Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 : /*
3 : * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 : * All Rights Reserved.
5 : */
6 : #include "xfs.h"
7 : #include "xfs_fs.h"
8 : #include "xfs_shared.h"
9 : #include "xfs_format.h"
10 : #include "xfs_log_format.h"
11 : #include "xfs_trans_resv.h"
12 : #include "xfs_mount.h"
13 : #include "xfs_trans.h"
14 : #include "xfs_buf_item.h"
15 : #include "xfs_trans_priv.h"
16 : #include "xfs_trace.h"
17 :
18 : /*
19 : * Check to see if a buffer matching the given parameters is already
20 : * a part of the given transaction.
21 : */
22 : STATIC struct xfs_buf *
23 19248537796 : xfs_trans_buf_item_match(
24 : struct xfs_trans *tp,
25 : struct xfs_buftarg *target,
26 : struct xfs_buf_map *map,
27 : int nmaps)
28 : {
29 19248537796 : struct xfs_log_item *lip;
30 19248537796 : struct xfs_buf_log_item *blip;
31 19248537796 : int len = 0;
32 19248537796 : int i;
33 :
34 38492838055 : for (i = 0; i < nmaps; i++)
35 19244300259 : len += map[i].bm_len;
36 :
37 83447386656 : list_for_each_entry(lip, &tp->t_items, li_trans) {
38 65125458959 : blip = (struct xfs_buf_log_item *)lip;
39 65125458959 : if (blip->bli_item.li_type == XFS_LI_BUF &&
40 48447940755 : blip->bli_buf->b_target == target &&
41 48454361905 : xfs_buf_daddr(blip->bli_buf) == map[0].bm_bn &&
42 926640404 : blip->bli_buf->b_length == len) {
43 926610099 : ASSERT(blip->bli_buf->b_map_count == nmaps);
44 926610099 : return blip->bli_buf;
45 : }
46 : }
47 :
48 : return NULL;
49 : }
50 :
51 : /*
52 : * Add the locked buffer to the transaction.
53 : *
54 : * The buffer must be locked, and it cannot be associated with any
55 : * transaction.
56 : *
57 : * If the buffer does not yet have a buf log item associated with it,
58 : * then allocate one for it. Then add the buf item to the transaction.
59 : */
60 : STATIC void
61 18401686287 : _xfs_trans_bjoin(
62 : struct xfs_trans *tp,
63 : struct xfs_buf *bp,
64 : int reset_recur)
65 : {
66 18401686287 : struct xfs_buf_log_item *bip;
67 :
68 18401686287 : ASSERT(bp->b_transp == NULL);
69 :
70 : /*
71 : * The xfs_buf_log_item pointer is stored in b_log_item. If
72 : * it doesn't have one yet, then allocate one and initialize it.
73 : * The checks to see if one is there are in xfs_buf_item_init().
74 : */
75 18401686287 : xfs_buf_item_init(bp, tp->t_mountp);
76 18411425258 : bip = bp->b_log_item;
77 18411425258 : ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
78 18411425258 : ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
79 18411425258 : ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
80 18411425258 : if (reset_recur)
81 18407114273 : bip->bli_recur = 0;
82 :
83 : /*
84 : * Take a reference for this transaction on the buf item.
85 : */
86 18411425258 : atomic_inc(&bip->bli_refcount);
87 :
88 : /*
89 : * Attach the item to the transaction so we can find it in
90 : * xfs_trans_get_buf() and friends.
91 : */
92 18427563244 : xfs_trans_add_item(tp, &bip->bli_item);
93 18401056224 : bp->b_transp = tp;
94 :
95 18401056224 : }
96 :
97 : void
98 3748800 : xfs_trans_bjoin(
99 : struct xfs_trans *tp,
100 : struct xfs_buf *bp)
101 : {
102 3748800 : _xfs_trans_bjoin(tp, bp, 0);
103 3749647 : trace_xfs_trans_bjoin(bp->b_log_item);
104 3748761 : }
105 :
106 : /*
107 : * Get and lock the buffer for the caller if it is not already
108 : * locked within the given transaction. If it is already locked
109 : * within the transaction, just increment its lock recursion count
110 : * and return a pointer to it.
111 : *
112 : * If the transaction pointer is NULL, make this just a normal
113 : * get_buf() call.
