Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0 */
2 : #ifndef _LINUX_SCHED_H
3 : #define _LINUX_SCHED_H
4 :
5 : /*
6 : * Define 'struct task_struct' and provide the main scheduler
7 : * APIs (schedule(), wakeup variants, etc.)
8 : */
9 :
10 : #include <uapi/linux/sched.h>
11 :
12 : #include <asm/current.h>
13 :
14 : #include <linux/pid.h>
15 : #include <linux/sem.h>
16 : #include <linux/shm.h>
17 : #include <linux/kmsan_types.h>
18 : #include <linux/mutex.h>
19 : #include <linux/plist.h>
20 : #include <linux/hrtimer.h>
21 : #include <linux/irqflags.h>
22 : #include <linux/seccomp.h>
23 : #include <linux/nodemask.h>
24 : #include <linux/rcupdate.h>
25 : #include <linux/refcount.h>
26 : #include <linux/resource.h>
27 : #include <linux/latencytop.h>
28 : #include <linux/sched/prio.h>
29 : #include <linux/sched/types.h>
30 : #include <linux/signal_types.h>
31 : #include <linux/syscall_user_dispatch.h>
32 : #include <linux/mm_types_task.h>
33 : #include <linux/task_io_accounting.h>
34 : #include <linux/posix-timers.h>
35 : #include <linux/rseq.h>
36 : #include <linux/seqlock.h>
37 : #include <linux/kcsan.h>
38 : #include <linux/rv.h>
39 : #include <linux/livepatch_sched.h>
40 : #include <asm/kmap_size.h>
41 :
42 : /* task_struct member predeclarations (sorted alphabetically): */
43 : struct audit_context;
44 : struct bio_list;
45 : struct blk_plug;
46 : struct bpf_local_storage;
47 : struct bpf_run_ctx;
48 : struct capture_control;
49 : struct cfs_rq;
50 : struct fs_struct;
51 : struct futex_pi_state;
52 : struct io_context;
53 : struct io_uring_task;
54 : struct mempolicy;
55 : struct nameidata;
56 : struct nsproxy;
57 : struct perf_event_context;
58 : struct pid_namespace;
59 : struct pipe_inode_info;
60 : struct rcu_node;
61 : struct reclaim_state;
62 : struct robust_list_head;
63 : struct root_domain;
64 : struct rq;
65 : struct sched_attr;
66 : struct sched_param;
67 : struct seq_file;
68 : struct sighand_struct;
69 : struct signal_struct;
70 : struct task_delay_info;
71 : struct task_group;
72 : struct user_event_mm;
73 :
74 : /*
75 : * Task state bitmask. NOTE! These bits are also
76 : * encoded in fs/proc/array.c: get_task_state().
77 : *
78 : * We have two separate sets of flags: task->state
79 : * is about runnability, while task->exit_state are
80 : * about the task exiting. Confusing, but this way
81 : * modifying one set can't modify the other one by
82 : * mistake.
83 : */
84 :
85 : /* Used in tsk->state: */
86 : #define TASK_RUNNING 0x00000000
87 : #define TASK_INTERRUPTIBLE 0x00000001
88 : #define TASK_UNINTERRUPTIBLE 0x00000002
89 : #define __TASK_STOPPED 0x00000004
90 : #define __TASK_TRACED 0x00000008
91 : /* Used in tsk->exit_state: */
92 : #define EXIT_DEAD 0x00000010
93 : #define EXIT_ZOMBIE 0x00000020
94 : #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
95 : /* Used in tsk->state again: */
96 : #define TASK_PARKED 0x00000040
97 : #define TASK_DEAD 0x00000080
98 : #define TASK_WAKEKILL 0x00000100
99 : #define TASK_WAKING 0x00000200
100 : #define TASK_NOLOAD 0x00000400
101 : #define TASK_NEW 0x00000800
102 : #define TASK_RTLOCK_WAIT 0x00001000
103 : #define TASK_FREEZABLE 0x00002000
104 : #define __TASK_FREEZABLE_UNSAFE (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
105 : #define TASK_FROZEN 0x00008000
106 : #define TASK_STATE_MAX 0x00010000
107 :
108 : #define TASK_ANY (TASK_STATE_MAX-1)
109 :
110 : /*
111 : * DO NOT ADD ANY NEW USERS !
112 : */
113 : #define TASK_FREEZABLE_UNSAFE (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
114 :
115 : /* Convenience macros for the sake of set_current_state: */
116 : #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
117 : #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
118 : #define TASK_TRACED __TASK_TRACED
119 :
120 : #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
121 :
122 : /* Convenience macros for the sake of wake_up(): */
123 : #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
124 :
125 : /* get_task_state(): */
126 : #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
127 : TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
128 : __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
129 : TASK_PARKED)
130 :
131 : #define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
132 :
133 : #define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
134 : #define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
135 : #define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
136 :
137 : /*
138 : * Special states are those that do not use the normal wait-loop pattern. See
139 : * the comment with set_special_state().
140 : */
141 : #define is_special_task_state(state) \
142 : ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
143 :
144 : #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
145 : # define debug_normal_state_change(state_value) \
146 : do { \
147 : WARN_ON_ONCE(is_special_task_state(state_value)); \
148 : current->task_state_change = _THIS_IP_; \
149 : } while (0)
150 :
151 : # define debug_special_state_change(state_value) \
152 : do { \
153 : WARN_ON_ONCE(!is_special_task_state(state_value)); \
154 : current->task_state_change = _THIS_IP_; \
155 : } while (0)
156 :
157 : # define debug_rtlock_wait_set_state() \
158 : do { \
159 : current->saved_state_change = current->task_state_change;\
160 : current->task_state_change = _THIS_IP_; \
161 : } while (0)
162 :
163 : # define debug_rtlock_wait_restore_state() \
164 : do { \
165 : current->task_state_change = current->saved_state_change;\
166 : } while (0)
167 :
168 : #else
169 : # define debug_normal_state_change(cond) do { } while (0)
170 : # define debug_special_state_change(cond) do { } while (0)
171 : # define debug_rtlock_wait_set_state() do { } while (0)
172 : # define debug_rtlock_wait_restore_state() do { } while (0)
173 : #endif
174 :
175 : /*
176 : * set_current_state() includes a barrier so that the write of current->state
177 : * is correctly serialised wrt the caller's subsequent test of whether to
178 : * actually sleep:
179 : *
180 : * for (;;) {
181 : * set_current_state(TASK_UNINTERRUPTIBLE);
182 : * if (CONDITION)
183 : * break;
184 : *
185 : * schedule();
186 : * }
187 : * __set_current_state(TASK_RUNNING);
188 : *
189 : * If the caller does not need such serialisation (because, for instance, the
190 : * CONDITION test and condition change and wakeup are under the same lock) then
191 : * use __set_current_state().
192 : *
193 : * The above is typically ordered against the wakeup, which does:
194 : *
195 : * CONDITION = 1;
196 : * wake_up_state(p, TASK_UNINTERRUPTIBLE);
197 : *
198 : * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
199 : * accessing p->state.
200 : *
201 : * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
202 : * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
203 : * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
204 : *
205 : * However, with slightly different timing the wakeup TASK_RUNNING store can
206 : * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
207 : * a problem either because that will result in one extra go around the loop
208 : * and our @cond test will save the day.
209 : *
210 : * Also see the comments of try_to_wake_up().
211 : */
212 : #define __set_current_state(state_value) \
213 : do { \
214 : debug_normal_state_change((state_value)); \
215 : WRITE_ONCE(current->__state, (state_value)); \
216 : } while (0)
217 :
218 : #define set_current_state(state_value) \
219 : do { \
220 : debug_normal_state_change((state_value)); \
221 : smp_store_mb(current->__state, (state_value)); \
222 : } while (0)
223 :
224 : /*
225 : * set_special_state() should be used for those states when the blocking task
226 : * can not use the regular condition based wait-loop. In that case we must
227 : * serialize against wakeups such that any possible in-flight TASK_RUNNING
228 : * stores will not collide with our state change.
