Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0 */
2 : #ifndef _LINUX_RCULIST_H
3 : #define _LINUX_RCULIST_H
4 :
5 : #ifdef __KERNEL__
6 :
7 : /*
8 : * RCU-protected list version
9 : */
10 : #include <linux/list.h>
11 : #include <linux/rcupdate.h>
12 :
13 : /*
14 : * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers
15 : * @list: list to be initialized
16 : *
17 : * You should instead use INIT_LIST_HEAD() for normal initialization and
18 : * cleanup tasks, when readers have no access to the list being initialized.
19 : * However, if the list being initialized is visible to readers, you
20 : * need to keep the compiler from being too mischievous.
21 : */
22 : static inline void INIT_LIST_HEAD_RCU(struct list_head *list)
23 : {
24 0 : WRITE_ONCE(list->next, list);
25 0 : WRITE_ONCE(list->prev, list);
26 : }
27 :
28 : /*
29 : * return the ->next pointer of a list_head in an rcu safe
30 : * way, we must not access it directly
31 : */
32 : #define list_next_rcu(list) (*((struct list_head __rcu **)(&(list)->next)))
33 :
34 : /**
35 : * list_tail_rcu - returns the prev pointer of the head of the list
36 : * @head: the head of the list
37 : *
38 : * Note: This should only be used with the list header, and even then
39 : * only if list_del() and similar primitives are not also used on the
40 : * list header.
41 : */
42 : #define list_tail_rcu(head) (*((struct list_head __rcu **)(&(head)->prev)))
43 :
44 : /*
45 : * Check during list traversal that we are within an RCU reader
46 : */
47 :
48 : #define check_arg_count_one(dummy)
49 :
50 : #ifdef CONFIG_PROVE_RCU_LIST
51 : #define __list_check_rcu(dummy, cond, extra...) \
52 : ({ \
53 : check_arg_count_one(extra); \
54 : RCU_LOCKDEP_WARN(!(cond) && !rcu_read_lock_any_held(), \
55 : "RCU-list traversed in non-reader section!"); \
56 : })
57 :
58 : #define __list_check_srcu(cond) \
59 : ({ \
60 : RCU_LOCKDEP_WARN(!(cond), \
61 : "RCU-list traversed without holding the required lock!");\
62 : })
63 : #else
64 : #define __list_check_rcu(dummy, cond, extra...) \
65 : ({ check_arg_count_one(extra); })
66 :
67 : #define __list_check_srcu(cond) ({ })
68 : #endif
69 :
70 : /*
71 : * Insert a new entry between two known consecutive entries.
72 : *
73 : * This is only for internal list manipulation where we know
74 : * the prev/next entries already!
75 : */
76 275309 : static inline void __list_add_rcu(struct list_head *new,
77 : struct list_head *prev, struct list_head *next)
78 : {
79 275309 : if (!__list_add_valid(new, prev, next))
80 : return;
81 :
82 275309 : new->next = next;
83 275309 : new->prev = prev;
84 275309 : rcu_assign_pointer(list_next_rcu(prev), new);
85 275309 : next->prev = new;
86 : }
87 :
88 : /**
89 : * list_add_rcu - add a new entry to rcu-protected list
90 : * @new: new entry to be added
91 : * @head: list head to add it after
92 : *
93 : * Insert a new entry after the specified head.
94 : * This is good for implementing stacks.
95 : *
96 : * The caller must take whatever precautions are necessary
97 : * (such as holding appropriate locks) to avoid racing
98 : * with another list-mutation primitive, such as list_add_rcu()
99 : * or list_del_rcu(), running on this same list.
100 : * However, it is perfectly legal to run concurrently with
101 : * the _rcu list-traversal primitives, such as
102 : * list_for_each_entry_rcu().
103 : */
104 : static inline void list_add_rcu(struct list_head *new, struct list_head *head)
105 : {
106 5054 : __list_add_rcu(new, head, head->next);
107 : }
108 :
109 : /**
110 : * list_add_tail_rcu - add a new entry to rcu-protected list
111 : * @new: new entry to be added
112 : * @head: list head to add it before
113 : *
114 : * Insert a new entry before the specified head.