114 : */
115 : int
116 45125063 : xfs_trans_get_buf_map(
117 : struct xfs_trans *tp,
118 : struct xfs_buftarg *target,
119 : struct xfs_buf_map *map,
120 : int nmaps,
121 : xfs_buf_flags_t flags,
122 : struct xfs_buf **bpp)
123 : {
124 45125063 : struct xfs_buf *bp;
125 45125063 : struct xfs_buf_log_item *bip;
126 45125063 : int error;
127 :
128 45125063 : *bpp = NULL;
129 45125063 : if (!tp)
130 42909 : return xfs_buf_get_map(target, map, nmaps, flags, bpp);
131 :
132 : /*
133 : * If we find the buffer in the cache with this transaction
134 : * pointer in its b_fsprivate2 field, then we know we already
135 : * have it locked. In this case we just increment the lock
136 : * recursion count and return the buffer to the caller.
137 : */
138 45082154 : bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
139 45122711 : if (bp != NULL) {
140 393410 : ASSERT(xfs_buf_islocked(bp));
141 786820 : if (xfs_is_shutdown(tp->t_mountp)) {
142 0 : xfs_buf_stale(bp);
143 0 : bp->b_flags |= XBF_DONE;
144 : }
145 :
146 393410 : ASSERT(bp->b_transp == tp);
147 393410 : bip = bp->b_log_item;
148 393410 : ASSERT(bip != NULL);
149 393410 : ASSERT(atomic_read(&bip->bli_refcount) > 0);
150 393410 : bip->bli_recur++;
151 393410 : trace_xfs_trans_get_buf_recur(bip);
152 393313 : *bpp = bp;
153 393313 : return 0;
154 : }
155 :
156 44729301 : error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
157 44690689 : if (error)
158 : return error;
159 :
160 44690689 : ASSERT(!bp->b_error);
161 :
162 44690689 : _xfs_trans_bjoin(tp, bp, 1);
163 44758842 : trace_xfs_trans_get_buf(bp->b_log_item);
164 44746218 : *bpp = bp;
165 44746218 : return 0;
166 : }
167 :
168 : /*
169 : * Get and lock the superblock buffer for the given transaction.
170 : */
171 : struct xfs_buf *
172 81482881 : xfs_trans_getsb(
173 : struct xfs_trans *tp)
174 : {
175 81482881 : struct xfs_buf *bp = tp->t_mountp->m_sb_bp;
176 :
177 : /*
178 : * Just increment the lock recursion count if the buffer is already
179 : * attached to this transaction.
180 : */
181 81482881 : if (bp->b_transp == tp) {
182 1046 : struct xfs_buf_log_item *bip = bp->b_log_item;
183 :
184 1046 : ASSERT(bip != NULL);
185 1046 : ASSERT(atomic_read(&bip->bli_refcount) > 0);
186 1046 : bip->bli_recur++;
187 :
188 1046 : trace_xfs_trans_getsb_recur(bip);
189 : } else {
190 81481835 : xfs_buf_lock(bp);
191 81481835 : xfs_buf_hold(bp);
192 81481835 : _xfs_trans_bjoin(tp, bp, 1);
193 :
194 81481835 : trace_xfs_trans_getsb(bp->b_log_item);
195 : }
196 :
197 81482881 : return bp;
198 : }
199 :
200 : /*
201 : * Get and lock the buffer for the caller if it is not already
202 : * locked within the given transaction. If it has not yet been
203 : * read in, read it from disk. If it is already locked
204 : * within the transaction and already read in, just increment its
205 : * lock recursion count and return a pointer to it.
206 : *
207 : * If the transaction pointer is NULL, make this just a normal
208 : * read_buf() call.
209 : */
210 : int
211 20093178963 : xfs_trans_read_buf_map(
212 : struct xfs_mount *mp,
213 : struct xfs_trans *tp,
214 : struct xfs_buftarg *target,
215 : struct xfs_buf_map *map,
216 : int nmaps,
217 : xfs_buf_flags_t flags,
218 : struct xfs_buf **bpp,
219 : const struct xfs_buf_ops *ops)
220 : {
221 20093178963 : struct xfs_buf *bp = NULL;
222 20093178963 : struct xfs_buf_log_item *bip;
223 20093178963 : int error;
224 :
225 20093178963 : *bpp = NULL;
226 : /*
227 : * If we find the buffer in the cache with this transaction
228 : * pointer in its b_fsprivate2 field, then we know we already
229 : * have it locked. If it is already read in we just increment
230 : * the lock recursion count and return the buffer to the caller.