229 : */
230 : #define set_special_state(state_value) \
231 : do { \
232 : unsigned long flags; /* may shadow */ \
233 : \
234 : raw_spin_lock_irqsave(¤t->pi_lock, flags); \
235 : debug_special_state_change((state_value)); \
236 : WRITE_ONCE(current->__state, (state_value)); \
237 : raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
238 : } while (0)
239 :
240 : /*
241 : * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
242 : *
243 : * RT's spin/rwlock substitutions are state preserving. The state of the
244 : * task when blocking on the lock is saved in task_struct::saved_state and
245 : * restored after the lock has been acquired. These operations are
246 : * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
247 : * lock related wakeups while the task is blocked on the lock are
248 : * redirected to operate on task_struct::saved_state to ensure that these
249 : * are not dropped. On restore task_struct::saved_state is set to
250 : * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
251 : *
252 : * The lock operation looks like this:
253 : *
254 : * current_save_and_set_rtlock_wait_state();
255 : * for (;;) {
256 : * if (try_lock())
257 : * break;
258 : * raw_spin_unlock_irq(&lock->wait_lock);
259 : * schedule_rtlock();
260 : * raw_spin_lock_irq(&lock->wait_lock);
261 : * set_current_state(TASK_RTLOCK_WAIT);
262 : * }
263 : * current_restore_rtlock_saved_state();
264 : */
265 : #define current_save_and_set_rtlock_wait_state() \
266 : do { \
267 : lockdep_assert_irqs_disabled(); \
268 : raw_spin_lock(¤t->pi_lock); \
269 : current->saved_state = current->__state; \
270 : debug_rtlock_wait_set_state(); \
271 : WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
272 : raw_spin_unlock(¤t->pi_lock); \
273 : } while (0);
274 :
275 : #define current_restore_rtlock_saved_state() \
276 : do { \
277 : lockdep_assert_irqs_disabled(); \
278 : raw_spin_lock(¤t->pi_lock); \
279 : debug_rtlock_wait_restore_state(); \
280 : WRITE_ONCE(current->__state, current->saved_state); \
281 : current->saved_state = TASK_RUNNING; \
282 : raw_spin_unlock(¤t->pi_lock); \
283 : } while (0);
284 :
285 : #define get_current_state() READ_ONCE(current->__state)
286 :
287 : /*
288 : * Define the task command name length as enum, then it can be visible to
289 : * BPF programs.
290 : */
291 : enum {
292 : TASK_COMM_LEN = 16,
293 : };
294 :
295 : extern void scheduler_tick(void);
296 :
297 : #define MAX_SCHEDULE_TIMEOUT LONG_MAX
298 :
299 : extern long schedule_timeout(long timeout);
300 : extern long schedule_timeout_interruptible(long timeout);
301 : extern long schedule_timeout_killable(long timeout);
302 : extern long schedule_timeout_uninterruptible(long timeout);
303 : extern long schedule_timeout_idle(long timeout);
304 : asmlinkage void schedule(void);
305 : extern void schedule_preempt_disabled(void);
306 : asmlinkage void preempt_schedule_irq(void);
307 : #ifdef CONFIG_PREEMPT_RT
308 : extern void schedule_rtlock(void);
309 : #endif
310 :
311 : extern int __must_check io_schedule_prepare(void);
312 : extern void io_schedule_finish(int token);
313 : extern long io_schedule_timeout(long timeout);
314 : extern void io_schedule(void);
315 :
316 : /**
317 : * struct prev_cputime - snapshot of system and user cputime
318 : * @utime: time spent in user mode
319 : * @stime: time spent in system mode
320 : * @lock: protects the above two fields
321 : *
322 : * Stores previous user/system time values such that we can guarantee
323 : * monotonicity.
324 : */
325 : struct prev_cputime {
326 : #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
327 : u64 utime;
328 : u64 stime;
329 : raw_spinlock_t lock;
330 : #endif
331 : };
332 :
333 : enum vtime_state {
334 : /* Task is sleeping or running in a CPU with VTIME inactive: */
335 : VTIME_INACTIVE = 0,
336 : /* Task is idle */
337 : VTIME_IDLE,
338 : /* Task runs in kernelspace in a CPU with VTIME active: */
339 : VTIME_SYS,
340 : /* Task runs in userspace in a CPU with VTIME active: */
341 : VTIME_USER,
342 : /* Task runs as guests in a CPU with VTIME active: */
343 : VTIME_GUEST,
344 : };
345 :
346 : struct vtime {
347 : seqcount_t seqcount;
348 : unsigned long long starttime;
349 : enum vtime_state state;
350 : unsigned int cpu;
351 : u64 utime;
352 : u64 stime;
353 : u64 gtime;
354 : };
355 :
356 : /*
357 : * Utilization clamp constraints.
358 : * @UCLAMP_MIN: Minimum utilization
359 : * @UCLAMP_MAX: Maximum utilization
360 : * @UCLAMP_CNT: Utilization clamp constraints count
361 : */
362 : enum uclamp_id {
363 : UCLAMP_MIN = 0,
364 : UCLAMP_MAX,
365 : UCLAMP_CNT
366 : };
367 :
368 : #ifdef CONFIG_SMP
369 : extern struct root_domain def_root_domain;
370 : extern struct mutex sched_domains_mutex;
371 : #endif
372 :
373 : struct sched_info {
374 : #ifdef CONFIG_SCHED_INFO
375 : /* Cumulative counters: */
376 :
377 : /* # of times we have run on this CPU: */
378 : unsigned long pcount;
379 :
380 : /* Time spent waiting on a runqueue: */
381 : unsigned long long run_delay;
382 :
383 : /* Timestamps: */
384 :
385 : /* When did we last run on a CPU? */
386 : unsigned long long last_arrival;
387 :
388 : /* When were we last queued to run? */
389 : unsigned long long last_queued;
390 :
391 : #endif /* CONFIG_SCHED_INFO */
392 : };
393 :
394 : /*
395 : * Integer metrics need fixed point arithmetic, e.g., sched/fair
396 : * has a few: load, load_avg, util_avg, freq, and capacity.
397 : *
398 : * We define a basic fixed point arithmetic range, and then formalize
399 : * all these metrics based on that basic range.
400 : */
401 : # define SCHED_FIXEDPOINT_SHIFT 10
402 : # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
403 :
404 : /* Increase resolution of cpu_capacity calculations */
405 : # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
406 : # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
407 :
408 : struct load_weight {
409 : unsigned long weight;
410 : u32 inv_weight;
411 : };
412 :
413 : /**
414 : * struct util_est - Estimation utilization of FAIR tasks
415 : * @enqueued: instantaneous estimated utilization of a task/cpu
416 : * @ewma: the Exponential Weighted Moving Average (EWMA)
417 : * utilization of a task
418 : *
419 : * Support data structure to track an Exponential Weighted Moving Average
420 : * (EWMA) of a FAIR task's utilization. New samples are added to the moving
421 : * average each time a task completes an activation. Sample's weight is chosen
422 : * so that the EWMA will be relatively insensitive to transient changes to the
423 : * task's workload.
424 : *
425 : * The enqueued attribute has a slightly different meaning for tasks and cpus:
426 : * - task: the task's util_avg at last task dequeue time
427 : * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
428 : * Thus, the util_est.enqueued of a task represents the contribution on the
429 : * estimated utilization of the CPU where that task is currently enqueued.
430 : *
431 : * Only for tasks we track a moving average of the past instantaneous
432 : * estimated utilization. This allows to absorb sporadic drops in utilization
433 : * of an otherwise almost periodic task.
434 : *
435 : * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
436 : * updates. When a task is dequeued, its util_est should not be updated if its
437 : * util_avg has not been updated in the meantime.
438 : * This information is mapped into the MSB bit of util_est.enqueued at dequeue
439 : * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
440 : * for a task) it is safe to use MSB.
441 : */
442 : struct util_est {
443 : unsigned int enqueued;
444 : unsigned int ewma;
445 : #define UTIL_EST_WEIGHT_SHIFT 2
446 : #define UTIL_AVG_UNCHANGED 0x80000000
447 : } __attribute__((__aligned__(sizeof(u64))));
448 :
449 : /*
450 : * The load/runnable/util_avg accumulates an infinite geometric series
451 : * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
452 : *
453 : * [load_avg definition]
454 : *
455 : * load_avg = runnable% * scale_load_down(load)
456 : *
457 : * [runnable_avg definition]
458 : *
459 : * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
460 : *
461 : * [util_avg definition]
462 : *
463 : * util_avg = running% * SCHED_CAPACITY_SCALE
464 : *
465 : * where runnable% is the time ratio that a sched_entity is runnable and
466 : * running% the time ratio that a sched_entity is running.
467 : *
468 : * For cfs_rq, they are the aggregated values of all runnable and blocked
469 : * sched_entities.
470 : *
471 : * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
472 : * capacity scaling. The scaling is done through the rq_clock_pelt that is used
473 : * for computing those signals (see update_rq_clock_pelt())
474 : *
475 : * N.B., the above ratios (runnable% and running%) themselves are in the
476 : * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
477 : * to as large a range as necessary. This is for example reflected by
478 : * util_avg's SCHED_CAPACITY_SCALE.
479 : *
480 : * [Overflow issue]
481 : *
482 : * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
483 : * with the highest load (=88761), always runnable on a single cfs_rq,
484 : * and should not overflow as the number already hits PID_MAX_LIMIT.
485 : *
486 : * For all other cases (including 32-bit kernels), struct load_weight's
487 : * weight will overflow first before we do, because:
488 : *
489 : * Max(load_avg) <= Max(load.weight)
490 : *
491 : * Then it is the load_weight's responsibility to consider overflow
492 : * issues.
