88786035 : for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) {
1802 88597105 : if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) {
1803 86319507 : error = xfs_dialloc_try_ag(pag, tpp, parent,
1804 : &ino, ok_alloc);
1805 86460922 : if (error != -EAGAIN)
1806 : break;
1807 : error = 0;
1808 : }
1809 :
1810 7481262 : if (xfs_is_shutdown(mp)) {
1811 : error = -EFSCORRUPTED;
1812 : break;
1813 : }
1814 : }
1815 85161715 : if (pag)
1816 84740380 : xfs_perag_rele(pag);
1817 85229268 : if (error)
1818 402 : return error;
1819 85228866 : if (ino == NULLFSINO) {
1820 355018 : if (flags) {
1821 198445 : flags = 0;
1822 198445 : if (low_space)
1823 37235 : ok_alloc = true;
1824 198445 : goto retry;
1825 : }
1826 : return -ENOSPC;
1827 : }
1828 84873848 : *new_ino = ino;
1829 84873848 : return 0;
1830 : }
1831 :
1832 : /*
1833 : * Free the blocks of an inode chunk. We must consider that the inode chunk
1834 : * might be sparse and only free the regions that are allocated as part of the
1835 : * chunk.
1836 : */
1837 : static int
1838 346331 : xfs_difree_inode_chunk(
1839 : struct xfs_trans *tp,
1840 : xfs_agnumber_t agno,
1841 : struct xfs_inobt_rec_incore *rec)
1842 : {
1843 346331 : struct xfs_mount *mp = tp->t_mountp;
1844 346331 : xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp,
1845 : rec->ir_startino);
1846 346331 : int startidx, endidx;
1847 346331 : int nextbit;
1848 346331 : xfs_agblock_t agbno;
1849 346331 : int contigblk;
1850 346331 : DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1851 :
1852 346331 : if (!xfs_inobt_issparse(rec->ir_holemask)) {
1853 : /* not sparse, calculate extent info directly */
1854 601534 : return xfs_free_extent_later(tp,
1855 300767 : XFS_AGB_TO_FSB(mp, agno, sagbno),
1856 300767 : M_IGEO(mp)->ialloc_blks, &XFS_RMAP_OINFO_INODES,
1857 : XFS_AG_RESV_NONE);
1858 : }
1859 :
1860 : /* holemask is only 16-bits (fits in an unsigned long) */
1861 45564 : ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1862 45564 : holemask[0] = rec->ir_holemask;
1863 :
1864 : /*
1865 : * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1866 : * holemask and convert the start/end index of each range to an extent.
1867 : * We start with the start and end index both pointing at the first 0 in
1868 : * the mask.
1869 : */
1870 45564 : startidx = endidx = find_first_zero_bit(holemask,
1871 : XFS_INOBT_HOLEMASK_BITS);
1872 45563 : nextbit = startidx + 1;
1873 410066 : while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1874 364502 : int error;
1875 :
1876 364502 : nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1877 : nextbit);
1878 : /*
1879 : * If the next zero bit is contiguous, update the end index of
1880 : * the current range and continue.
1881 : */
1882 364501 : if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1883 318936 : nextbit == endidx + 1) {
1884 318939 : endidx = nextbit;
1885 318939 : goto next;
1886 : }
1887 :
1888 : /*
1889 : * nextbit is not contiguous with the current end index. Convert
1890 : * the current start/end to an extent and add it to the free
1891 : * list.
1892 : */
1893 0 : agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1894 45562 : mp->m_sb.sb_inopblock;
1895 91124 : contigblk = ((endidx - startidx + 1) *
1896 0 : XFS_INODES_PER_HOLEMASK_BIT) /
1897 45562 : mp->m_sb.sb_inopblock;
1898 :
1899 45562 : ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1900 45562 : ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1901 91124 : error = xfs_free_extent_later(tp,
1902 45562 : XFS_AGB_TO_FSB(mp, agno, agbno), contigblk,
1903 : &XFS_RMAP_OINFO_INODES, XFS_AG_RESV_NONE);
1904 45564 : if (error)
1905 0 : return error;
1906 :
1907 : /* reset range to current bit and carry on... */
1908 : startidx = endidx = nextbit;
1909 :
1910 364503 : next:
1911 364503 : nextbit++;
1912 : }
1913 : return 0;
1914 : }
1915 :
1916 : STATIC int
1917 57758085 : xfs_difree_inobt(
1918 : struct xfs_perag *pag,
1919 : struct xfs_trans *tp,
1920 : struct xfs_buf *agbp,
1921 : xfs_agino_t agino,
1922 : struct xfs_icluster *xic,
1923 : struct xfs_inobt_rec_incore *orec)
1924 : {
1925 57758085 : struct xfs_mount *mp = pag->pag_mount;
1926 57758085 : struct xfs_agi *agi = agbp->b_addr;
1927 57758085 : struct xfs_btree_cur *cur;
1928 57758085 : struct xfs_inobt_rec_incore rec;
1929 57758085 : int ilen;
1930 57758085 : int error;
1931 57758085 : int i;
1932 57758085 : int off;
1933 :
1934 57758085 : ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1935 57758085 : ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1936 :
1937 : /*
1938 : * Initialize the cursor.
1939 : */
1940 57758085 : cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
1941 :
1942 57775888 : error = xfs_check_agi_freecount(cur);
1943 57800285 : if (error)
1944 3 : goto error0;
1945 :
1946 : /*
1947 : * Look for the entry describing this inode.