231 : * If the buffer is not yet read in, then we read it in, increment
232 : * the lock recursion count, and return it to the caller.
233 : */
234 20093178963 : if (tp)
235 19212507302 : bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
236 20091211282 : if (bp) {
237 925754796 : ASSERT(xfs_buf_islocked(bp));
238 925754796 : ASSERT(bp->b_transp == tp);
239 925754796 : ASSERT(bp->b_log_item != NULL);
240 925754796 : ASSERT(!bp->b_error);
241 925754796 : ASSERT(bp->b_flags & XBF_DONE);
242 :
243 : /*
244 : * We never locked this buf ourselves, so we shouldn't
245 : * brelse it either. Just get out.
246 : */
247 1851509592 : if (xfs_is_shutdown(mp)) {
248 193 : trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
249 193 : return -EIO;
250 : }
251 :
252 : /*
253 : * Check if the caller is trying to read a buffer that is
254 : * already attached to the transaction yet has no buffer ops
255 : * assigned. Ops are usually attached when the buffer is
256 : * attached to the transaction, or by the read caller if
257 : * special circumstances. That didn't happen, which is not
258 : * how this is supposed to go.
259 : *
260 : * If the buffer passes verification we'll let this go, but if
261 : * not we have to shut down. Let the transaction cleanup code
262 : * release this buffer when it kills the tranaction.
263 : */
264 925754603 : ASSERT(bp->b_ops != NULL);
265 925754603 : error = xfs_buf_reverify(bp, ops);
266 924627564 : if (error) {
267 0 : xfs_buf_ioerror_alert(bp, __return_address);
268 :
269 0 : if (tp->t_flags & XFS_TRANS_DIRTY)
270 0 : xfs_force_shutdown(tp->t_mountp,
271 : SHUTDOWN_META_IO_ERROR);
272 :
273 : /* bad CRC means corrupted metadata */
274 0 : if (error == -EFSBADCRC)
275 0 : error = -EFSCORRUPTED;
276 0 : return error;
277 : }
278 :
279 924627564 : bip = bp->b_log_item;
280 924627564 : bip->bli_recur++;
281 :
282 924627564 : ASSERT(atomic_read(&bip->bli_refcount) > 0);
283 924627564 : trace_xfs_trans_read_buf_recur(bip);
284 923714229 : ASSERT(bp->b_ops != NULL || ops == NULL);
285 923714229 : *bpp = bp;
286 923714229 : return 0;
287 : }
288 :
289 19165456486 : error = xfs_buf_read_map(target, map, nmaps, flags, &bp, ops,
290 : __return_address);
291 19160076800 : switch (error) {
292 : case 0:
293 19154228729 : break;
294 35098 : default:
295 35098 : if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
296 2100 : xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
297 : fallthrough;
298 : case -ENOMEM:
299 : case -EAGAIN:
300 : return error;
301 : }
302 :
303 38308457458 : if (xfs_is_shutdown(mp)) {
304 1573582 : xfs_buf_relse(bp);
305 1573582 : trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
306 1573582 : return -EIO;
307 : }
308 :
309 19152655147 : if (tp) {
310 18274631558 : _xfs_trans_bjoin(tp, bp, 1);
311 18273569079 : trace_xfs_trans_read_buf(bp->b_log_item);
312 : }
313 19146402873 : ASSERT(bp->b_ops != NULL || ops == NULL);
314 19146402873 : *bpp = bp;
315 19146402873 : return 0;
316 :
317 : }
318 :
319 : /* Has this buffer been dirtied by anyone? */
320 : bool
321 0 : xfs_trans_buf_is_dirty(
322 : struct xfs_buf *bp)
323 : {
324 0 : struct xfs_buf_log_item *bip = bp->b_log_item;
325 :
326 0 : if (!bip)
327 : return false;
328 0 : ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
329 0 : return test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
330 : }
331 :
332 : /*
333 : * Release a buffer previously joined to the transaction. If the buffer is
334 : * modified within this transaction, decrement the recursion count but do not
335 : * release the buffer even if the count goes to 0. If the buffer is not modified
336 : * within the transaction, decrement the recursion count and release the buffer
337 : * if the recursion count goes to 0.