493 : */
494 : struct sched_avg {
495 : u64 last_update_time;
496 : u64 load_sum;
497 : u64 runnable_sum;
498 : u32 util_sum;
499 : u32 period_contrib;
500 : unsigned long load_avg;
501 : unsigned long runnable_avg;
502 : unsigned long util_avg;
503 : struct util_est util_est;
504 : } ____cacheline_aligned;
505 :
506 : struct sched_statistics {
507 : #ifdef CONFIG_SCHEDSTATS
508 : u64 wait_start;
509 : u64 wait_max;
510 : u64 wait_count;
511 : u64 wait_sum;
512 : u64 iowait_count;
513 : u64 iowait_sum;
514 :
515 : u64 sleep_start;
516 : u64 sleep_max;
517 : s64 sum_sleep_runtime;
518 :
519 : u64 block_start;
520 : u64 block_max;
521 : s64 sum_block_runtime;
522 :
523 : u64 exec_max;
524 : u64 slice_max;
525 :
526 : u64 nr_migrations_cold;
527 : u64 nr_failed_migrations_affine;
528 : u64 nr_failed_migrations_running;
529 : u64 nr_failed_migrations_hot;
530 : u64 nr_forced_migrations;
531 :
532 : u64 nr_wakeups;
533 : u64 nr_wakeups_sync;
534 : u64 nr_wakeups_migrate;
535 : u64 nr_wakeups_local;
536 : u64 nr_wakeups_remote;
537 : u64 nr_wakeups_affine;
538 : u64 nr_wakeups_affine_attempts;
539 : u64 nr_wakeups_passive;
540 : u64 nr_wakeups_idle;
541 :
542 : #ifdef CONFIG_SCHED_CORE
543 : u64 core_forceidle_sum;
544 : #endif
545 : #endif /* CONFIG_SCHEDSTATS */
546 : } ____cacheline_aligned;
547 :
548 : struct sched_entity {
549 : /* For load-balancing: */
550 : struct load_weight load;
551 : struct rb_node run_node;
552 : struct list_head group_node;
553 : unsigned int on_rq;
554 :
555 : u64 exec_start;
556 : u64 sum_exec_runtime;
557 : u64 vruntime;
558 : u64 prev_sum_exec_runtime;
559 :
560 : u64 nr_migrations;
561 :
562 : #ifdef CONFIG_FAIR_GROUP_SCHED
563 : int depth;
564 : struct sched_entity *parent;
565 : /* rq on which this entity is (to be) queued: */
566 : struct cfs_rq *cfs_rq;
567 : /* rq "owned" by this entity/group: */
568 : struct cfs_rq *my_q;
569 : /* cached value of my_q->h_nr_running */
570 : unsigned long runnable_weight;
571 : #endif
572 :
573 : #ifdef CONFIG_SMP
574 : /*
575 : * Per entity load average tracking.
576 : *
577 : * Put into separate cache line so it does not
578 : * collide with read-mostly values above.
579 : */
580 : struct sched_avg avg;
581 : #endif
582 : };
583 :
584 : struct sched_rt_entity {
585 : struct list_head run_list;
586 : unsigned long timeout;
587 : unsigned long watchdog_stamp;
588 : unsigned int time_slice;
589 : unsigned short on_rq;
590 : unsigned short on_list;
591 :
592 : struct sched_rt_entity *back;
593 : #ifdef CONFIG_RT_GROUP_SCHED
594 : struct sched_rt_entity *parent;
595 : /* rq on which this entity is (to be) queued: */
596 : struct rt_rq *rt_rq;
597 : /* rq "owned" by this entity/group: */
598 : struct rt_rq *my_q;
599 : #endif
600 : } __randomize_layout;
601 :
602 : struct sched_dl_entity {
603 : struct rb_node rb_node;
604 :
605 : /*
606 : * Original scheduling parameters. Copied here from sched_attr
607 : * during sched_setattr(), they will remain the same until
608 : * the next sched_setattr().
609 : */
610 : u64 dl_runtime; /* Maximum runtime for each instance */
611 : u64 dl_deadline; /* Relative deadline of each instance */
612 : u64 dl_period; /* Separation of two instances (period) */
613 : u64 dl_bw; /* dl_runtime / dl_period */
614 : u64 dl_density; /* dl_runtime / dl_deadline */
615 :
616 : /*
617 : * Actual scheduling parameters. Initialized with the values above,
618 : * they are continuously updated during task execution. Note that
619 : * the remaining runtime could be < 0 in case we are in overrun.
620 : */
621 : s64 runtime; /* Remaining runtime for this instance */
622 : u64 deadline; /* Absolute deadline for this instance */
623 : unsigned int flags; /* Specifying the scheduler behaviour */
624 :
625 : /*
626 : * Some bool flags:
627 : *
628 : * @dl_throttled tells if we exhausted the runtime. If so, the
629 : * task has to wait for a replenishment to be performed at the
630 : * next firing of dl_timer.
631 : *
632 : * @dl_yielded tells if task gave up the CPU before consuming
633 : * all its available runtime during the last job.
634 : *
635 : * @dl_non_contending tells if the task is inactive while still
636 : * contributing to the active utilization. In other words, it
637 : * indicates if the inactive timer has been armed and its handler
638 : * has not been executed yet. This flag is useful to avoid race
639 : * conditions between the inactive timer handler and the wakeup
640 : * code.
641 : *
642 : * @dl_overrun tells if the task asked to be informed about runtime
643 : * overruns.
644 : */
645 : unsigned int dl_throttled : 1;
646 : unsigned int dl_yielded : 1;
647 : unsigned int dl_non_contending : 1;
648 : unsigned int dl_overrun : 1;
649 :
650 : /*
651 : * Bandwidth enforcement timer. Each -deadline task has its
652 : * own bandwidth to be enforced, thus we need one timer per task.
653 : */
654 : struct hrtimer dl_timer;
655 :
656 : /*
657 : * Inactive timer, responsible for decreasing the active utilization
658 : * at the "0-lag time". When a -deadline task blocks, it contributes
659 : * to GRUB's active utilization until the "0-lag time", hence a
660 : * timer is needed to decrease the active utilization at the correct
661 : * time.
662 : */
663 : struct hrtimer inactive_timer;
664 :
665 : #ifdef CONFIG_RT_MUTEXES
666 : /*
667 : * Priority Inheritance. When a DEADLINE scheduling entity is boosted
668 : * pi_se points to the donor, otherwise points to the dl_se it belongs
669 : * to (the original one/itself).
670 : */
671 : struct sched_dl_entity *pi_se;
672 : #endif
673 : };
674 :
675 : #ifdef CONFIG_UCLAMP_TASK
676 : /* Number of utilization clamp buckets (shorter alias) */
677 : #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
678 :
679 : /*
680 : * Utilization clamp for a scheduling entity
681 : * @value: clamp value "assigned" to a se
682 : * @bucket_id: bucket index corresponding to the "assigned" value
683 : * @active: the se is currently refcounted in a rq's bucket
684 : * @user_defined: the requested clamp value comes from user-space
685 : *
686 : * The bucket_id is the index of the clamp bucket matching the clamp value
687 : * which is pre-computed and stored to avoid expensive integer divisions from
688 : * the fast path.
689 : *
690 : * The active bit is set whenever a task has got an "effective" value assigned,
691 : * which can be different from the clamp value "requested" from user-space.
692 : * This allows to know a task is refcounted in the rq's bucket corresponding
693 : * to the "effective" bucket_id.
694 : *
695 : * The user_defined bit is set whenever a task has got a task-specific clamp
696 : * value requested from userspace, i.e. the system defaults apply to this task
697 : * just as a restriction. This allows to relax default clamps when a less
698 : * restrictive task-specific value has been requested, thus allowing to
699 : * implement a "nice" semantic. For example, a task running with a 20%
700 : * default boost can still drop its own boosting to 0%.
701 : */
702 : struct uclamp_se {
703 : unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
704 : unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
705 : unsigned int active : 1;
706 : unsigned int user_defined : 1;
707 : };
708 : #endif /* CONFIG_UCLAMP_TASK */
709 :
710 : union rcu_special {
711 : struct {
712 : u8 blocked;
713 : u8 need_qs;
714 : u8 exp_hint; /* Hint for performance. */
715 : u8 need_mb; /* Readers need smp_mb(). */
716 : } b; /* Bits. */
717 : u32 s; /* Set of bits. */
718 : };
719 :
720 : enum perf_event_task_context {
721 : perf_invalid_context = -1,
722 : perf_hw_context = 0,
723 : perf_sw_context,
724 : perf_nr_task_contexts,
725 : };
726 :
727 : struct wake_q_node {
728 : struct wake_q_node *next;
729 : };
730 :
731 : struct kmap_ctrl {
732 : #ifdef CONFIG_KMAP_LOCAL
733 : int idx;
734 : pte_t pteval[KM_MAX_IDX];
735 : #endif
736 : };
737 :
738 : struct task_struct {
739 : #ifdef CONFIG_THREAD_INFO_IN_TASK
740 : /*
741 : * For reasons of header soup (see current_thread_info()), this
742 : * must be the first element of task_struct.