1948 : */
1949 57800282 : if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1950 10 : xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1951 : __func__, error);
1952 10 : goto error0;
1953 : }
1954 57826887 : if (XFS_IS_CORRUPT(mp, i != 1)) {
1955 0 : error = -EFSCORRUPTED;
1956 0 : goto error0;
1957 : }
1958 57826887 : error = xfs_inobt_get_rec(cur, &rec, &i);
1959 57788842 : if (error) {
1960 0 : xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1961 : __func__, error);
1962 0 : goto error0;
1963 : }
1964 57788842 : if (XFS_IS_CORRUPT(mp, i != 1)) {
1965 0 : error = -EFSCORRUPTED;
1966 0 : goto error0;
1967 : }
1968 : /*
1969 : * Get the offset in the inode chunk.
1970 : */
1971 57788842 : off = agino - rec.ir_startino;
1972 57788842 : ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1973 57788842 : ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1974 : /*
1975 : * Mark the inode free & increment the count.
1976 : */
1977 57788842 : rec.ir_free |= XFS_INOBT_MASK(off);
1978 57788842 : rec.ir_freecount++;
1979 :
1980 : /*
1981 : * When an inode chunk is free, it becomes eligible for removal. Don't
1982 : * remove the chunk if the block size is large enough for multiple inode
1983 : * chunks (that might not be free).
1984 : */
1985 57788842 : if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
1986 346319 : mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1987 346320 : xic->deleted = true;
1988 346320 : xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
1989 : rec.ir_startino);
1990 346320 : xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1991 :
1992 : /*
1993 : * Remove the inode cluster from the AGI B+Tree, adjust the
1994 : * AGI and Superblock inode counts, and mark the disk space
1995 : * to be freed when the transaction is committed.
1996 : */
1997 346349 : ilen = rec.ir_freecount;
1998 346349 : be32_add_cpu(&agi->agi_count, -ilen);
1999 346349 : be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
2000 346349 : xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
2001 346343 : pag->pagi_freecount -= ilen - 1;
2002 346343 : pag->pagi_count -= ilen;
2003 346343 : xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
2004 346324 : xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
2005 :
2006 346325 : if ((error = xfs_btree_delete(cur, &i))) {
2007 0 : xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
2008 : __func__, error);
2009 0 : goto error0;
2010 : }
2011 :
2012 346336 : error = xfs_difree_inode_chunk(tp, pag->pag_agno, &rec);
2013 346325 : if (error)
2014 0 : goto error0;
2015 : } else {
2016 57442522 : xic->deleted = false;
2017 :
2018 57442522 : error = xfs_inobt_update(cur, &rec);
2019 57416002 : if (error) {
2020 0 : xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2021 : __func__, error);
2022 0 : goto error0;
2023 : }
2024 :
2025 : /*
2026 : * Change the inode free counts and log the ag/sb changes.
2027 : */
2028 57416002 : be32_add_cpu(&agi->agi_freecount, 1);
2029 57416002 : xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2030 57447712 : pag->pagi_freecount++;
2031 57447712 : xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2032 : }
2033 :
2034 57686011 : error = xfs_check_agi_freecount(cur);
2035 57714496 : if (error)
2036 0 : goto error0;
2037 :
2038 57714496 : *orec = rec;
2039 57714496 : xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2040 57714496 : return 0;
2041 :
2042 13 : error0:
2043 13 : xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2044 13 : return error;
2045 : }
2046 :
2047 : /*
2048 : * Free an inode in the free inode btree.
2049 : */
2050 : STATIC int
2051 57740138 : xfs_difree_finobt(
2052 : struct xfs_perag *pag,
2053 : struct xfs_trans *tp,
2054 : struct xfs_buf *agbp,
2055 : xfs_agino_t agino,
2056 : struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2057 : {
2058 57740138 : struct xfs_mount *mp = pag->pag_mount;
2059 57740138 : struct xfs_btree_cur *cur;
2060 57740138 : struct xfs_inobt_rec_incore rec;
2061 57740138 : int offset = agino - ibtrec->ir_startino;
2062 57740138 : int error;
2063 57740138 : int i;
2064 :
2065 57740138 : cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_FINO);
2066 :
2067 57786102 : error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2068 57833849 : if (error)
2069 10 : goto error;
2070 57833839 : if (i == 0) {
2071 : /*
2072 : * If the record does not exist in the finobt, we must have just
2073 : * freed an inode in a previously fully allocated chunk. If not,
2074 : * something is out of sync.
2075 : */
2076 11692404 : if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2077 0 : error = -EFSCORRUPTED;
2078 0 : goto error;
2079 : }
2080 :
2081 11692404 : error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2082 11692404 : ibtrec->ir_count,
2083 : ibtrec->ir_freecount,
2084 : ibtrec->ir_free, &i);
2085 11683148 : if (error)
2086 0 : goto error;
2087 11683148 : ASSERT(i == 1);
2088 :
2089 11683148 : goto out;
2090 : }
2091 :
2092 : /*
2093 : * Read and update the existing record. We could just copy the ibtrec
2094 : * across here, but that would defeat the purpose of having redundant
2095 : * metadata. By making the modifications independently, we can catch
2096 : * corruptions that we wouldn't see if we just copied from one record
2097 : * to another.
2098 : */
2099 46141435 : error = xfs_inobt_get_rec(cur, &rec, &i);
2100 46120045 : if (error)
2101 0 : goto error;
2102 46120045 : if (XFS_IS_CORRUPT(mp, i != 1)) {
2103 0 : error = -EFSCORRUPTED;
2104 0 : goto error;
2105 : }
2106 :
2107 46120045 : rec.ir_free |= XFS_INOBT_MASK(offset);
2108 46120045 : rec.ir_freecount++;
2109 :
2110 46120045 : if (XFS_IS_CORRUPT(mp,
2111 : rec.ir_free != ibtrec->ir_free ||
2112 : rec.ir_freecount != ibtrec->ir_freecount)) {
2113 0 : error = -EFSCORRUPTED;
2114 0 : goto error;
2115 : }
2116 :
2117 : /*
2118 : * The content of inobt records should always match between the inobt
2119 : * and finobt. The lifecycle of records in the finobt is different from
2120 : * the inobt in that the finobt only tracks records with at least one
2121 : * free inode. Hence, if all of the inodes are free and we aren't
2122 : * keeping inode chunks permanently on disk, remove the record.