338 : *
339 : * If the buffer is to be released and it was not already dirty before this
340 : * transaction began, then also free the buf_log_item associated with it.
341 : *
342 : * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call.
343 : */
344 : void
345 18248088296 : xfs_trans_brelse(
346 : struct xfs_trans *tp,
347 : struct xfs_buf *bp)
348 : {
349 18248088296 : struct xfs_buf_log_item *bip = bp->b_log_item;
350 :
351 18248088296 : ASSERT(bp->b_transp == tp);
352 :
353 18248088296 : if (!tp) {
354 844370975 : xfs_buf_relse(bp);
355 844101633 : return;
356 : }
357 :
358 17403717321 : trace_xfs_trans_brelse(bip);
359 17403749250 : ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
360 17403749250 : ASSERT(atomic_read(&bip->bli_refcount) > 0);
361 :
362 : /*
363 : * If the release is for a recursive lookup, then decrement the count
364 : * and return.
365 : */
366 17403749250 : if (bip->bli_recur > 0) {
367 799059246 : bip->bli_recur--;
368 799059246 : return;
369 : }
370 :
371 : /*
372 : * If the buffer is invalidated or dirty in this transaction, we can't
373 : * release it until we commit.
374 : */
375 33209380008 : if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags))
376 : return;
377 15066048656 : if (bip->bli_flags & XFS_BLI_STALE)
378 : return;
379 :
380 : /*
381 : * Unlink the log item from the transaction and clear the hold flag, if
382 : * set. We wouldn't want the next user of the buffer to get confused.
383 : */
384 15066048656 : ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
385 15066048656 : xfs_trans_del_item(&bip->bli_item);
386 15075687250 : bip->bli_flags &= ~XFS_BLI_HOLD;
387 :
388 : /* drop the reference to the bli */
389 15075687250 : xfs_buf_item_put(bip);
390 :
391 15075877652 : bp->b_transp = NULL;
392 15075877652 : xfs_buf_relse(bp);
393 : }
394 :
395 : /*
396 : * Mark the buffer as not needing to be unlocked when the buf item's
397 : * iop_committing() routine is called. The buffer must already be locked
398 : * and associated with the given transaction.
399 : */
400 : /* ARGSUSED */
401 : void
402 6045327 : xfs_trans_bhold(
403 : xfs_trans_t *tp,
404 : struct xfs_buf *bp)
405 : {
406 6045327 : struct xfs_buf_log_item *bip = bp->b_log_item;
407 :
408 6045327 : ASSERT(bp->b_transp == tp);
409 6045327 : ASSERT(bip != NULL);
410 6045327 : ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
411 6045327 : ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
412 6045327 : ASSERT(atomic_read(&bip->bli_refcount) > 0);
413 :
414 6045327 : bip->bli_flags |= XFS_BLI_HOLD;
415 6045327 : trace_xfs_trans_bhold(bip);
416 6044535 : }
417 :
418 : /*
419 : * Cancel the previous buffer hold request made on this buffer
420 : * for this transaction.
421 : */
422 : void
423 0 : xfs_trans_bhold_release(
424 : xfs_trans_t *tp,
425 : struct xfs_buf *bp)
426 : {
427 0 : struct xfs_buf_log_item *bip = bp->b_log_item;
428 :
429 0 : ASSERT(bp->b_transp == tp);
430 0 : ASSERT(bip != NULL);
431 0 : ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
432 0 : ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
433 0 : ASSERT(atomic_read(&bip->bli_refcount) > 0);
434 0 : ASSERT(bip->bli_flags & XFS_BLI_HOLD);
435 :
436 0 : bip->bli_flags &= ~XFS_BLI_HOLD;
437 0 : trace_xfs_trans_bhold_release(bip);
438 0 : }
439 :
440 : /*
441 : * Mark a buffer dirty in the transaction.
442 : */
443 : void
444 5471340603 : xfs_trans_dirty_buf(
445 : struct xfs_trans *tp,
446 : struct xfs_buf *bp)
447 : {
448 5471340603 : struct xfs_buf_log_item *bip = bp->b_log_item;
449 :
450 5471340603 : ASSERT(bp->b_transp == tp);
451 5471340603 : ASSERT(bip != NULL);
452 :
453 : /*
454 : * Mark the buffer as needing to be written out eventually,
455 : * and set its iodone function to remove the buffer's buf log
456 : * item from the AIL and free it when the buffer is flushed
457 : * to disk.