743 : */
744 : struct thread_info thread_info;
745 : #endif
746 : unsigned int __state;
747 :
748 : #ifdef CONFIG_PREEMPT_RT
749 : /* saved state for "spinlock sleepers" */
750 : unsigned int saved_state;
751 : #endif
752 :
753 : /*
754 : * This begins the randomizable portion of task_struct. Only
755 : * scheduling-critical items should be added above here.
756 : */
757 : randomized_struct_fields_start
758 :
759 : void *stack;
760 : refcount_t usage;
761 : /* Per task flags (PF_*), defined further below: */
762 : unsigned int flags;
763 : unsigned int ptrace;
764 :
765 : #ifdef CONFIG_SMP
766 : int on_cpu;
767 : struct __call_single_node wake_entry;
768 : unsigned int wakee_flips;
769 : unsigned long wakee_flip_decay_ts;
770 : struct task_struct *last_wakee;
771 :
772 : /*
773 : * recent_used_cpu is initially set as the last CPU used by a task
774 : * that wakes affine another task. Waker/wakee relationships can
775 : * push tasks around a CPU where each wakeup moves to the next one.
776 : * Tracking a recently used CPU allows a quick search for a recently
777 : * used CPU that may be idle.
778 : */
779 : int recent_used_cpu;
780 : int wake_cpu;
781 : #endif
782 : int on_rq;
783 :
784 : int prio;
785 : int static_prio;
786 : int normal_prio;
787 : unsigned int rt_priority;
788 :
789 : struct sched_entity se;
790 : struct sched_rt_entity rt;
791 : struct sched_dl_entity dl;
792 : const struct sched_class *sched_class;
793 :
794 : #ifdef CONFIG_SCHED_CORE
795 : struct rb_node core_node;
796 : unsigned long core_cookie;
797 : unsigned int core_occupation;
798 : #endif
799 :
800 : #ifdef CONFIG_CGROUP_SCHED
801 : struct task_group *sched_task_group;
802 : #endif
803 :
804 : #ifdef CONFIG_UCLAMP_TASK
805 : /*
806 : * Clamp values requested for a scheduling entity.
807 : * Must be updated with task_rq_lock() held.
808 : */
809 : struct uclamp_se uclamp_req[UCLAMP_CNT];
810 : /*
811 : * Effective clamp values used for a scheduling entity.
812 : * Must be updated with task_rq_lock() held.
813 : */
814 : struct uclamp_se uclamp[UCLAMP_CNT];
815 : #endif
816 :
817 : struct sched_statistics stats;
818 :
819 : #ifdef CONFIG_PREEMPT_NOTIFIERS
820 : /* List of struct preempt_notifier: */
821 : struct hlist_head preempt_notifiers;
822 : #endif
823 :
824 : #ifdef CONFIG_BLK_DEV_IO_TRACE
825 : unsigned int btrace_seq;
826 : #endif
827 :
828 : unsigned int policy;
829 : int nr_cpus_allowed;
830 : const cpumask_t *cpus_ptr;
831 : cpumask_t *user_cpus_ptr;
832 : cpumask_t cpus_mask;
833 : void *migration_pending;
834 : #ifdef CONFIG_SMP
835 : unsigned short migration_disabled;
836 : #endif
837 : unsigned short migration_flags;
838 :
839 : #ifdef CONFIG_PREEMPT_RCU
840 : int rcu_read_lock_nesting;
841 : union rcu_special rcu_read_unlock_special;
842 : struct list_head rcu_node_entry;
843 : struct rcu_node *rcu_blocked_node;
844 : #endif /* #ifdef CONFIG_PREEMPT_RCU */
845 :
846 : #ifdef CONFIG_TASKS_RCU
847 : unsigned long rcu_tasks_nvcsw;
848 : u8 rcu_tasks_holdout;
849 : u8 rcu_tasks_idx;
850 : int rcu_tasks_idle_cpu;
851 : struct list_head rcu_tasks_holdout_list;
852 : #endif /* #ifdef CONFIG_TASKS_RCU */
853 :
854 : #ifdef CONFIG_TASKS_TRACE_RCU
855 : int trc_reader_nesting;
856 : int trc_ipi_to_cpu;
857 : union rcu_special trc_reader_special;
858 : struct list_head trc_holdout_list;
859 : struct list_head trc_blkd_node;
860 : int trc_blkd_cpu;
861 : #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
862 :
863 : struct sched_info sched_info;
864 :
865 : struct list_head tasks;
866 : #ifdef CONFIG_SMP
867 : struct plist_node pushable_tasks;
868 : struct rb_node pushable_dl_tasks;
869 : #endif
870 :
871 : struct mm_struct *mm;
872 : struct mm_struct *active_mm;
873 :
874 : int exit_state;
875 : int exit_code;
876 : int exit_signal;
877 : /* The signal sent when the parent dies: */
878 : int pdeath_signal;
879 : /* JOBCTL_*, siglock protected: */
880 : unsigned long jobctl;
881 :
882 : /* Used for emulating ABI behavior of previous Linux versions: */
883 : unsigned int personality;
884 :
885 : /* Scheduler bits, serialized by scheduler locks: */
886 : unsigned sched_reset_on_fork:1;
887 : unsigned sched_contributes_to_load:1;
888 : unsigned sched_migrated:1;
889 :
890 : /* Force alignment to the next boundary: */
891 : unsigned :0;
892 :
893 : /* Unserialized, strictly 'current' */
894 :
895 : /*
896 : * This field must not be in the scheduler word above due to wakelist
897 : * queueing no longer being serialized by p->on_cpu. However:
898 : *
899 : * p->XXX = X; ttwu()
900 : * schedule() if (p->on_rq && ..) // false
901 : * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
902 : * deactivate_task() ttwu_queue_wakelist())
903 : * p->on_rq = 0; p->sched_remote_wakeup = Y;
904 : *
905 : * guarantees all stores of 'current' are visible before
906 : * ->sched_remote_wakeup gets used, so it can be in this word.
907 : */
908 : unsigned sched_remote_wakeup:1;
909 :
910 : /* Bit to tell LSMs we're in execve(): */
911 : unsigned in_execve:1;
912 : unsigned in_iowait:1;
913 : #ifndef TIF_RESTORE_SIGMASK
914 : unsigned restore_sigmask:1;
915 : #endif
916 : #ifdef CONFIG_MEMCG
917 : unsigned in_user_fault:1;
918 : #endif
919 : #ifdef CONFIG_LRU_GEN
920 : /* whether the LRU algorithm may apply to this access */
921 : unsigned in_lru_fault:1;
922 : #endif
923 : #ifdef CONFIG_COMPAT_BRK
924 : unsigned brk_randomized:1;
925 : #endif
926 : #ifdef CONFIG_CGROUPS
927 : /* disallow userland-initiated cgroup migration */
928 : unsigned no_cgroup_migration:1;
929 : /* task is frozen/stopped (used by the cgroup freezer) */
930 : unsigned frozen:1;
931 : #endif
932 : #ifdef CONFIG_BLK_CGROUP
933 : unsigned use_memdelay:1;
934 : #endif
935 : #ifdef CONFIG_PSI
936 : /* Stalled due to lack of memory */
937 : unsigned in_memstall:1;
938 : #endif
939 : #ifdef CONFIG_PAGE_OWNER
940 : /* Used by page_owner=on to detect recursion in page tracking. */
941 : unsigned in_page_owner:1;
942 : #endif
943 : #ifdef CONFIG_EVENTFD
944 : /* Recursion prevention for eventfd_signal() */
945 : unsigned in_eventfd:1;
946 : #endif
947 : #ifdef CONFIG_IOMMU_SVA
948 : unsigned pasid_activated:1;
949 : #endif
950 : #ifdef CONFIG_CPU_SUP_INTEL
951 : unsigned reported_split_lock:1;
952 : #endif
953 : #ifdef CONFIG_TASK_DELAY_ACCT
954 : /* delay due to memory thrashing */
955 : unsigned in_thrashing:1;
956 : #endif
957 :
958 : unsigned long atomic_flags; /* Flags requiring atomic access. */
959 :
960 : struct restart_block restart_block;
961 :
962 : pid_t pid;
963 : pid_t tgid;
964 :
965 : #ifdef CONFIG_STACKPROTECTOR
966 : /* Canary value for the -fstack-protector GCC feature: */
967 : unsigned long stack_canary;
968 : #endif
969 : /*
970 : * Pointers to the (original) parent process, youngest child, younger sibling,
971 : * older sibling, respectively. (p->father can be replaced with
972 : * p->real_parent->pid)
973 : */
974 :
975 : /* Real parent process: */
976 : struct task_struct __rcu *real_parent;
977 :
978 : /* Recipient of SIGCHLD, wait4() reports: */
979 : struct task_struct __rcu *parent;
980 :
981 : /*
982 : * Children/sibling form the list of natural children:
983 : */
984 : struct list_head children;
985 : struct list_head sibling;
986 : struct task_struct *group_leader;
987 :
988 : /*
989 : * 'ptraced' is the list of tasks this task is using ptrace() on.