2123 : * Otherwise, update the record with the new information.
2124 : *
2125 : * Note that we currently can't free chunks when the block size is large
2126 : * enough for multiple chunks. Leave the finobt record to remain in sync
2127 : * with the inobt.
2128 : */
2129 46120045 : if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2130 346343 : mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2131 346344 : error = xfs_btree_delete(cur, &i);
2132 346348 : if (error)
2133 0 : goto error;
2134 346348 : ASSERT(i == 1);
2135 : } else {
2136 45773701 : error = xfs_inobt_update(cur, &rec);
2137 45766337 : if (error)
2138 0 : goto error;
2139 : }
2140 :
2141 45766337 : out:
2142 57795833 : error = xfs_check_agi_freecount(cur);
2143 57857875 : if (error)
2144 0 : goto error;
2145 :
2146 57857875 : xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2147 57857875 : return 0;
2148 :
2149 10 : error:
2150 10 : xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2151 10 : return error;
2152 : }
2153 :
2154 : /*
2155 : * Free disk inode. Carefully avoids touching the incore inode, all
2156 : * manipulations incore are the caller's responsibility.
2157 : * The on-disk inode is not changed by this operation, only the
2158 : * btree (free inode mask) is changed.
2159 : */
2160 : int
2161 57784085 : xfs_difree(
2162 : struct xfs_trans *tp,
2163 : struct xfs_perag *pag,
2164 : xfs_ino_t inode,
2165 : struct xfs_icluster *xic)
2166 : {
2167 : /* REFERENCED */
2168 57784085 : xfs_agblock_t agbno; /* block number containing inode */
2169 57784085 : struct xfs_buf *agbp; /* buffer for allocation group header */
2170 57784085 : xfs_agino_t agino; /* allocation group inode number */
2171 57784085 : int error; /* error return value */
2172 57784085 : struct xfs_mount *mp = tp->t_mountp;
2173 57784085 : struct xfs_inobt_rec_incore rec;/* btree record */
2174 :
2175 : /*
2176 : * Break up inode number into its components.
2177 : */
2178 57784085 : if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) {
2179 0 : xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).",
2180 : __func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno);
2181 0 : ASSERT(0);
2182 0 : return -EINVAL;
2183 : }
2184 57784085 : agino = XFS_INO_TO_AGINO(mp, inode);
2185 57784085 : if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2186 0 : xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2187 : __func__, (unsigned long long)inode,
2188 : (unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2189 0 : ASSERT(0);
2190 0 : return -EINVAL;
2191 : }
2192 57784085 : agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2193 57784085 : if (agbno >= mp->m_sb.sb_agblocks) {
2194 0 : xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2195 : __func__, agbno, mp->m_sb.sb_agblocks);
2196 0 : ASSERT(0);
2197 0 : return -EINVAL;
2198 : }
2199 : /*
2200 : * Get the allocation group header.
2201 : */
2202 57784085 : error = xfs_ialloc_read_agi(pag, tp, &agbp);
2203 57785331 : if (error) {
2204 107 : xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2205 : __func__, error);
2206 107 : return error;
2207 : }
2208 :
2209 : /*
2210 : * Fix up the inode allocation btree.
2211 : */
2212 57785224 : error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec);
2213 57828885 : if (error)
2214 13 : goto error0;
2215 :
2216 : /*
2217 : * Fix up the free inode btree.
2218 : */
2219 57828872 : if (xfs_has_finobt(mp)) {
2220 57762775 : error = xfs_difree_finobt(pag, tp, agbp, agino, &rec);
2221 57867235 : if (error)
2222 10 : goto error0;
2223 : }
2224 :
2225 : return 0;
2226 :
2227 : error0:
2228 : return error;
2229 : }
2230 :
2231 : STATIC int
2232 383515841 : xfs_imap_lookup(
2233 : struct xfs_perag *pag,
2234 : struct xfs_trans *tp,
2235 : xfs_agino_t agino,
2236 : xfs_agblock_t agbno,
2237 : xfs_agblock_t *chunk_agbno,
2238 : xfs_agblock_t *offset_agbno,
2239 : int flags)
2240 : {
2241 383515841 : struct xfs_mount *mp = pag->pag_mount;
2242 383515841 : struct xfs_inobt_rec_incore rec;
2243 383515841 : struct xfs_btree_cur *cur;
2244 383515841 : struct xfs_buf *agbp;
2245 383515841 : int error;
2246 383515841 : int i;
2247 :
2248 383515841 : error = xfs_ialloc_read_agi(pag, tp, &agbp);
2249 383511255 : if (error) {
2250 129 : xfs_alert(mp,
2251 : "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2252 : __func__, error, pag->pag_agno);
2253 129 : return error;
2254 : }
2255 :
2256 : /*
2257 : * Lookup the inode record for the given agino. If the record cannot be
2258 : * found, then it's an invalid inode number and we should abort. Once
2259 : * we have a record, we need to ensure it contains the inode number
2260 : * we are looking up.