458 : */
459 5471340603 : bp->b_flags |= XBF_DONE;
460 :
461 5471340603 : ASSERT(atomic_read(&bip->bli_refcount) > 0);
462 :
463 : /*
464 : * If we invalidated the buffer within this transaction, then
465 : * cancel the invalidation now that we're dirtying the buffer
466 : * again. There are no races with the code in xfs_buf_item_unpin(),
467 : * because we have a reference to the buffer this entire time.
468 : */
469 5471340603 : if (bip->bli_flags & XFS_BLI_STALE) {
470 0 : bip->bli_flags &= ~XFS_BLI_STALE;
471 0 : ASSERT(bp->b_flags & XBF_STALE);
472 0 : bp->b_flags &= ~XBF_STALE;
473 0 : bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
474 : }
475 5471340603 : bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
476 :
477 5471340603 : tp->t_flags |= XFS_TRANS_DIRTY;
478 5471340603 : set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
479 5477915172 : }
480 :
481 : /*
482 : * This is called to mark bytes first through last inclusive of the given
483 : * buffer as needing to be logged when the transaction is committed.
484 : * The buffer must already be associated with the given transaction.
485 : *
486 : * First and last are numbers relative to the beginning of this buffer,
487 : * so the first byte in the buffer is numbered 0 regardless of the
488 : * value of b_blkno.
489 : */
490 : void
491 5467338858 : xfs_trans_log_buf(
492 : struct xfs_trans *tp,
493 : struct xfs_buf *bp,
494 : uint first,
495 : uint last)
496 : {
497 5467338858 : struct xfs_buf_log_item *bip = bp->b_log_item;
498 :
499 5467338858 : ASSERT(first <= last && last < BBTOB(bp->b_length));
500 5467338858 : ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
501 :
502 5467338858 : xfs_trans_dirty_buf(tp, bp);
503 :
504 5473231458 : trace_xfs_trans_log_buf(bip);
505 5472453201 : xfs_buf_item_log(bip, first, last);
506 5470601745 : }
507 :
508 :
509 : /*
510 : * Invalidate a buffer that is being used within a transaction.
511 : *
512 : * Typically this is because the blocks in the buffer are being freed, so we
513 : * need to prevent it from being written out when we're done. Allowing it
514 : * to be written again might overwrite data in the free blocks if they are
515 : * reallocated to a file.
516 : *
517 : * We prevent the buffer from being written out by marking it stale. We can't
518 : * get rid of the buf log item at this point because the buffer may still be
519 : * pinned by another transaction. If that is the case, then we'll wait until
520 : * the buffer is committed to disk for the last time (we can tell by the ref
521 : * count) and free it in xfs_buf_item_unpin(). Until that happens we will
522 : * keep the buffer locked so that the buffer and buf log item are not reused.
523 : *
524 : * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
525 : * the buf item. This will be used at recovery time to determine that copies
526 : * of the buffer in the log before this should not be replayed.
527 : *
528 : * We mark the item descriptor and the transaction dirty so that we'll hold
529 : * the buffer until after the commit.
530 : *
531 : * Since we're invalidating the buffer, we also clear the state about which
532 : * parts of the buffer have been logged. We also clear the flag indicating
533 : * that this is an inode buffer since the data in the buffer will no longer
534 : * be valid.
535 : *
536 : * We set the stale bit in the buffer as well since we're getting rid of it.
537 : */
538 : void
539 20848500 : xfs_trans_binval(
540 : xfs_trans_t *tp,
541 : struct xfs_buf *bp)
542 : {
543 20848500 : struct xfs_buf_log_item *bip = bp->b_log_item;
544 20848500 : int i;
545 :
546 20848500 : ASSERT(bp->b_transp == tp);
547 20848500 : ASSERT(bip != NULL);
548 20848500 : ASSERT(atomic_read(&bip->bli_refcount) > 0);
549 :
550 20848500 : trace_xfs_trans_binval(bip);
551 :
552 20846974 : if (bip->bli_flags & XFS_BLI_STALE) {
553 : /*
554 : * If the buffer is already invalidated, then
555 : * just return.