990 : *
991 : * This includes both natural children and PTRACE_ATTACH targets.
992 : * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
993 : */
994 : struct list_head ptraced;
995 : struct list_head ptrace_entry;
996 :
997 : /* PID/PID hash table linkage. */
998 : struct pid *thread_pid;
999 : struct hlist_node pid_links[PIDTYPE_MAX];
1000 : struct list_head thread_group;
1001 : struct list_head thread_node;
1002 :
1003 : struct completion *vfork_done;
1004 :
1005 : /* CLONE_CHILD_SETTID: */
1006 : int __user *set_child_tid;
1007 :
1008 : /* CLONE_CHILD_CLEARTID: */
1009 : int __user *clear_child_tid;
1010 :
1011 : /* PF_KTHREAD | PF_IO_WORKER */
1012 : void *worker_private;
1013 :
1014 : u64 utime;
1015 : u64 stime;
1016 : #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1017 : u64 utimescaled;
1018 : u64 stimescaled;
1019 : #endif
1020 : u64 gtime;
1021 : struct prev_cputime prev_cputime;
1022 : #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1023 : struct vtime vtime;
1024 : #endif
1025 :
1026 : #ifdef CONFIG_NO_HZ_FULL
1027 : atomic_t tick_dep_mask;
1028 : #endif
1029 : /* Context switch counts: */
1030 : unsigned long nvcsw;
1031 : unsigned long nivcsw;
1032 :
1033 : /* Monotonic time in nsecs: */
1034 : u64 start_time;
1035 :
1036 : /* Boot based time in nsecs: */
1037 : u64 start_boottime;
1038 :
1039 : /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1040 : unsigned long min_flt;
1041 : unsigned long maj_flt;
1042 :
1043 : /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1044 : struct posix_cputimers posix_cputimers;
1045 :
1046 : #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1047 : struct posix_cputimers_work posix_cputimers_work;
1048 : #endif
1049 :
1050 : /* Process credentials: */
1051 :
1052 : /* Tracer's credentials at attach: */
1053 : const struct cred __rcu *ptracer_cred;
1054 :
1055 : /* Objective and real subjective task credentials (COW): */
1056 : const struct cred __rcu *real_cred;
1057 :
1058 : /* Effective (overridable) subjective task credentials (COW): */
1059 : const struct cred __rcu *cred;
1060 :
1061 : #ifdef CONFIG_KEYS
1062 : /* Cached requested key. */
1063 : struct key *cached_requested_key;
1064 : #endif
1065 :
1066 : /*
1067 : * executable name, excluding path.
1068 : *
1069 : * - normally initialized setup_new_exec()
1070 : * - access it with [gs]et_task_comm()
1071 : * - lock it with task_lock()
1072 : */
1073 : char comm[TASK_COMM_LEN];
1074 :
1075 : struct nameidata *nameidata;
1076 :
1077 : #ifdef CONFIG_SYSVIPC
1078 : struct sysv_sem sysvsem;
1079 : struct sysv_shm sysvshm;
1080 : #endif
1081 : #ifdef CONFIG_DETECT_HUNG_TASK
1082 : unsigned long last_switch_count;
1083 : unsigned long last_switch_time;
1084 : #endif
1085 : /* Filesystem information: */
1086 : struct fs_struct *fs;
1087 :
1088 : /* Open file information: */
1089 : struct files_struct *files;
1090 :
1091 : #ifdef CONFIG_IO_URING
1092 : struct io_uring_task *io_uring;
1093 : #endif
1094 :
1095 : /* Namespaces: */
1096 : struct nsproxy *nsproxy;
1097 :
1098 : /* Signal handlers: */
1099 : struct signal_struct *signal;
1100 : struct sighand_struct __rcu *sighand;
1101 : sigset_t blocked;
1102 : sigset_t real_blocked;
1103 : /* Restored if set_restore_sigmask() was used: */
1104 : sigset_t saved_sigmask;
1105 : struct sigpending pending;
1106 : unsigned long sas_ss_sp;
1107 : size_t sas_ss_size;
1108 : unsigned int sas_ss_flags;
1109 :
1110 : struct callback_head *task_works;
1111 :
1112 : #ifdef CONFIG_AUDIT
1113 : #ifdef CONFIG_AUDITSYSCALL
1114 : struct audit_context *audit_context;
1115 : #endif
1116 : kuid_t loginuid;
1117 : unsigned int sessionid;
1118 : #endif
1119 : struct seccomp seccomp;
1120 : struct syscall_user_dispatch syscall_dispatch;
1121 :
1122 : /* Thread group tracking: */
1123 : u64 parent_exec_id;
1124 : u64 self_exec_id;
1125 :
1126 : /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1127 : spinlock_t alloc_lock;
1128 :
1129 : /* Protection of the PI data structures: */
1130 : raw_spinlock_t pi_lock;
1131 :
1132 : struct wake_q_node wake_q;
1133 :
1134 : #ifdef CONFIG_RT_MUTEXES
1135 : /* PI waiters blocked on a rt_mutex held by this task: */
1136 : struct rb_root_cached pi_waiters;
1137 : /* Updated under owner's pi_lock and rq lock */
1138 : struct task_struct *pi_top_task;
1139 : /* Deadlock detection and priority inheritance handling: */
1140 : struct rt_mutex_waiter *pi_blocked_on;
1141 : #endif
1142 :
1143 : #ifdef CONFIG_DEBUG_MUTEXES
1144 : /* Mutex deadlock detection: */
1145 : struct mutex_waiter *blocked_on;
1146 : #endif
1147 :
1148 : #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1149 : int non_block_count;
1150 : #endif
1151 :
1152 : #ifdef CONFIG_TRACE_IRQFLAGS
1153 : struct irqtrace_events irqtrace;
1154 : unsigned int hardirq_threaded;
1155 : u64 hardirq_chain_key;
1156 : int softirqs_enabled;
1157 : int softirq_context;
1158 : int irq_config;
1159 : #endif
1160 : #ifdef CONFIG_PREEMPT_RT
1161 : int softirq_disable_cnt;
1162 : #endif
1163 :
1164 : #ifdef CONFIG_LOCKDEP
1165 : # define MAX_LOCK_DEPTH 48UL
1166 : u64 curr_chain_key;
1167 : int lockdep_depth;
1168 : unsigned int lockdep_recursion;
1169 : struct held_lock held_locks[MAX_LOCK_DEPTH];
1170 : #endif
1171 :
1172 : #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1173 : unsigned int in_ubsan;
1174 : #endif
1175 :
1176 : /* Journalling filesystem info: */
1177 : void *journal_info;
1178 :
1179 : /* Stacked block device info: */
1180 : struct bio_list *bio_list;
1181 :
1182 : /* Stack plugging: */
1183 : struct blk_plug *plug;
1184 :
1185 : /* VM state: */
1186 : struct reclaim_state *reclaim_state;
1187 :
1188 : struct io_context *io_context;
1189 :
1190 : #ifdef CONFIG_COMPACTION
1191 : struct capture_control *capture_control;
1192 : #endif
1193 : /* Ptrace state: */
1194 : unsigned long ptrace_message;
1195 : kernel_siginfo_t *last_siginfo;
1196 :
1197 : struct task_io_accounting ioac;
1198 : #ifdef CONFIG_PSI
1199 : /* Pressure stall state */
1200 : unsigned int psi_flags;
1201 : #endif
1202 : #ifdef CONFIG_TASK_XACCT
1203 : /* Accumulated RSS usage: */
1204 : u64 acct_rss_mem1;
1205 : /* Accumulated virtual memory usage: */
1206 : u64 acct_vm_mem1;
1207 : /* stime + utime since last update: */
1208 : u64 acct_timexpd;
1209 : #endif
1210 : #ifdef CONFIG_CPUSETS
1211 : /* Protected by ->alloc_lock: */
1212 : nodemask_t mems_allowed;
1213 : /* Sequence number to catch updates: */
1214 : seqcount_spinlock_t mems_allowed_seq;
1215 : int cpuset_mem_spread_rotor;
1216 : int cpuset_slab_spread_rotor;
1217 : #endif
1218 : #ifdef CONFIG_CGROUPS
1219 : /* Control Group info protected by css_set_lock: */
1220 : struct css_set __rcu *cgroups;
1221 : /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1222 : struct list_head cg_list;
1223 : #endif
1224 : #ifdef CONFIG_X86_CPU_RESCTRL
1225 : u32 closid;
1226 : u32 rmid;
1227 : #endif
1228 : #ifdef CONFIG_FUTEX
1229 : struct robust_list_head __user *robust_list;
1230 : #ifdef CONFIG_COMPAT
1231 : struct compat_robust_list_head __user *compat_robust_list;
1232 : #endif
1233 : struct list_head pi_state_list;
1234 : struct futex_pi_state *pi_state_cache;
1235 : struct mutex futex_exit_mutex;
1236 : unsigned int futex_state;
1237 : #endif
1238 : #ifdef CONFIG_PERF_EVENTS
1239 : struct perf_event_context *perf_event_ctxp;
1240 : struct mutex perf_event_mutex;
1241 : struct list_head perf_event_list;
1242 : #endif
1243 : #ifdef CONFIG_DEBUG_PREEMPT
1244 : unsigned long preempt_disable_ip;
1245 : #endif
1246 : #ifdef CONFIG_NUMA
1247 : /* Protected by alloc_lock: */
1248 : struct mempolicy *mempolicy;
1249 : short il_prev;
1250 : short pref_node_fork;
1251 : #endif
1252 : #ifdef CONFIG_NUMA_BALANCING
1253 : int numa_scan_seq;
1254 : unsigned int numa_scan_period;
1255 : unsigned int numa_scan_period_max;
1256 : int numa_preferred_nid;
1257 : unsigned long numa_migrate_retry;
1258 : /* Migration stamp: */
1259 : u64 node_stamp;
1260 : u64 last_task_numa_placement;
1261 : u64 last_sum_exec_runtime;
1262 : struct callback_head numa_work;
1263 :
1264 : /*
1265 : * This pointer is only modified for current in syscall and
1266 : * pagefault context (and for tasks being destroyed), so it can be read
1267 : * from any of the following contexts:
1268 : * - RCU read-side critical section
1269 : * - current->numa_group from everywhere
1270 : * - task's runqueue locked, task not running
1271 : */
1272 : struct numa_group __rcu *numa_group;
1273 :
1274 : /*
1275 : * numa_faults is an array split into four regions:
1276 : * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1277 : * in this precise order.