115 : * This is useful for implementing queues.
116 : *
117 : * The caller must take whatever precautions are necessary
118 : * (such as holding appropriate locks) to avoid racing
119 : * with another list-mutation primitive, such as list_add_tail_rcu()
120 : * or list_del_rcu(), running on this same list.
121 : * However, it is perfectly legal to run concurrently with
122 : * the _rcu list-traversal primitives, such as
123 : * list_for_each_entry_rcu().
124 : */
125 : static inline void list_add_tail_rcu(struct list_head *new,
126 : struct list_head *head)
127 : {
128 270255 : __list_add_rcu(new, head->prev, head);
129 270243 : }
130 :
131 : /**
132 : * list_del_rcu - deletes entry from list without re-initialization
133 : * @entry: the element to delete from the list.
134 : *
135 : * Note: list_empty() on entry does not return true after this,
136 : * the entry is in an undefined state. It is useful for RCU based
137 : * lockfree traversal.
138 : *
139 : * In particular, it means that we can not poison the forward
140 : * pointers that may still be used for walking the list.
141 : *
142 : * The caller must take whatever precautions are necessary
143 : * (such as holding appropriate locks) to avoid racing
144 : * with another list-mutation primitive, such as list_del_rcu()
145 : * or list_add_rcu(), running on this same list.
146 : * However, it is perfectly legal to run concurrently with
147 : * the _rcu list-traversal primitives, such as
148 : * list_for_each_entry_rcu().
149 : *
150 : * Note that the caller is not permitted to immediately free
151 : * the newly deleted entry. Instead, either synchronize_rcu()
152 : * or call_rcu() must be used to defer freeing until an RCU
153 : * grace period has elapsed.
154 : */
155 : static inline void list_del_rcu(struct list_head *entry)
156 : {
157 272955 : __list_del_entry(entry);
158 272955 : entry->prev = LIST_POISON2;
159 : }
160 :
161 : /**
162 : * hlist_del_init_rcu - deletes entry from hash list with re-initialization
163 : * @n: the element to delete from the hash list.
164 : *
165 : * Note: list_unhashed() on the node return true after this. It is
166 : * useful for RCU based read lockfree traversal if the writer side
167 : * must know if the list entry is still hashed or already unhashed.
168 : *
169 : * In particular, it means that we can not poison the forward pointers
170 : * that may still be used for walking the hash list and we can only
171 : * zero the pprev pointer so list_unhashed() will return true after
172 : * this.
173 : *
174 : * The caller must take whatever precautions are necessary (such as
175 : * holding appropriate locks) to avoid racing with another
176 : * list-mutation primitive, such as hlist_add_head_rcu() or
177 : * hlist_del_rcu(), running on this same list. However, it is
178 : * perfectly legal to run concurrently with the _rcu list-traversal
179 : * primitives, such as hlist_for_each_entry_rcu().
180 : */
181 : static inline void hlist_del_init_rcu(struct hlist_node *n)
182 : {
183 14193081 : if (!hlist_unhashed(n)) {
184 14193081 : __hlist_del(n);
185 14193081 : WRITE_ONCE(n->pprev, NULL);
186 : }
187 : }
188 :
189 : /**
190 : * list_replace_rcu - replace old entry by new one
191 : * @old : the element to be replaced
192 : * @new : the new element to insert
193 : *
194 : * The @old entry will be replaced with the @new entry atomically.
195 : * Note: @old should not be empty.
196 : */
197 : static inline void list_replace_rcu(struct list_head *old,
198 : struct list_head *new)
199 : {
200 0 : new->next = old->next;
201 0 : new->prev = old->prev;
202 0 : rcu_assign_pointer(list_next_rcu(new->prev), new);
203 0 : new->next->prev = new;
204 0 : old->prev = LIST_POISON2;
205 : }
206 :
207 : /**
208 : * __list_splice_init_rcu - join an RCU-protected list into an existing list.
209 : * @list: the RCU-protected list to splice
210 : * @prev: points to the last element of the existing list
211 : * @next: points to the first element of the existing list
212 : * @sync: synchronize_rcu, synchronize_rcu_expedited, ...