2261 : */
2262 383511126 : cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
2263 383519648 : error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2264 383528701 : if (!error) {
2265 383527581 : if (i)
2266 383524579 : error = xfs_inobt_get_rec(cur, &rec, &i);
2267 383491341 : if (!error && i == 0)
2268 267 : error = -EINVAL;
2269 : }
2270 :
2271 383492461 : xfs_trans_brelse(tp, agbp);
2272 383518431 : xfs_btree_del_cursor(cur, error);
2273 383532723 : if (error)
2274 : return error;
2275 :
2276 : /* check that the returned record contains the required inode */
2277 383532441 : if (rec.ir_startino > agino ||
2278 383532441 : rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2279 : return -EINVAL;
2280 :
2281 : /* for untrusted inodes check it is allocated first */
2282 383485580 : if ((flags & XFS_IGET_UNTRUSTED) &&
2283 383486839 : (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2284 : return -EINVAL;
2285 :
2286 383483418 : *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2287 383483418 : *offset_agbno = agbno - *chunk_agbno;
2288 383483418 : return 0;
2289 : }
2290 :
2291 : /*
2292 : * Return the location of the inode in imap, for mapping it into a buffer.
2293 : */
2294 : int
2295 440076850 : xfs_imap(
2296 : struct xfs_perag *pag,
2297 : struct xfs_trans *tp,
2298 : xfs_ino_t ino, /* inode to locate */
2299 : struct xfs_imap *imap, /* location map structure */
2300 : uint flags) /* flags for inode btree lookup */
2301 : {
2302 440076850 : struct xfs_mount *mp = pag->pag_mount;
2303 440076850 : xfs_agblock_t agbno; /* block number of inode in the alloc group */
2304 440076850 : xfs_agino_t agino; /* inode number within alloc group */
2305 440076850 : xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2306 440076850 : xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2307 440076850 : int error; /* error code */
2308 440076850 : int offset; /* index of inode in its buffer */
2309 440076850 : xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2310 :
2311 440076850 : ASSERT(ino != NULLFSINO);
2312 :
2313 : /*
2314 : * Split up the inode number into its parts.
2315 : */
2316 440076850 : agino = XFS_INO_TO_AGINO(mp, ino);
2317 440076850 : agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2318 440076850 : if (agbno >= mp->m_sb.sb_agblocks ||
2319 440163982 : ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2320 21197 : error = -EINVAL;
2321 : #ifdef DEBUG
2322 : /*
2323 : * Don't output diagnostic information for untrusted inodes
2324 : * as they can be invalid without implying corruption.
2325 : */
2326 21197 : if (flags & XFS_IGET_UNTRUSTED)
2327 : return error;
2328 0 : if (agbno >= mp->m_sb.sb_agblocks) {
2329 0 : xfs_alert(mp,
2330 : "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2331 : __func__, (unsigned long long)agbno,
2332 : (unsigned long)mp->m_sb.sb_agblocks);
2333 : }
2334 0 : if (ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2335 0 : xfs_alert(mp,
2336 : "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2337 : __func__, ino,
2338 : XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2339 : }
2340 0 : xfs_stack_trace();
2341 : #endif /* DEBUG */
2342 0 : return error;
2343 : }
2344 :
2345 : /*
2346 : * For bulkstat and handle lookups, we have an untrusted inode number
2347 : * that we have to verify is valid. We cannot do this just by reading
2348 : * the inode buffer as it may have been unlinked and removed leaving
2349 : * inodes in stale state on disk. Hence we have to do a btree lookup
2350 : * in all cases where an untrusted inode number is passed.
2351 : */
2352 440055653 : if (flags & XFS_IGET_UNTRUSTED) {
2353 383485486 : error = xfs_imap_lookup(pag, tp, agino, agbno,
2354 : &chunk_agbno, &offset_agbno, flags);
2355 383517491 : if (error)
2356 : return error;
2357 383466816 : goto out_map;
2358 : }
2359 :
2360 : /*
2361 : * If the inode cluster size is the same as the blocksize or
2362 : * smaller we get to the buffer by simple arithmetics.
2363 : */
2364 56570167 : if (M_IGEO(mp)->blocks_per_cluster == 1) {
2365 0 : offset = XFS_INO_TO_OFFSET(mp, ino);
2366 0 : ASSERT(offset < mp->m_sb.sb_inopblock);
2367 :
2368 0 : imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno);
2369 0 : imap->im_len = XFS_FSB_TO_BB(mp, 1);
2370 0 : imap->im_boffset = (unsigned short)(offset <<
2371 0 : mp->m_sb.sb_inodelog);
2372 0 : return 0;
2373 : }
2374 :
2375 : /*
2376 : * If the inode chunks are aligned then use simple maths to
2377 : * find the location. Otherwise we have to do a btree
2378 : * lookup to find the location.
2379 : */
2380 56570167 : if (M_IGEO(mp)->inoalign_mask) {
2381 56570167 : offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2382 56570167 : chunk_agbno = agbno - offset_agbno;
2383 : } else {
2384 0 : error = xfs_imap_lookup(pag, tp, agino, agbno,
2385 : &chunk_agbno, &offset_agbno, flags);
2386 0 : if (error)
2387 : return error;
2388 : }
2389 :
2390 0 : out_map:
2391 440036983 : ASSERT(agbno >= chunk_agbno);
2392 880073966 : cluster_agbno = chunk_agbno +
2393 440036983 : ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2394 440036983 : M_IGEO(mp)->blocks_per_cluster);
2395 880073966 : offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2396 440036983 : XFS_INO_TO_OFFSET(mp, ino);
2397 :
2398 440036983 : imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno);
2399 440036983 : imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2400 440036983 : imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2401 :
2402 : /*
2403 : * If the inode number maps to a block outside the bounds
2404 : * of the file system then return NULL rather than calling
2405 : * read_buf and panicing when we get an error from the
2406 : * driver.