1278 : *
1279 : * faults_memory: Exponential decaying average of faults on a per-node
1280 : * basis. Scheduling placement decisions are made based on these
1281 : * counts. The values remain static for the duration of a PTE scan.
1282 : * faults_cpu: Track the nodes the process was running on when a NUMA
1283 : * hinting fault was incurred.
1284 : * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1285 : * during the current scan window. When the scan completes, the counts
1286 : * in faults_memory and faults_cpu decay and these values are copied.
1287 : */
1288 : unsigned long *numa_faults;
1289 : unsigned long total_numa_faults;
1290 :
1291 : /*
1292 : * numa_faults_locality tracks if faults recorded during the last
1293 : * scan window were remote/local or failed to migrate. The task scan
1294 : * period is adapted based on the locality of the faults with different
1295 : * weights depending on whether they were shared or private faults
1296 : */
1297 : unsigned long numa_faults_locality[3];
1298 :
1299 : unsigned long numa_pages_migrated;
1300 : #endif /* CONFIG_NUMA_BALANCING */
1301 :
1302 : #ifdef CONFIG_RSEQ
1303 : struct rseq __user *rseq;
1304 : u32 rseq_len;
1305 : u32 rseq_sig;
1306 : /*
1307 : * RmW on rseq_event_mask must be performed atomically
1308 : * with respect to preemption.
1309 : */
1310 : unsigned long rseq_event_mask;
1311 : #endif
1312 :
1313 : #ifdef CONFIG_SCHED_MM_CID
1314 : int mm_cid; /* Current cid in mm */
1315 : int last_mm_cid; /* Most recent cid in mm */
1316 : int migrate_from_cpu;
1317 : int mm_cid_active; /* Whether cid bitmap is active */
1318 : struct callback_head cid_work;
1319 : #endif
1320 :
1321 : struct tlbflush_unmap_batch tlb_ubc;
1322 :
1323 : /* Cache last used pipe for splice(): */
1324 : struct pipe_inode_info *splice_pipe;
1325 :
1326 : struct page_frag task_frag;
1327 :
1328 : #ifdef CONFIG_TASK_DELAY_ACCT
1329 : struct task_delay_info *delays;
1330 : #endif
1331 :
1332 : #ifdef CONFIG_FAULT_INJECTION
1333 : int make_it_fail;
1334 : unsigned int fail_nth;
1335 : #endif
1336 : /*
1337 : * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1338 : * balance_dirty_pages() for a dirty throttling pause:
1339 : */
1340 : int nr_dirtied;
1341 : int nr_dirtied_pause;
1342 : /* Start of a write-and-pause period: */
1343 : unsigned long dirty_paused_when;
1344 :
1345 : #ifdef CONFIG_LATENCYTOP
1346 : int latency_record_count;
1347 : struct latency_record latency_record[LT_SAVECOUNT];
1348 : #endif
1349 : /*
1350 : * Time slack values; these are used to round up poll() and
1351 : * select() etc timeout values. These are in nanoseconds.
1352 : */
1353 : u64 timer_slack_ns;
1354 : u64 default_timer_slack_ns;
1355 :
1356 : #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1357 : unsigned int kasan_depth;
1358 : #endif
1359 :
1360 : #ifdef CONFIG_KCSAN
1361 : struct kcsan_ctx kcsan_ctx;
1362 : #ifdef CONFIG_TRACE_IRQFLAGS
1363 : struct irqtrace_events kcsan_save_irqtrace;
1364 : #endif
1365 : #ifdef CONFIG_KCSAN_WEAK_MEMORY
1366 : int kcsan_stack_depth;
1367 : #endif
1368 : #endif
1369 :
1370 : #ifdef CONFIG_KMSAN
1371 : struct kmsan_ctx kmsan_ctx;
1372 : #endif
1373 :
1374 : #if IS_ENABLED(CONFIG_KUNIT)
1375 : struct kunit *kunit_test;
1376 : #endif
1377 :
1378 : #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1379 : /* Index of current stored address in ret_stack: */
1380 : int curr_ret_stack;
1381 : int curr_ret_depth;
1382 :
1383 : /* Stack of return addresses for return function tracing: */
1384 : struct ftrace_ret_stack *ret_stack;
1385 :
1386 : /* Timestamp for last schedule: */
1387 : unsigned long long ftrace_timestamp;
1388 :
1389 : /*
1390 : * Number of functions that haven't been traced
1391 : * because of depth overrun:
1392 : */
1393 : atomic_t trace_overrun;
1394 :
1395 : /* Pause tracing: */
1396 : atomic_t tracing_graph_pause;
1397 : #endif
1398 :
1399 : #ifdef CONFIG_TRACING
1400 : /* Bitmask and counter of trace recursion: */
1401 : unsigned long trace_recursion;
1402 : #endif /* CONFIG_TRACING */
1403 :
1404 : #ifdef CONFIG_KCOV
1405 : /* See kernel/kcov.c for more details. */
1406 :
1407 : /* Coverage collection mode enabled for this task (0 if disabled): */
1408 : unsigned int kcov_mode;
1409 :
1410 : /* Size of the kcov_area: */
1411 : unsigned int kcov_size;
1412 :
1413 : /* Buffer for coverage collection: */
1414 : void *kcov_area;
1415 :
1416 : /* KCOV descriptor wired with this task or NULL: */
1417 : struct kcov *kcov;
1418 :
1419 : /* KCOV common handle for remote coverage collection: */
1420 : u64 kcov_handle;
1421 :
1422 : /* KCOV sequence number: */
1423 : int kcov_sequence;
1424 :
1425 : /* Collect coverage from softirq context: */
1426 : unsigned int kcov_softirq;
1427 : #endif
1428 :
1429 : #ifdef CONFIG_MEMCG
1430 : struct mem_cgroup *memcg_in_oom;
1431 : gfp_t memcg_oom_gfp_mask;
1432 : int memcg_oom_order;
1433 :
1434 : /* Number of pages to reclaim on returning to userland: */
1435 : unsigned int memcg_nr_pages_over_high;
1436 :
1437 : /* Used by memcontrol for targeted memcg charge: */
1438 : struct mem_cgroup *active_memcg;
1439 : #endif
1440 :
1441 : #ifdef CONFIG_BLK_CGROUP
1442 : struct gendisk *throttle_disk;
1443 : #endif
1444 :
1445 : #ifdef CONFIG_UPROBES
1446 : struct uprobe_task *utask;
1447 : #endif
1448 : #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1449 : unsigned int sequential_io;
1450 : unsigned int sequential_io_avg;
1451 : #endif
1452 : struct kmap_ctrl kmap_ctrl;
1453 : #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1454 : unsigned long task_state_change;
1455 : # ifdef CONFIG_PREEMPT_RT
1456 : unsigned long saved_state_change;
1457 : # endif
1458 : #endif
1459 : struct rcu_head rcu;
1460 : refcount_t rcu_users;
1461 : int pagefault_disabled;
1462 : #ifdef CONFIG_MMU
1463 : struct task_struct *oom_reaper_list;
1464 : struct timer_list oom_reaper_timer;
1465 : #endif
1466 : #ifdef CONFIG_VMAP_STACK
1467 : struct vm_struct *stack_vm_area;
1468 : #endif
1469 : #ifdef CONFIG_THREAD_INFO_IN_TASK
1470 : /* A live task holds one reference: */
1471 : refcount_t stack_refcount;
1472 : #endif
1473 : #ifdef CONFIG_LIVEPATCH
1474 : int patch_state;
1475 : #endif
1476 : #ifdef CONFIG_SECURITY
1477 : /* Used by LSM modules for access restriction: */
1478 : void *security;
1479 : #endif
1480 : #ifdef CONFIG_BPF_SYSCALL
1481 : /* Used by BPF task local storage */
1482 : struct bpf_local_storage __rcu *bpf_storage;
1483 : /* Used for BPF run context */
1484 : struct bpf_run_ctx *bpf_ctx;
1485 : #endif
1486 :
1487 : #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1488 : unsigned long lowest_stack;
1489 : unsigned long prev_lowest_stack;
1490 : #endif
1491 :
1492 : #ifdef CONFIG_X86_MCE
1493 : void __user *mce_vaddr;
1494 : __u64 mce_kflags;
1495 : u64 mce_addr;
1496 : __u64 mce_ripv : 1,
1497 : mce_whole_page : 1,
1498 : __mce_reserved : 62;
1499 : struct callback_head mce_kill_me;
1500 : int mce_count;
1501 : #endif
1502 :
1503 : #ifdef CONFIG_KRETPROBES
1504 : struct llist_head kretprobe_instances;
1505 : #endif
1506 : #ifdef CONFIG_RETHOOK
1507 : struct llist_head rethooks;
1508 : #endif
1509 :
1510 : #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1511 : /*
1512 : * If L1D flush is supported on mm context switch
1513 : * then we use this callback head to queue kill work
1514 : * to kill tasks that are not running on SMT disabled
1515 : * cores
1516 : */
1517 : struct callback_head l1d_flush_kill;
1518 : #endif
1519 :
1520 : #ifdef CONFIG_RV
1521 : /*
1522 : * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1523 : * If we find justification for more monitors, we can think
1524 : * about adding more or developing a dynamic method. So far,
1525 : * none of these are justified.