213 : *
214 : * The list pointed to by @prev and @next can be RCU-read traversed
215 : * concurrently with this function.
216 : *
217 : * Note that this function blocks.
218 : *
219 : * Important note: the caller must take whatever action is necessary to prevent
220 : * any other updates to the existing list. In principle, it is possible to
221 : * modify the list as soon as sync() begins execution. If this sort of thing
222 : * becomes necessary, an alternative version based on call_rcu() could be
223 : * created. But only if -really- needed -- there is no shortage of RCU API
224 : * members.
225 : */
226 : static inline void __list_splice_init_rcu(struct list_head *list,
227 : struct list_head *prev,
228 : struct list_head *next,
229 : void (*sync)(void))
230 : {
231 0 : struct list_head *first = list->next;
232 0 : struct list_head *last = list->prev;
233 :
234 : /*
235 : * "first" and "last" tracking list, so initialize it. RCU readers
236 : * have access to this list, so we must use INIT_LIST_HEAD_RCU()
237 : * instead of INIT_LIST_HEAD().
238 : */
239 :
240 0 : INIT_LIST_HEAD_RCU(list);
241 :
242 : /*
243 : * At this point, the list body still points to the source list.
244 : * Wait for any readers to finish using the list before splicing
245 : * the list body into the new list. Any new readers will see
246 : * an empty list.
247 : */
248 :
249 0 : sync();
250 0 : ASSERT_EXCLUSIVE_ACCESS(*first);
251 0 : ASSERT_EXCLUSIVE_ACCESS(*last);
252 :
253 : /*
254 : * Readers are finished with the source list, so perform splice.
255 : * The order is important if the new list is global and accessible
256 : * to concurrent RCU readers. Note that RCU readers are not
257 : * permitted to traverse the prev pointers without excluding
258 : * this function.
259 : */
260 :
261 0 : last->next = next;
262 0 : rcu_assign_pointer(list_next_rcu(prev), first);
263 0 : first->prev = prev;
264 0 : next->prev = last;
265 0 : }
266 :
267 : /**
268 : * list_splice_init_rcu - splice an RCU-protected list into an existing list,
269 : * designed for stacks.
270 : * @list: the RCU-protected list to splice
271 : * @head: the place in the existing list to splice the first list into
272 : * @sync: synchronize_rcu, synchronize_rcu_expedited, ...
273 : */
274 0 : static inline void list_splice_init_rcu(struct list_head *list,
275 : struct list_head *head,
276 : void (*sync)(void))
277 : {
278 0 : if (!list_empty(list))
279 0 : __list_splice_init_rcu(list, head, head->next, sync);
280 0 : }
281 :
282 : /**
283 : * list_splice_tail_init_rcu - splice an RCU-protected list into an existing
284 : * list, designed for queues.
285 : * @list: the RCU-protected list to splice
286 : * @head: the place in the existing list to splice the first list into
287 : * @sync: synchronize_rcu, synchronize_rcu_expedited, ...
288 : */
289 : static inline void list_splice_tail_init_rcu(struct list_head *list,
290 : struct list_head *head,
291 : void (*sync)(void))
292 : {
293 : if (!list_empty(list))
294 : __list_splice_init_rcu(list, head->prev, head, sync);
295 : }
296 :
297 : /**
298 : * list_entry_rcu - get the struct for this entry
299 : * @ptr: the &struct list_head pointer.
300 : * @type: the type of the struct this is embedded in.
301 : * @member: the name of the list_head within the struct.
302 : *
303 : * This primitive may safely run concurrently with the _rcu list-mutation
304 : * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
305 : */
306 : #define list_entry_rcu(ptr, type, member) \
307 : container_of(READ_ONCE(ptr), type, member)
308 :
309 : /*
310 : * Where are list_empty_rcu() and list_first_entry_rcu()?
311 : *
312 : * They do not exist because they would lead to subtle race conditions:
313 : *
314 : * if (!list_empty_rcu(mylist)) {
315 : * struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member);
316 : * do_something(bar);
317 : * }
318 : *
319 : * The list might be non-empty when list_empty_rcu() checks it, but it
320 : * might have become empty by the time that list_first_entry_rcu() rereads
321 : * the ->next pointer, which would result in a SEGV.