2407 : */
2408 880073966 : if ((imap->im_blkno + imap->im_len) >
2409 440036983 : XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2410 0 : xfs_alert(mp,
2411 : "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2412 : __func__, (unsigned long long) imap->im_blkno,
2413 : (unsigned long long) imap->im_len,
2414 : XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2415 0 : return -EINVAL;
2416 : }
2417 : return 0;
2418 : }
2419 :
2420 : /*
2421 : * Log specified fields for the ag hdr (inode section). The growth of the agi
2422 : * structure over time requires that we interpret the buffer as two logical
2423 : * regions delineated by the end of the unlinked list. This is due to the size
2424 : * of the hash table and its location in the middle of the agi.
2425 : *
2426 : * For example, a request to log a field before agi_unlinked and a field after
2427 : * agi_unlinked could cause us to log the entire hash table and use an excessive
2428 : * amount of log space. To avoid this behavior, log the region up through
2429 : * agi_unlinked in one call and the region after agi_unlinked through the end of
2430 : * the structure in another.
2431 : */
2432 : void
2433 143812316 : xfs_ialloc_log_agi(
2434 : struct xfs_trans *tp,
2435 : struct xfs_buf *bp,
2436 : uint32_t fields)
2437 : {
2438 143812316 : int first; /* first byte number */
2439 143812316 : int last; /* last byte number */
2440 143812316 : static const short offsets[] = { /* field starting offsets */
2441 : /* keep in sync with bit definitions */
2442 : offsetof(xfs_agi_t, agi_magicnum),
2443 : offsetof(xfs_agi_t, agi_versionnum),
2444 : offsetof(xfs_agi_t, agi_seqno),
2445 : offsetof(xfs_agi_t, agi_length),
2446 : offsetof(xfs_agi_t, agi_count),
2447 : offsetof(xfs_agi_t, agi_root),
2448 : offsetof(xfs_agi_t, agi_level),
2449 : offsetof(xfs_agi_t, agi_freecount),
2450 : offsetof(xfs_agi_t, agi_newino),
2451 : offsetof(xfs_agi_t, agi_dirino),
2452 : offsetof(xfs_agi_t, agi_unlinked),
2453 : offsetof(xfs_agi_t, agi_free_root),
2454 : offsetof(xfs_agi_t, agi_free_level),
2455 : offsetof(xfs_agi_t, agi_iblocks),
2456 : sizeof(xfs_agi_t)
2457 : };
2458 : #ifdef DEBUG
2459 143812316 : struct xfs_agi *agi = bp->b_addr;
2460 :
2461 143812316 : ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2462 : #endif
2463 :
2464 : /*
2465 : * Compute byte offsets for the first and last fields in the first
2466 : * region and log the agi buffer. This only logs up through
2467 : * agi_unlinked.
2468 : */
2469 143812316 : if (fields & XFS_AGI_ALL_BITS_R1) {
2470 143757883 : xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2471 : &first, &last);
2472 143564621 : xfs_trans_log_buf(tp, bp, first, last);
2473 : }
2474 :
2475 : /*
2476 : * Mask off the bits in the first region and calculate the first and
2477 : * last field offsets for any bits in the second region.
2478 : */
2479 144104886 : fields &= ~XFS_AGI_ALL_BITS_R1;
2480 144104886 : if (fields) {
2481 7817 : xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2482 : &first, &last);
2483 7817 : xfs_trans_log_buf(tp, bp, first, last);
2484 : }
2485 144104886 : }
2486 :
2487 : static xfs_failaddr_t
2488 2833412 : xfs_agi_verify(
2489 : struct xfs_buf *bp)
2490 : {
2491 2833412 : struct xfs_mount *mp = bp->b_mount;
2492 2833412 : struct xfs_agi *agi = bp->b_addr;
2493 2833412 : xfs_failaddr_t fa;
2494 2833412 : uint32_t agi_seqno = be32_to_cpu(agi->agi_seqno);
2495 2833412 : uint32_t agi_length = be32_to_cpu(agi->agi_length);
2496 2833412 : int i;
2497 :
2498 2833412 : if (xfs_has_crc(mp)) {
2499 2817599 : if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2500 0 : return __this_address;
2501 2819271 : if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2502 0 : return __this_address;
2503 : }
2504 :
2505 : /*
2506 : * Validate the magic number of the agi block.
2507 : */
2508 2835379 : if (!xfs_verify_magic(bp, agi->agi_magicnum))
2509 0 : return __this_address;
2510 2833450 : if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2511 0 : return __this_address;
2512 :
2513 2833450 : fa = xfs_validate_ag_length(bp, agi_seqno, agi_length);
2514 2832918 : if (fa)
2515 : return fa;
2516 :
2517 2832950 : if (be32_to_cpu(agi->agi_level) < 1 ||
2518 2832950 : be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2519 0 : return __this_address;
2520 :
2521 2832950 : if (xfs_has_finobt(mp) &&
2522 2818759 : (be32_to_cpu(agi->agi_free_level) < 1 ||
2523 : be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2524 0 : return __this_address;
2525 :
2526 184044015 : for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2527 181208578 : if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2528 181019684 : continue;
2529 191380 : if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2530 0 : return __this_address;
2531 : }
2532 :
2533 : return NULL;
2534 : }
2535 :
2536 : static void
2537 814535 : xfs_agi_read_verify(
2538 : struct xfs_buf *bp)
2539 : {
2540 814535 : struct xfs_mount *mp = bp->b_mount;
2541 814535 : xfs_failaddr_t fa;
2542 :
2543 1628611 : if (xfs_has_crc(mp) &&
2544 : !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2545 10 : xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2546 : else {
2547 814525 : fa = xfs_agi_verify(bp);