1526 : */
1527 : union rv_task_monitor rv[RV_PER_TASK_MONITORS];
1528 : #endif
1529 :
1530 : #ifdef CONFIG_USER_EVENTS
1531 : struct user_event_mm *user_event_mm;
1532 : #endif
1533 :
1534 : /*
1535 : * New fields for task_struct should be added above here, so that
1536 : * they are included in the randomized portion of task_struct.
1537 : */
1538 : randomized_struct_fields_end
1539 :
1540 : /* CPU-specific state of this task: */
1541 : struct thread_struct thread;
1542 :
1543 : /*
1544 : * WARNING: on x86, 'thread_struct' contains a variable-sized
1545 : * structure. It *MUST* be at the end of 'task_struct'.
1546 : *
1547 : * Do not put anything below here!
1548 : */
1549 : };
1550 :
1551 : static inline struct pid *task_pid(struct task_struct *task)
1552 : {
1553 104 : return task->thread_pid;
1554 : }
1555 :
1556 : /*
1557 : * the helpers to get the task's different pids as they are seen
1558 : * from various namespaces
1559 : *
1560 : * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1561 : * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1562 : * current.
1563 : * task_xid_nr_ns() : id seen from the ns specified;
1564 : *
1565 : * see also pid_nr() etc in include/linux/pid.h
1566 : */
1567 : pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1568 :
1569 : static inline pid_t task_pid_nr(struct task_struct *tsk)
1570 : {
1571 10306 : return tsk->pid;
1572 : }
1573 :
1574 : static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1575 : {
1576 28515405 : return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1577 : }
1578 :
1579 : static inline pid_t task_pid_vnr(struct task_struct *tsk)
1580 : {
1581 0 : return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1582 : }
1583 :
1584 :
1585 : static inline pid_t task_tgid_nr(struct task_struct *tsk)
1586 : {
1587 0 : return tsk->tgid;
1588 : }
1589 :
1590 : /**
1591 : * pid_alive - check that a task structure is not stale
1592 : * @p: Task structure to be checked.
1593 : *
1594 : * Test if a process is not yet dead (at most zombie state)
1595 : * If pid_alive fails, then pointers within the task structure
1596 : * can be stale and must not be dereferenced.
1597 : *
1598 : * Return: 1 if the process is alive. 0 otherwise.
1599 : */
1600 : static inline int pid_alive(const struct task_struct *p)
1601 : {
1602 : return p->thread_pid != NULL;
1603 : }
1604 :
1605 : static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1606 : {
1607 : return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1608 : }
1609 :
1610 : static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1611 : {
1612 0 : return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1613 : }
1614 :
1615 :
1616 : static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1617 : {
1618 : return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1619 : }
1620 :
1621 : static inline pid_t task_session_vnr(struct task_struct *tsk)
1622 : {
1623 0 : return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1624 : }
1625 :
1626 : static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1627 : {
1628 : return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1629 : }
1630 :
1631 : static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1632 : {
1633 19995 : return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1634 : }
1635 :
1636 : static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1637 : {
1638 : pid_t pid = 0;
1639 :
1640 : rcu_read_lock();
1641 : if (pid_alive(tsk))
1642 : pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1643 : rcu_read_unlock();
1644 :
1645 : return pid;
1646 : }
1647 :
1648 : static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1649 : {
1650 : return task_ppid_nr_ns(tsk, &init_pid_ns);
1651 : }
1652 :
1653 : /* Obsolete, do not use: */
1654 : static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1655 : {
1656 : return task_pgrp_nr_ns(tsk, &init_pid_ns);
1657 : }
1658 :
1659 : #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1660 : #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1661 :
1662 : static inline unsigned int __task_state_index(unsigned int tsk_state,
1663 : unsigned int tsk_exit_state)
1664 : {
1665 : unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1666 :
1667 : BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1668 :
1669 : if (tsk_state == TASK_IDLE)
1670 : state = TASK_REPORT_IDLE;
1671 :
1672 : /*
1673 : * We're lying here, but rather than expose a completely new task state
1674 : * to userspace, we can make this appear as if the task has gone through
1675 : * a regular rt_mutex_lock() call.
1676 : */
1677 : if (tsk_state == TASK_RTLOCK_WAIT)
1678 : state = TASK_UNINTERRUPTIBLE;
1679 :
1680 : return fls(state);
1681 : }
1682 :
1683 : static inline unsigned int task_state_index(struct task_struct *tsk)
1684 : {
1685 : return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1686 : }
1687 :
1688 : static inline char task_index_to_char(unsigned int state)
1689 : {
1690 : static const char state_char[] = "RSDTtXZPI";
1691 :
1692 : BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1693 :
1694 : return state_char[state];
1695 : }
1696 :
1697 : static inline char task_state_to_char(struct task_struct *tsk)
1698 : {
1699 : return task_index_to_char(task_state_index(tsk));
1700 : }
1701 :
1702 : /**
1703 : * is_global_init - check if a task structure is init. Since init
1704 : * is free to have sub-threads we need to check tgid.
1705 : * @tsk: Task structure to be checked.
1706 : *
1707 : * Check if a task structure is the first user space task the kernel created.
1708 : *
1709 : * Return: 1 if the task structure is init. 0 otherwise.
1710 : */
1711 : static inline int is_global_init(struct task_struct *tsk)
1712 : {
1713 : return task_tgid_nr(tsk) == 1;
1714 : }
1715 :
1716 : extern struct pid *cad_pid;
1717 :
1718 : /*
1719 : * Per process flags
1720 : */
1721 : #define PF_VCPU 0x00000001 /* I'm a virtual CPU */
1722 : #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1723 : #define PF_EXITING 0x00000004 /* Getting shut down */
1724 : #define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
1725 : #define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
1726 : #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1727 : #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1728 : #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1729 : #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1730 : #define PF_DUMPCORE 0x00000200 /* Dumped core */
1731 : #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1732 : #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1733 : #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1734 : #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1735 : #define PF_USER_WORKER 0x00004000 /* Kernel thread cloned from userspace thread */
1736 : #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1737 : #define PF__HOLE__00010000 0x00010000
1738 : #define PF_KSWAPD 0x00020000 /* I am kswapd */
1739 : #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1740 : #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1741 : #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1742 : * I am cleaning dirty pages from some other bdi. */
1743 : #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1744 : #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1745 : #define PF__HOLE__00800000 0x00800000
1746 : #define PF__HOLE__01000000 0x01000000
1747 : #define PF__HOLE__02000000 0x02000000
1748 : #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1749 : #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1750 : #define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
1751 : #define PF__HOLE__20000000 0x20000000
1752 : #define PF__HOLE__40000000 0x40000000
1753 : #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1754 :
1755 : /*
1756 : * Only the _current_ task can read/write to tsk->flags, but other
1757 : * tasks can access tsk->flags in readonly mode for example
1758 : * with tsk_used_math (like during threaded core dumping).