322 : *
323 : * When not using RCU, it is OK for list_first_entry() to re-read that
324 : * pointer because both functions should be protected by some lock that
325 : * blocks writers.
326 : *
327 : * When using RCU, list_empty() uses READ_ONCE() to fetch the
328 : * RCU-protected ->next pointer and then compares it to the address of the
329 : * list head. However, it neither dereferences this pointer nor provides
330 : * this pointer to its caller. Thus, READ_ONCE() suffices (that is,
331 : * rcu_dereference() is not needed), which means that list_empty() can be
332 : * used anywhere you would want to use list_empty_rcu(). Just don't
333 : * expect anything useful to happen if you do a subsequent lockless
334 : * call to list_first_entry_rcu()!!!
335 : *
336 : * See list_first_or_null_rcu for an alternative.
337 : */
338 :
339 : /**
340 : * list_first_or_null_rcu - get the first element from a list
341 : * @ptr: the list head to take the element from.
342 : * @type: the type of the struct this is embedded in.
343 : * @member: the name of the list_head within the struct.
344 : *
345 : * Note that if the list is empty, it returns NULL.
346 : *
347 : * This primitive may safely run concurrently with the _rcu list-mutation
348 : * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
349 : */
350 : #define list_first_or_null_rcu(ptr, type, member) \
351 : ({ \
352 : struct list_head *__ptr = (ptr); \
353 : struct list_head *__next = READ_ONCE(__ptr->next); \
354 : likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \
355 : })
356 :
357 : /**
358 : * list_next_or_null_rcu - get the first element from a list
359 : * @head: the head for the list.
360 : * @ptr: the list head to take the next element from.
361 : * @type: the type of the struct this is embedded in.
362 : * @member: the name of the list_head within the struct.
363 : *
364 : * Note that if the ptr is at the end of the list, NULL is returned.
365 : *
366 : * This primitive may safely run concurrently with the _rcu list-mutation
367 : * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
368 : */
369 : #define list_next_or_null_rcu(head, ptr, type, member) \
370 : ({ \
371 : struct list_head *__head = (head); \
372 : struct list_head *__ptr = (ptr); \
373 : struct list_head *__next = READ_ONCE(__ptr->next); \
374 : likely(__next != __head) ? list_entry_rcu(__next, type, \
375 : member) : NULL; \
376 : })
377 :
378 : /**
379 : * list_for_each_entry_rcu - iterate over rcu list of given type
380 : * @pos: the type * to use as a loop cursor.
381 : * @head: the head for your list.
382 : * @member: the name of the list_head within the struct.
383 : * @cond: optional lockdep expression if called from non-RCU protection.
384 : *
385 : * This list-traversal primitive may safely run concurrently with
386 : * the _rcu list-mutation primitives such as list_add_rcu()
387 : * as long as the traversal is guarded by rcu_read_lock().
388 : */
389 : #define list_for_each_entry_rcu(pos, head, member, cond...) \
390 : for (__list_check_rcu(dummy, ## cond, 0), \
391 : pos = list_entry_rcu((head)->next, typeof(*pos), member); \
392 : &pos->member != (head); \
393 : pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
394 :
395 : /**
396 : * list_for_each_entry_srcu - iterate over rcu list of given type
397 : * @pos: the type * to use as a loop cursor.
398 : * @head: the head for your list.
399 : * @member: the name of the list_head within the struct.
400 : * @cond: lockdep expression for the lock required to traverse the list.
401 : *
402 : * This list-traversal primitive may safely run concurrently with
403 : * the _rcu list-mutation primitives such as list_add_rcu()
404 : * as long as the traversal is guarded by srcu_read_lock().
405 : * The lockdep expression srcu_read_lock_held() can be passed as the
406 : * cond argument from read side.
407 : */
408 : #define list_for_each_entry_srcu(pos, head, member, cond) \
409 : for (__list_check_srcu(cond), \
410 : pos = list_entry_rcu((head)->next, typeof(*pos), member); \
411 : &pos->member != (head); \
412 : pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
413 :
414 : /**
415 : * list_entry_lockless - get the struct for this entry
416 : * @ptr: the &struct list_head pointer.