556 : */
557 0 : ASSERT(bp->b_flags & XBF_STALE);
558 0 : ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
559 0 : ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
560 0 : ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
561 0 : ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
562 0 : ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
563 0 : ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
564 0 : return;
565 : }
566 :
567 20846974 : xfs_buf_stale(bp);
568 :
569 20884261 : bip->bli_flags |= XFS_BLI_STALE;
570 20884261 : bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
571 20884261 : bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
572 20884261 : bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
573 20884261 : bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
574 41765289 : for (i = 0; i < bip->bli_format_count; i++) {
575 41770358 : memset(bip->bli_formats[i].blf_data_map, 0,
576 : (bip->bli_formats[i].blf_map_size * sizeof(uint)));
577 : }
578 20875959 : set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
579 20891254 : tp->t_flags |= XFS_TRANS_DIRTY;
580 : }
581 :
582 : /*
583 : * This call is used to indicate that the buffer contains on-disk inodes which
584 : * must be handled specially during recovery. They require special handling
585 : * because only the di_next_unlinked from the inodes in the buffer should be
586 : * recovered. The rest of the data in the buffer is logged via the inodes
587 : * themselves.
588 : *
589 : * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
590 : * transferred to the buffer's log format structure so that we'll know what to
591 : * do at recovery time.
592 : */
593 : void
594 55240690 : xfs_trans_inode_buf(
595 : xfs_trans_t *tp,
596 : struct xfs_buf *bp)
597 : {
598 55240690 : struct xfs_buf_log_item *bip = bp->b_log_item;
599 :
600 55240690 : ASSERT(bp->b_transp == tp);
601 55240690 : ASSERT(bip != NULL);
602 55240690 : ASSERT(atomic_read(&bip->bli_refcount) > 0);
603 :
604 55240690 : bip->bli_flags |= XFS_BLI_INODE_BUF;
605 55240690 : bp->b_flags |= _XBF_INODES;
606 55240690 : xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
607 55234850 : }
608 :
609 : /*
610 : * This call is used to indicate that the buffer is going to
611 : * be staled and was an inode buffer. This means it gets
612 : * special processing during unpin - where any inodes
613 : * associated with the buffer should be removed from ail.
614 : * There is also special processing during recovery,
615 : * any replay of the inodes in the buffer needs to be
616 : * prevented as the buffer may have been reused.
617 : */
618 : void
619 647148 : xfs_trans_stale_inode_buf(
620 : xfs_trans_t *tp,
621 : struct xfs_buf *bp)
622 : {
623 647148 : struct xfs_buf_log_item *bip = bp->b_log_item;
624 :
625 647148 : ASSERT(bp->b_transp == tp);
626 647148 : ASSERT(bip != NULL);
627 647148 : ASSERT(atomic_read(&bip->bli_refcount) > 0);
628 :
629 647148 : bip->bli_flags |= XFS_BLI_STALE_INODE;
630 647148 : bp->b_flags |= _XBF_INODES;
631 647148 : xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
632 647148 : }
633 :
634 : /*
635 : * Mark the buffer as being one which contains newly allocated
636 : * inodes. We need to make sure that even if this buffer is
637 : * relogged as an 'inode buf' we still recover all of the inode
638 : * images in the face of a crash. This works in coordination with
639 : * xfs_buf_item_committed() to ensure that the buffer remains in the
640 : * AIL at its original location even after it has been relogged.
641 : */
642 : /* ARGSUSED */
643 : void
644 1518825 : xfs_trans_inode_alloc_buf(
645 : xfs_trans_t *tp,
646 : struct xfs_buf *bp)
647 : {
648 1518825 : struct xfs_buf_log_item *bip = bp->b_log_item;
649 :
650 1518825 : ASSERT(bp->b_transp == tp);
651 1518825 : ASSERT(bip != NULL);
652 1518825 : ASSERT(atomic_read(&bip->bli_refcount) > 0);
653 :
654 1518825 : bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
655 1518825 : bp->b_flags |= _XBF_INODES;
656 1518825 : xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
657 1518814 : }
658 :
659 : /*
660 : * Mark the buffer as ordered for this transaction. This means that the contents
661 : * of the buffer are not recorded in the transaction but it is tracked in the
662 : * AIL as though it was. This allows us to record logical changes in
663 : * transactions rather than the physical changes we make to the buffer without
664 : * changing writeback ordering constraints of metadata buffers.