2548 814525 : if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2549 0 : xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2550 : }
2551 814535 : }
2552 :
2553 : static void
2554 700780 : xfs_agi_write_verify(
2555 : struct xfs_buf *bp)
2556 : {
2557 700780 : struct xfs_mount *mp = bp->b_mount;
2558 700780 : struct xfs_buf_log_item *bip = bp->b_log_item;
2559 700780 : struct xfs_agi *agi = bp->b_addr;
2560 700780 : xfs_failaddr_t fa;
2561 :
2562 700780 : fa = xfs_agi_verify(bp);
2563 700780 : if (fa) {
2564 0 : xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2565 0 : return;
2566 : }
2567 :
2568 700780 : if (!xfs_has_crc(mp))
2569 : return;
2570 :
2571 687128 : if (bip)
2572 669120 : agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2573 687128 : xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2574 : }
2575 :
2576 : const struct xfs_buf_ops xfs_agi_buf_ops = {
2577 : .name = "xfs_agi",
2578 : .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2579 : .verify_read = xfs_agi_read_verify,
2580 : .verify_write = xfs_agi_write_verify,
2581 : .verify_struct = xfs_agi_verify,
2582 : };
2583 :
2584 : /*
2585 : * Read in the allocation group header (inode allocation section)
2586 : */
2587 : int
2588 1822591412 : xfs_read_agi(
2589 : struct xfs_perag *pag,
2590 : struct xfs_trans *tp,
2591 : struct xfs_buf **agibpp)
2592 : {
2593 1822591412 : struct xfs_mount *mp = pag->pag_mount;
2594 1822591412 : int error;
2595 :
2596 1822591412 : trace_xfs_read_agi(pag->pag_mount, pag->pag_agno);
2597 :
2598 7283883380 : error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2599 1820970845 : XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)),
2600 1820970845 : XFS_FSS_TO_BB(mp, 1), 0, agibpp, &xfs_agi_buf_ops);
2601 1822531475 : if (error)
2602 : return error;
2603 1822525314 : if (tp)
2604 1818913708 : xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF);
2605 :
2606 1822100359 : xfs_buf_set_ref(*agibpp, XFS_AGI_REF);
2607 1822100359 : return 0;
2608 : }
2609 :
2610 : /*
2611 : * Read in the agi and initialise the per-ag data. If the caller supplies a
2612 : * @agibpp, return the locked AGI buffer to them, otherwise release it.
2613 : */
2614 : int
2615 1699911159 : xfs_ialloc_read_agi(
2616 : struct xfs_perag *pag,
2617 : struct xfs_trans *tp,
2618 : struct xfs_buf **agibpp)
2619 : {
2620 1699911159 : struct xfs_buf *agibp;
2621 1699911159 : struct xfs_agi *agi;
2622 1699911159 : int error;
2623 :
2624 1699911159 : trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno);
2625 :
2626 1698405710 : error = xfs_read_agi(pag, tp, &agibp);
2627 1700128067 : if (error)
2628 : return error;
2629 :
2630 1700121978 : agi = agibp->b_addr;
2631 3400243956 : if (!xfs_perag_initialised_agi(pag)) {
2632 429829 : pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2633 429829 : pag->pagi_count = be32_to_cpu(agi->agi_count);
2634 429829 : set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
2635 : }
2636 :
2637 : /*
2638 : * It's possible for these to be out of sync if
2639 : * we are in the middle of a forced shutdown.
2640 : */
2641 1700121978 : ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2642 : xfs_is_shutdown(pag->pag_mount));
2643 1700121978 : if (agibpp)
2644 1700062971 : *agibpp = agibp;
2645 : else
2646 59007 : xfs_trans_brelse(tp, agibp);
2647 : return 0;
2648 : }
2649 :
2650 : /* How many inodes are backed by inode clusters ondisk? */
2651 : STATIC int
2652 2476512226 : xfs_ialloc_count_ondisk(
2653 : struct xfs_btree_cur *cur,
2654 : xfs_agino_t low,
2655 : xfs_agino_t high,
2656 : unsigned int *allocated)
2657 : {
2658 2476512226 : struct xfs_inobt_rec_incore irec;
2659 2476512226 : unsigned int ret = 0;
2660 2476512226 : int has_record;
2661 2476512226 : int error;
2662 :
2663 2476512226 : error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2664 2473706717 : if (error)
2665 : return error;
2666 :
2667 4547996699 : while (has_record) {
2668 2746748643 : unsigned int i, hole_idx;
2669 :
2670 2746748643 : error = xfs_inobt_get_rec(cur, &irec, &has_record);
2671 2747354821 : if (error)
2672 0 : return error;
2673 2747354821 : if (irec.ir_startino > high)
2674 : break;
2675 :
2676 >13385*10^7 : for (i = 0; i < XFS_INODES_PER_CHUNK; i++) {
2677 >13179*10^7 : if (irec.ir_startino + i < low)
2678 >13136*10^7 : continue;
2679 435065208 : if (irec.ir_startino + i > high)
2680 : break;
2681 :
2682 424403246 : hole_idx = i / XFS_INODES_PER_HOLEMASK_BIT;
2683 424403246 : if (!(irec.ir_holemask & (1U << hole_idx)))
2684 259892608 : ret++;
2685 : }
2686 :
2687 2073410028 : error = xfs_btree_increment(cur, 0, &has_record);
2688 2074289982 : if (error)
2689 0 : return error;
2690 : }
2691 :
2692 2475192849 : *allocated = ret;
2693 2475192849 : return 0;
2694 : }
2695 :
2696 : /* Is there an inode record covering a given extent? */
2697 : int
2698 2474912095 : xfs_ialloc_has_inodes_at_extent(
2699 : struct xfs_btree_cur *cur,
2700 : xfs_agblock_t bno,
2701 : xfs_extlen_t len,
2702 : enum xbtree_recpacking *outcome)
2703 : {
2704 2474912095 : xfs_agino_t agino;
2705 2474912095 : xfs_agino_t last_agino;
2706 2474912095 : unsigned int allocated;
2707 2474912095 : int error;
2708 :
2709 2474912095 : agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2710 2474912095 : last_agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2711 :