417 : * @type: the type of the struct this is embedded in.
418 : * @member: the name of the list_head within the struct.
419 : *
420 : * This primitive may safely run concurrently with the _rcu
421 : * list-mutation primitives such as list_add_rcu(), but requires some
422 : * implicit RCU read-side guarding. One example is running within a special
423 : * exception-time environment where preemption is disabled and where lockdep
424 : * cannot be invoked. Another example is when items are added to the list,
425 : * but never deleted.
426 : */
427 : #define list_entry_lockless(ptr, type, member) \
428 : container_of((typeof(ptr))READ_ONCE(ptr), type, member)
429 :
430 : /**
431 : * list_for_each_entry_lockless - iterate over rcu list of given type
432 : * @pos: the type * to use as a loop cursor.
433 : * @head: the head for your list.
434 : * @member: the name of the list_struct within the struct.
435 : *
436 : * This primitive may safely run concurrently with the _rcu
437 : * list-mutation primitives such as list_add_rcu(), but requires some
438 : * implicit RCU read-side guarding. One example is running within a special
439 : * exception-time environment where preemption is disabled and where lockdep
440 : * cannot be invoked. Another example is when items are added to the list,
441 : * but never deleted.
442 : */
443 : #define list_for_each_entry_lockless(pos, head, member) \
444 : for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \
445 : &pos->member != (head); \
446 : pos = list_entry_lockless(pos->member.next, typeof(*pos), member))
447 :
448 : /**
449 : * list_for_each_entry_continue_rcu - continue iteration over list of given type
450 : * @pos: the type * to use as a loop cursor.
451 : * @head: the head for your list.
452 : * @member: the name of the list_head within the struct.
453 : *
454 : * Continue to iterate over list of given type, continuing after
455 : * the current position which must have been in the list when the RCU read
456 : * lock was taken.
457 : * This would typically require either that you obtained the node from a
458 : * previous walk of the list in the same RCU read-side critical section, or
459 : * that you held some sort of non-RCU reference (such as a reference count)
460 : * to keep the node alive *and* in the list.
461 : *
462 : * This iterator is similar to list_for_each_entry_from_rcu() except
463 : * this starts after the given position and that one starts at the given
464 : * position.
465 : */
466 : #define list_for_each_entry_continue_rcu(pos, head, member) \
467 : for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
468 : &pos->member != (head); \
469 : pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
470 :
471 : /**
472 : * list_for_each_entry_from_rcu - iterate over a list from current point
473 : * @pos: the type * to use as a loop cursor.
474 : * @head: the head for your list.
475 : * @member: the name of the list_node within the struct.
476 : *
477 : * Iterate over the tail of a list starting from a given position,
478 : * which must have been in the list when the RCU read lock was taken.
479 : * This would typically require either that you obtained the node from a
480 : * previous walk of the list in the same RCU read-side critical section, or
481 : * that you held some sort of non-RCU reference (such as a reference count)
482 : * to keep the node alive *and* in the list.
483 : *
484 : * This iterator is similar to list_for_each_entry_continue_rcu() except
485 : * this starts from the given position and that one starts from the position
486 : * after the given position.
487 : */
488 : #define list_for_each_entry_from_rcu(pos, head, member) \
489 : for (; &(pos)->member != (head); \
490 : pos = list_entry_rcu(pos->member.next, typeof(*(pos)), member))
491 :
492 : /**
493 : * hlist_del_rcu - deletes entry from hash list without re-initialization
494 : * @n: the element to delete from the hash list.
495 : *
496 : * Note: list_unhashed() on entry does not return true after this,
497 : * the entry is in an undefined state. It is useful for RCU based
498 : * lockfree traversal.
499 : *
500 : * In particular, it means that we can not poison the forward
501 : * pointers that may still be used for walking the hash list.
502 : *
503 : * The caller must take whatever precautions are necessary
504 : * (such as holding appropriate locks) to avoid racing
505 : * with another list-mutation primitive, such as hlist_add_head_rcu()
506 : * or hlist_del_rcu(), running on this same list.