665 : */
666 : bool
667 1596332 : xfs_trans_ordered_buf(
668 : struct xfs_trans *tp,
669 : struct xfs_buf *bp)
670 : {
671 1596332 : struct xfs_buf_log_item *bip = bp->b_log_item;
672 :
673 1596332 : ASSERT(bp->b_transp == tp);
674 1596332 : ASSERT(bip != NULL);
675 1596332 : ASSERT(atomic_read(&bip->bli_refcount) > 0);
676 :
677 1596332 : if (xfs_buf_item_dirty_format(bip))
678 : return false;
679 :
680 1592371 : bip->bli_flags |= XFS_BLI_ORDERED;
681 1592371 : trace_xfs_buf_item_ordered(bip);
682 :
683 : /*
684 : * We don't log a dirty range of an ordered buffer but it still needs
685 : * to be marked dirty and that it has been logged.
686 : */
687 1592150 : xfs_trans_dirty_buf(tp, bp);
688 1592150 : return true;
689 : }
690 :
691 : /*
692 : * Set the type of the buffer for log recovery so that it can correctly identify
693 : * and hence attach the correct buffer ops to the buffer after replay.
694 : */
695 : void
696 10456078414 : xfs_trans_buf_set_type(
697 : struct xfs_trans *tp,
698 : struct xfs_buf *bp,
699 : enum xfs_blft type)
700 : {
701 10456078414 : struct xfs_buf_log_item *bip = bp->b_log_item;
702 :
703 10456078414 : if (!tp)
704 : return;
705 :
706 10300550789 : ASSERT(bp->b_transp == tp);
707 10300550789 : ASSERT(bip != NULL);
708 10300550789 : ASSERT(atomic_read(&bip->bli_refcount) > 0);
709 :
710 10300550789 : xfs_blft_to_flags(&bip->__bli_format, type);
711 : }
712 :
713 : void
714 16346 : xfs_trans_buf_copy_type(
715 : struct xfs_buf *dst_bp,
716 : struct xfs_buf *src_bp)
717 : {
718 16346 : struct xfs_buf_log_item *sbip = src_bp->b_log_item;
719 16346 : struct xfs_buf_log_item *dbip = dst_bp->b_log_item;
720 16346 : enum xfs_blft type;
721 :
722 16346 : type = xfs_blft_from_flags(&sbip->__bli_format);
723 16346 : xfs_blft_to_flags(&dbip->__bli_format, type);
724 16347 : }
725 :
726 : /*
727 : * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
728 : * dquots. However, unlike in inode buffer recovery, dquot buffers get
729 : * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
730 : * The only thing that makes dquot buffers different from regular
731 : * buffers is that we must not replay dquot bufs when recovering
732 : * if a _corresponding_ quotaoff has happened. We also have to distinguish
733 : * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
734 : * can be turned off independently.
735 : */
736 : /* ARGSUSED */
737 : void
738 2295930 : xfs_trans_dquot_buf(
739 : xfs_trans_t *tp,
740 : struct xfs_buf *bp,
741 : uint type)
742 : {
743 2295930 : struct xfs_buf_log_item *bip = bp->b_log_item;
744 :
745 2295930 : ASSERT(type == XFS_BLF_UDQUOT_BUF ||
746 : type == XFS_BLF_PDQUOT_BUF ||
747 : type == XFS_BLF_GDQUOT_BUF);
748 :
749 2295930 : bip->__bli_format.blf_flags |= type;
750 :
751 2295930 : switch (type) {
752 : case XFS_BLF_UDQUOT_BUF:
753 : type = XFS_BLFT_UDQUOT_BUF;
754 : break;
755 : case XFS_BLF_PDQUOT_BUF:
756 : type = XFS_BLFT_PDQUOT_BUF;
757 : break;
758 : case XFS_BLF_GDQUOT_BUF:
759 : type = XFS_BLFT_GDQUOT_BUF;
760 : break;
761 : default:
762 : type = XFS_BLFT_UNKNOWN_BUF;
763 : break;
764 : }
765 :
766 2295930 : bp->b_flags |= _XBF_DQUOTS;
767 2295930 : xfs_trans_buf_set_type(tp, bp, type);
768 2296082 : }
|