2712 2474912095 : error = xfs_ialloc_count_ondisk(cur, agino, last_agino, &allocated);
2713 2475449438 : if (error)
2714 : return error;
2715 :
2716 2475449438 : if (allocated == 0)
2717 2471753458 : *outcome = XBTREE_RECPACKING_EMPTY;
2718 3695980 : else if (allocated == last_agino - agino + 1)
2719 3695980 : *outcome = XBTREE_RECPACKING_FULL;
2720 : else
2721 0 : *outcome = XBTREE_RECPACKING_SPARSE;
2722 : return 0;
2723 : }
2724 :
2725 : struct xfs_ialloc_count_inodes {
2726 : xfs_agino_t count;
2727 : xfs_agino_t freecount;
2728 : };
2729 :
2730 : /* Record inode counts across all inobt records. */
2731 : STATIC int
2732 154983542 : xfs_ialloc_count_inodes_rec(
2733 : struct xfs_btree_cur *cur,
2734 : const union xfs_btree_rec *rec,
2735 : void *priv)
2736 : {
2737 154983542 : struct xfs_inobt_rec_incore irec;
2738 154983542 : struct xfs_ialloc_count_inodes *ci = priv;
2739 154983542 : xfs_failaddr_t fa;
2740 :
2741 154983542 : xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2742 154981227 : fa = xfs_inobt_check_irec(cur, &irec);
2743 154987731 : if (fa)
2744 0 : return xfs_inobt_complain_bad_rec(cur, fa, &irec);
2745 :
2746 154987731 : ci->count += irec.ir_count;
2747 154987731 : ci->freecount += irec.ir_freecount;
2748 :
2749 154987731 : return 0;
2750 : }
2751 :
2752 : /* Count allocated and free inodes under an inobt. */
2753 : int
2754 1529131 : xfs_ialloc_count_inodes(
2755 : struct xfs_btree_cur *cur,
2756 : xfs_agino_t *count,
2757 : xfs_agino_t *freecount)
2758 : {
2759 1529131 : struct xfs_ialloc_count_inodes ci = {0};
2760 1529131 : int error;
2761 :
2762 1529131 : ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2763 1529131 : error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2764 1529969 : if (error)
2765 : return error;
2766 :
2767 1529969 : *count = ci.count;
2768 1529969 : *freecount = ci.freecount;
2769 1529969 : return 0;
2770 : }
2771 :
2772 : /*
2773 : * Initialize inode-related geometry information.
2774 : *
2775 : * Compute the inode btree min and max levels and set maxicount.
2776 : *
2777 : * Set the inode cluster size. This may still be overridden by the file
2778 : * system block size if it is larger than the chosen cluster size.
2779 : *
2780 : * For v5 filesystems, scale the cluster size with the inode size to keep a
2781 : * constant ratio of inode per cluster buffer, but only if mkfs has set the
2782 : * inode alignment value appropriately for larger cluster sizes.
2783 : *
2784 : * Then compute the inode cluster alignment information.
2785 : */
2786 : void
2787 59405 : xfs_ialloc_setup_geometry(
2788 : struct xfs_mount *mp)
2789 : {
2790 59405 : struct xfs_sb *sbp = &mp->m_sb;
2791 59405 : struct xfs_ino_geometry *igeo = M_IGEO(mp);
2792 59405 : uint64_t icount;
2793 59405 : uint inodes;
2794 :
2795 59405 : igeo->new_diflags2 = 0;
2796 59405 : if (xfs_has_bigtime(mp))
2797 59123 : igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2798 59405 : if (xfs_has_large_extent_counts(mp))
2799 59145 : igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64;
2800 :
2801 : /* Compute inode btree geometry. */
2802 59405 : igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2803 59405 : igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2804 59405 : igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2805 59405 : igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2806 59405 : igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2807 :
2808 59405 : igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2809 : sbp->sb_inopblock);
2810 59405 : igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2811 :
2812 59405 : if (sbp->sb_spino_align)
2813 59199 : igeo->ialloc_min_blks = sbp->sb_spino_align;
2814 : else
2815 206 : igeo->ialloc_min_blks = igeo->ialloc_blks;
2816 :
2817 : /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2818 59405 : inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2819 59405 : igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2820 : inodes);
2821 59405 : ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk());
2822 :
2823 : /*
2824 : * Set the maximum inode count for this filesystem, being careful not
2825 : * to use obviously garbage sb_inopblog/sb_inopblock values. Regular
2826 : * users should never get here due to failing sb verification, but
2827 : * certain users (xfs_db) need to be usable even with corrupt metadata.
2828 : */
2829 59405 : if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2830 : /*
2831 : * Make sure the maximum inode count is a multiple
2832 : * of the units we allocate inodes in.
2833 : */
2834 59405 : icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2835 59405 : do_div(icount, 100);
2836 59405 : do_div(icount, igeo->ialloc_blks);
2837 59405 : igeo->maxicount = XFS_FSB_TO_INO(mp,
2838 : icount * igeo->ialloc_blks);
2839 : } else {
2840 0 : igeo->maxicount = 0;
2841 : }
2842 :
2843 : /*
2844 : * Compute the desired size of an inode cluster buffer size, which
2845 : * starts at 8K and (on v5 filesystems) scales up with larger inode
2846 : * sizes.
2847 : *
2848 : * Preserve the desired inode cluster size because the sparse inodes
2849 : * feature uses that desired size (not the actual size) to compute the
2850 : * sparse inode alignment. The mount code validates this value, so we
2851 : * cannot change the behavior.