507 : * However, it is perfectly legal to run concurrently with
508 : * the _rcu list-traversal primitives, such as
509 : * hlist_for_each_entry().
510 : */
511 : static inline void hlist_del_rcu(struct hlist_node *n)
512 : {
513 1745089 : __hlist_del(n);
514 1745089 : WRITE_ONCE(n->pprev, LIST_POISON2);
515 : }
516 :
517 : /**
518 : * hlist_replace_rcu - replace old entry by new one
519 : * @old : the element to be replaced
520 : * @new : the new element to insert
521 : *
522 : * The @old entry will be replaced with the @new entry atomically.
523 : */
524 : static inline void hlist_replace_rcu(struct hlist_node *old,
525 : struct hlist_node *new)
526 : {
527 : struct hlist_node *next = old->next;
528 :
529 : new->next = next;
530 : WRITE_ONCE(new->pprev, old->pprev);
531 : rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new);
532 : if (next)
533 : WRITE_ONCE(new->next->pprev, &new->next);
534 : WRITE_ONCE(old->pprev, LIST_POISON2);
535 : }
536 :
537 : /**
538 : * hlists_swap_heads_rcu - swap the lists the hlist heads point to
539 : * @left: The hlist head on the left
540 : * @right: The hlist head on the right
541 : *
542 : * The lists start out as [@left ][node1 ... ] and
543 : * [@right ][node2 ... ]
544 : * The lists end up as [@left ][node2 ... ]
545 : * [@right ][node1 ... ]
546 : */
547 : static inline void hlists_swap_heads_rcu(struct hlist_head *left, struct hlist_head *right)
548 : {
549 : struct hlist_node *node1 = left->first;
550 : struct hlist_node *node2 = right->first;
551 :
552 : rcu_assign_pointer(left->first, node2);
553 : rcu_assign_pointer(right->first, node1);
554 : WRITE_ONCE(node2->pprev, &left->first);
555 : WRITE_ONCE(node1->pprev, &right->first);
556 : }
557 :
558 : /*
559 : * return the first or the next element in an RCU protected hlist
560 : */
561 : #define hlist_first_rcu(head) (*((struct hlist_node __rcu **)(&(head)->first)))
562 : #define hlist_next_rcu(node) (*((struct hlist_node __rcu **)(&(node)->next)))
563 : #define hlist_pprev_rcu(node) (*((struct hlist_node __rcu **)((node)->pprev)))
564 :
565 : /**
566 : * hlist_add_head_rcu
567 : * @n: the element to add to the hash list.
568 : * @h: the list to add to.
569 : *
570 : * Description:
571 : * Adds the specified element to the specified hlist,
572 : * while permitting racing traversals.
573 : *
574 : * The caller must take whatever precautions are necessary
575 : * (such as holding appropriate locks) to avoid racing
576 : * with another list-mutation primitive, such as hlist_add_head_rcu()
577 : * or hlist_del_rcu(), running on this same list.
578 : * However, it is perfectly legal to run concurrently with
579 : * the _rcu list-traversal primitives, such as
580 : * hlist_for_each_entry_rcu(), used to prevent memory-consistency
581 : * problems on Alpha CPUs. Regardless of the type of CPU, the
582 : * list-traversal primitive must be guarded by rcu_read_lock().
583 : */
584 : static inline void hlist_add_head_rcu(struct hlist_node *n,
585 : struct hlist_head *h)
586 : {
587 15766459 : struct hlist_node *first = h->first;
588 :
589 15766459 : n->next = first;
590 15766459 : WRITE_ONCE(n->pprev, &h->first);
591 15766459 : rcu_assign_pointer(hlist_first_rcu(h), n);
592 15766444 : if (first)
593 15766444 : WRITE_ONCE(first->pprev, &n->next);
594 : }
595 :
596 : /**
597 : * hlist_add_tail_rcu
598 : * @n: the element to add to the hash list.
599 : * @h: the list to add to.
600 : *
601 : * Description:
602 : * Adds the specified element to the specified hlist,
603 : * while permitting racing traversals.
604 : *
605 : * The caller must take whatever precautions are necessary
606 : * (such as holding appropriate locks) to avoid racing
607 : * with another list-mutation primitive, such as hlist_add_head_rcu()
608 : * or hlist_del_rcu(), running on this same list.
609 : * However, it is perfectly legal to run concurrently with
610 : * the _rcu list-traversal primitives, such as
611 : * hlist_for_each_entry_rcu(), used to prevent memory-consistency
612 : * problems on Alpha CPUs. Regardless of the type of CPU, the
613 : * list-traversal primitive must be guarded by rcu_read_lock().
614 : */
615 : static inline void hlist_add_tail_rcu(struct hlist_node *n,
616 : struct hlist_head *h)
617 : {
618 : struct hlist_node *i, *last = NULL;
619 :
620 : /* Note: write side code, so rcu accessors are not needed. */
621 : for (i = h->first; i; i = i->next)
622 : last = i;
623 :
624 : if (last) {
625 : n->next = last->next;
626 : WRITE_ONCE(n->pprev, &last->next);
627 : rcu_assign_pointer(hlist_next_rcu(last), n);
628 : } else {
629 : hlist_add_head_rcu(n, h);
630 : }
631 : }
632 :
633 : /**
634 : * hlist_add_before_rcu
635 : * @n: the new element to add to the hash list.
636 : * @next: the existing element to add the new element before.
637 : *
638 : * Description:
639 : * Adds the specified element to the specified hlist
640 : * before the specified node while permitting racing traversals.
641 : *
642 : * The caller must take whatever precautions are necessary
643 : * (such as holding appropriate locks) to avoid racing
644 : * with another list-mutation primitive, such as hlist_add_head_rcu()
645 : * or hlist_del_rcu(), running on this same list.
646 : * However, it is perfectly legal to run concurrently with
647 : * the _rcu list-traversal primitives, such as
648 : * hlist_for_each_entry_rcu(), used to prevent memory-consistency
649 : * problems on Alpha CPUs.
650 : */
651 : static inline void hlist_add_before_rcu(struct hlist_node *n,
652 : struct hlist_node *next)
653 : {
654 : WRITE_ONCE(n->pprev, next->pprev);
655 : n->next = next;
656 : rcu_assign_pointer(hlist_pprev_rcu(n), n);
657 : WRITE_ONCE(next->pprev, &n->next);
658 : }
659 :
660 : /**
661 : * hlist_add_behind_rcu
662 : * @n: the new element to add to the hash list.
663 : * @prev: the existing element to add the new element after.
664 : *
665 : * Description:
666 : * Adds the specified element to the specified hlist
667 : * after the specified node while permitting racing traversals.
668 : *
669 : * The caller must take whatever precautions are necessary
670 : * (such as holding appropriate locks) to avoid racing
671 : * with another list-mutation primitive, such as hlist_add_head_rcu()
672 : * or hlist_del_rcu(), running on this same list.
673 : * However, it is perfectly legal to run concurrently with
674 : * the _rcu list-traversal primitives, such as
675 : * hlist_for_each_entry_rcu(), used to prevent memory-consistency
676 : * problems on Alpha CPUs.
677 : */
678 : static inline void hlist_add_behind_rcu(struct hlist_node *n,
679 : struct hlist_node *prev)
680 : {
681 : n->next = prev->next;
682 : WRITE_ONCE(n->pprev, &prev->next);
683 : rcu_assign_pointer(hlist_next_rcu(prev), n);
684 : if (n->next)
685 : WRITE_ONCE(n->next->pprev, &n->next);
686 : }
687 :
688 : #define __hlist_for_each_rcu(pos, head) \
689 : for (pos = rcu_dereference(hlist_first_rcu(head)); \
690 : pos; \
691 : pos = rcu_dereference(hlist_next_rcu(pos)))
692 :
693 : /**
694 : * hlist_for_each_entry_rcu - iterate over rcu list of given type
695 : * @pos: the type * to use as a loop cursor.
696 : * @head: the head for your list.
697 : * @member: the name of the hlist_node within the struct.
698 : * @cond: optional lockdep expression if called from non-RCU protection.
699 : *
700 : * This list-traversal primitive may safely run concurrently with
701 : * the _rcu list-mutation primitives such as hlist_add_head_rcu()
702 : * as long as the traversal is guarded by rcu_read_lock().