2852 : */
2853 59405 : igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2854 59405 : if (xfs_has_v3inodes(mp)) {
2855 59199 : int new_size = igeo->inode_cluster_size_raw;
2856 :
2857 59199 : new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2858 59199 : if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2859 59199 : igeo->inode_cluster_size_raw = new_size;
2860 : }
2861 :
2862 : /* Calculate inode cluster ratios. */
2863 59405 : if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2864 59405 : igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2865 : igeo->inode_cluster_size_raw);
2866 : else
2867 0 : igeo->blocks_per_cluster = 1;
2868 59405 : igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2869 59405 : igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2870 :
2871 : /* Calculate inode cluster alignment. */
2872 59405 : if (xfs_has_align(mp) &&
2873 59405 : mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2874 59405 : igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2875 : else
2876 0 : igeo->cluster_align = 1;
2877 59405 : igeo->inoalign_mask = igeo->cluster_align - 1;
2878 59405 : igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2879 :
2880 : /*
2881 : * If we are using stripe alignment, check whether
2882 : * the stripe unit is a multiple of the inode alignment
2883 : */
2884 59405 : if (mp->m_dalign && igeo->inoalign_mask &&
2885 106 : !(mp->m_dalign & igeo->inoalign_mask))
2886 75 : igeo->ialloc_align = mp->m_dalign;
2887 : else
2888 59330 : igeo->ialloc_align = 0;
2889 59405 : }
2890 :
2891 : /* Compute the location of the root directory inode that is laid out by mkfs. */
2892 : xfs_ino_t
2893 95 : xfs_ialloc_calc_rootino(
2894 : struct xfs_mount *mp,
2895 : int sunit)
2896 : {
2897 95 : struct xfs_ino_geometry *igeo = M_IGEO(mp);
2898 95 : xfs_agblock_t first_bno;
2899 :
2900 : /*
2901 : * Pre-calculate the geometry of AG 0. We know what it looks like
2902 : * because libxfs knows how to create allocation groups now.
2903 : *
2904 : * first_bno is the first block in which mkfs could possibly have
2905 : * allocated the root directory inode, once we factor in the metadata
2906 : * that mkfs formats before it. Namely, the four AG headers...
2907 : */
2908 95 : first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2909 :
2910 : /* ...the two free space btree roots... */
2911 95 : first_bno += 2;
2912 :
2913 : /* ...the inode btree root... */
2914 95 : first_bno += 1;
2915 :
2916 : /* ...the initial AGFL... */
2917 95 : first_bno += xfs_alloc_min_freelist(mp, NULL);
2918 :
2919 : /* ...the free inode btree root... */
2920 95 : if (xfs_has_finobt(mp))
2921 95 : first_bno++;
2922 :
2923 : /* ...the reverse mapping btree root... */
2924 95 : if (xfs_has_rmapbt(mp))
2925 70 : first_bno++;
2926 :
2927 : /* ...the reference count btree... */
2928 95 : if (xfs_has_reflink(mp))
2929 70 : first_bno++;
2930 :
2931 : /*
2932 : * ...and the log, if it is allocated in the first allocation group.
2933 : *
2934 : * This can happen with filesystems that only have a single
2935 : * allocation group, or very odd geometries created by old mkfs
2936 : * versions on very small filesystems.
2937 : */
2938 95 : if (xfs_ag_contains_log(mp, 0))
2939 0 : first_bno += mp->m_sb.sb_logblocks;
2940 :
2941 : /*
2942 : * Now round first_bno up to whatever allocation alignment is given
2943 : * by the filesystem or was passed in.
2944 : */
2945 95 : if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
2946 64 : first_bno = roundup(first_bno, sunit);
2947 31 : else if (xfs_has_align(mp) &&
2948 31 : mp->m_sb.sb_inoalignmt > 1)
2949 31 : first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
2950 :
2951 95 : return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
2952 : }
2953 :
2954 : /*
2955 : * Ensure there are not sparse inode clusters that cross the new EOAG.
2956 : *
2957 : * This is a no-op for non-spinode filesystems since clusters are always fully
2958 : * allocated and checking the bnobt suffices. However, a spinode filesystem
2959 : * could have a record where the upper inodes are free blocks. If those blocks
2960 : * were removed from the filesystem, the inode record would extend beyond EOAG,
2961 : * which will be flagged as corruption.
2962 : */
2963 : int
2964 847 : xfs_ialloc_check_shrink(
2965 : struct xfs_perag *pag,
2966 : struct xfs_trans *tp,
2967 : struct xfs_buf *agibp,
2968 : xfs_agblock_t new_length)
2969 : {
2970 847 : struct xfs_inobt_rec_incore rec;
2971 847 : struct xfs_btree_cur *cur;
2972 847 : xfs_agino_t agino;
2973 847 : int has;
2974 847 : int error;
2975 :
2976 847 : if (!xfs_has_sparseinodes(pag->pag_mount))
2977 : return 0;
2978 :
2979 847 : cur = xfs_inobt_init_cursor(pag, tp, agibp, XFS_BTNUM_INO);
2980 :
2981 : /* Look up the inobt record that would correspond to the new EOFS. */
2982 847 : agino = XFS_AGB_TO_AGINO(pag->pag_mount, new_length);
2983 847 : error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
2984 847 : if (error || !has)
2985 82 : goto out;
2986 :
2987 765 : error = xfs_inobt_get_rec(cur, &rec, &has);
2988 765 : if (error)
2989 0 : goto out;
2990 :
2991 765 : if (!has) {
2992 0 : error = -EFSCORRUPTED;
2993 0 : goto out;
2994 : }
2995 :
2996 : /* If the record covers inodes that would be beyond EOFS, bail out. */
2997 765 : if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
2998 344 : error = -ENOSPC;
2999 344 : goto out;
3000 : }
3001 421 : out:
3002 847 : xfs_btree_del_cursor(cur, error);
3003 847 : return error;
3004 : }
|