703 : */
704 : #define hlist_for_each_entry_rcu(pos, head, member, cond...) \
705 : for (__list_check_rcu(dummy, ## cond, 0), \
706 : pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\
707 : typeof(*(pos)), member); \
708 : pos; \
709 : pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
710 : &(pos)->member)), typeof(*(pos)), member))
711 :
712 : /**
713 : * hlist_for_each_entry_srcu - iterate over rcu list of given type
714 : * @pos: the type * to use as a loop cursor.
715 : * @head: the head for your list.
716 : * @member: the name of the hlist_node within the struct.
717 : * @cond: lockdep expression for the lock required to traverse the list.
718 : *
719 : * This list-traversal primitive may safely run concurrently with
720 : * the _rcu list-mutation primitives such as hlist_add_head_rcu()
721 : * as long as the traversal is guarded by srcu_read_lock().
722 : * The lockdep expression srcu_read_lock_held() can be passed as the
723 : * cond argument from read side.
724 : */
725 : #define hlist_for_each_entry_srcu(pos, head, member, cond) \
726 : for (__list_check_srcu(cond), \
727 : pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\
728 : typeof(*(pos)), member); \
729 : pos; \
730 : pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
731 : &(pos)->member)), typeof(*(pos)), member))
732 :
733 : /**
734 : * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing)
735 : * @pos: the type * to use as a loop cursor.
736 : * @head: the head for your list.
737 : * @member: the name of the hlist_node within the struct.
738 : *
739 : * This list-traversal primitive may safely run concurrently with
740 : * the _rcu list-mutation primitives such as hlist_add_head_rcu()
741 : * as long as the traversal is guarded by rcu_read_lock().
742 : *
743 : * This is the same as hlist_for_each_entry_rcu() except that it does
744 : * not do any RCU debugging or tracing.
745 : */
746 : #define hlist_for_each_entry_rcu_notrace(pos, head, member) \
747 : for (pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_first_rcu(head)),\
748 : typeof(*(pos)), member); \
749 : pos; \
750 : pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_next_rcu(\
751 : &(pos)->member)), typeof(*(pos)), member))
752 :
753 : /**
754 : * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
755 : * @pos: the type * to use as a loop cursor.
756 : * @head: the head for your list.
757 : * @member: the name of the hlist_node within the struct.
758 : *
759 : * This list-traversal primitive may safely run concurrently with
760 : * the _rcu list-mutation primitives such as hlist_add_head_rcu()
761 : * as long as the traversal is guarded by rcu_read_lock().
762 : */
763 : #define hlist_for_each_entry_rcu_bh(pos, head, member) \
764 : for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\
765 : typeof(*(pos)), member); \
766 : pos; \
767 : pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\
768 : &(pos)->member)), typeof(*(pos)), member))
769 :
770 : /**
771 : * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
772 : * @pos: the type * to use as a loop cursor.
773 : * @member: the name of the hlist_node within the struct.
774 : */
775 : #define hlist_for_each_entry_continue_rcu(pos, member) \
776 : for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
777 : &(pos)->member)), typeof(*(pos)), member); \
778 : pos; \
779 : pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
780 : &(pos)->member)), typeof(*(pos)), member))
781 :
782 : /**
783 : * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
784 : * @pos: the type * to use as a loop cursor.
785 : * @member: the name of the hlist_node within the struct.
786 : */
787 : #define hlist_for_each_entry_continue_rcu_bh(pos, member) \
788 : for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \
789 : &(pos)->member)), typeof(*(pos)), member); \
790 : pos; \
791 : pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \
792 : &(pos)->member)), typeof(*(pos)), member))
793 :
794 : /**
795 : * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point
796 : * @pos: the type * to use as a loop cursor.
797 : * @member: the name of the hlist_node within the struct.
798 : */
799 : #define hlist_for_each_entry_from_rcu(pos, member) \
800 : for (; pos; \
801 : pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
802 : &(pos)->member)), typeof(*(pos)), member))
803 :
804 : #endif /* __KERNEL__ */
805 : #endif
|