1759 : * There is however an exception to this rule during ptrace
1760 : * or during fork: the ptracer task is allowed to write to the
1761 : * child->flags of its traced child (same goes for fork, the parent
1762 : * can write to the child->flags), because we're guaranteed the
1763 : * child is not running and in turn not changing child->flags
1764 : * at the same time the parent does it.
1765 : */
1766 : #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1767 : #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1768 : #define clear_used_math() clear_stopped_child_used_math(current)
1769 : #define set_used_math() set_stopped_child_used_math(current)
1770 :
1771 : #define conditional_stopped_child_used_math(condition, child) \
1772 : do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1773 :
1774 : #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1775 :
1776 : #define copy_to_stopped_child_used_math(child) \
1777 : do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1778 :
1779 : /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1780 : #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1781 : #define used_math() tsk_used_math(current)
1782 :
1783 : static __always_inline bool is_percpu_thread(void)
1784 : {
1785 : #ifdef CONFIG_SMP
1786 : return (current->flags & PF_NO_SETAFFINITY) &&
1787 : (current->nr_cpus_allowed == 1);
1788 : #else
1789 : return true;
1790 : #endif
1791 : }
1792 :
1793 : /* Per-process atomic flags. */
1794 : #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1795 : #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1796 : #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1797 : #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1798 : #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1799 : #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1800 : #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1801 : #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1802 :
1803 : #define TASK_PFA_TEST(name, func) \
1804 : static inline bool task_##func(struct task_struct *p) \
1805 : { return test_bit(PFA_##name, &p->atomic_flags); }
1806 :
1807 : #define TASK_PFA_SET(name, func) \
1808 : static inline void task_set_##func(struct task_struct *p) \
1809 : { set_bit(PFA_##name, &p->atomic_flags); }
1810 :
1811 : #define TASK_PFA_CLEAR(name, func) \
1812 : static inline void task_clear_##func(struct task_struct *p) \
1813 : { clear_bit(PFA_##name, &p->atomic_flags); }
1814 :
1815 60556338 : TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1816 : TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1817 :
1818 2512923852 : TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1819 : TASK_PFA_SET(SPREAD_PAGE, spread_page)
1820 : TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1821 :
1822 : TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1823 : TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1824 : TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1825 :
1826 : TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1827 : TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1828 : TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1829 :
1830 : TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1831 : TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1832 : TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1833 :
1834 : TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1835 : TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1836 :
1837 : TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1838 : TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1839 : TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1840 :
1841 : TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1842 : TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1843 :
1844 : static inline void
1845 : current_restore_flags(unsigned long orig_flags, unsigned long flags)
1846 : {
1847 : current->flags &= ~flags;
1848 : current->flags |= orig_flags & flags;
1849 : }
1850 :
1851 : extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1852 : extern int task_can_attach(struct task_struct *p);
1853 : extern int dl_bw_alloc(int cpu, u64 dl_bw);
1854 : extern void dl_bw_free(int cpu, u64 dl_bw);
1855 : #ifdef CONFIG_SMP
1856 : extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1857 : extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1858 : extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1859 : extern void release_user_cpus_ptr(struct task_struct *p);
1860 : extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1861 : extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1862 : extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1863 : #else
1864 : static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1865 : {
1866 : }
1867 : static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1868 : {
1869 : if (!cpumask_test_cpu(0, new_mask))
1870 : return -EINVAL;
1871 : return 0;
1872 : }
1873 : static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1874 : {
1875 : if (src->user_cpus_ptr)
1876 : return -EINVAL;
1877 : return 0;
1878 : }
1879 : static inline void release_user_cpus_ptr(struct task_struct *p)
1880 : {
1881 : WARN_ON(p->user_cpus_ptr);
1882 : }
1883 :
1884 : static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1885 : {
1886 : return 0;
1887 : }
1888 : #endif
1889 :
1890 : extern int yield_to(struct task_struct *p, bool preempt);
1891 : extern void set_user_nice(struct task_struct *p, long nice);
1892 : extern int task_prio(const struct task_struct *p);
1893 :
1894 : /**
1895 : * task_nice - return the nice value of a given task.
1896 : * @p: the task in question.
1897 : *
1898 : * Return: The nice value [ -20 ... 0 ... 19 ].
1899 : */
1900 : static inline int task_nice(const struct task_struct *p)
1901 : {
1902 3672336 : return PRIO_TO_NICE((p)->static_prio);
1903 : }
1904 :
1905 : extern int can_nice(const struct task_struct *p, const int nice);
1906 : extern int task_curr(const struct task_struct *p);
1907 : extern int idle_cpu(int cpu);
1908 : extern int available_idle_cpu(int cpu);
1909 : extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1910 : extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1911 : extern void sched_set_fifo(struct task_struct *p);
1912 : extern void sched_set_fifo_low(struct task_struct *p);
1913 : extern void sched_set_normal(struct task_struct *p, int nice);
1914 : extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1915 : extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1916 : extern struct task_struct *idle_task(int cpu);
1917 :
1918 : /**
1919 : * is_idle_task - is the specified task an idle task?
1920 : * @p: the task in question.
1921 : *
1922 : * Return: 1 if @p is an idle task. 0 otherwise.
1923 : */
1924 : static __always_inline bool is_idle_task(const struct task_struct *p)
1925 : {
1926 : return !!(p->flags & PF_IDLE);
1927 : }
1928 :
1929 : extern struct task_struct *curr_task(int cpu);
1930 : extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1931 :
1932 : void yield(void);
1933 :
1934 : union thread_union {
1935 : #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1936 : struct task_struct task;
1937 : #endif
1938 : #ifndef CONFIG_THREAD_INFO_IN_TASK
1939 : struct thread_info thread_info;
1940 : #endif
1941 : unsigned long stack[THREAD_SIZE/sizeof(long)];
1942 : };
1943 :
1944 : #ifndef CONFIG_THREAD_INFO_IN_TASK
1945 : extern struct thread_info init_thread_info;
1946 : #endif
1947 :
1948 : extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1949 :
1950 : #ifdef CONFIG_THREAD_INFO_IN_TASK
1951 : # define task_thread_info(task) (&(task)->thread_info)
1952 : #elif !defined(__HAVE_THREAD_FUNCTIONS)
1953 : # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1954 : #endif
1955 :
1956 : /*
1957 : * find a task by one of its numerical ids
1958 : *
1959 : * find_task_by_pid_ns():
1960 : * finds a task by its pid in the specified namespace
1961 : * find_task_by_vpid():
1962 : * finds a task by its virtual pid
1963 : *
1964 : * see also find_vpid() etc in include/linux/pid.h
1965 : */
1966 :
1967 : extern struct task_struct *find_task_by_vpid(pid_t nr);
1968 : extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1969 :
1970 : /*
1971 : * find a task by its virtual pid and get the task struct
1972 : */
1973 : extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1974 :
1975 : extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1976 : extern int wake_up_process(struct task_struct *tsk);
1977 : extern void wake_up_new_task(struct task_struct *tsk);
1978 :
1979 : #ifdef CONFIG_SMP
1980 : extern void kick_process(struct task_struct *tsk);
1981 : #else
1982 : static inline void kick_process(struct task_struct *tsk) { }
1983 : #endif
1984 :
1985 : extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1986 :
1987 : static inline void set_task_comm(struct task_struct *tsk, const char *from)
1988 : {
1989 : __set_task_comm(tsk, from, false);
1990 : }
1991 :
1992 : extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1993 : #define get_task_comm(buf, tsk) ({ \
1994 : BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1995 : __get_task_comm(buf, sizeof(buf), tsk); \
1996 : })
1997 :
1998 : #ifdef CONFIG_SMP
1999 : static __always_inline void scheduler_ipi(void)
2000 : {
2001 : /*
2002 : * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2003 : * TIF_NEED_RESCHED remotely (for the first time) will also send
2004 : * this IPI.
2005 : */
2006 : preempt_fold_need_resched();
2007 : }
2008 : #else
2009 : static inline void scheduler_ipi(void) { }
2010 : #endif
2011 :
2012 : extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2013 :
2014 : /*
2015 : * Set thread flags in other task's structures.
2016 : * See asm/thread_info.h for TIF_xxxx flags available:
2017 : */
2018 : static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2019 : {
2020 : set_ti_thread_flag(task_thread_info(tsk), flag);
2021 : }
2022 :
2023 : static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2024 : {
2025 20001 : clear_ti_thread_flag(task_thread_info(tsk), flag);
2026 : }
2027 :
2028 : static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2029 : bool value)
2030 : {
2031 : update_ti_thread_flag(task_thread_info(tsk), flag, value);
2032 : }
2033 :
2034 : static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2035 : {
2036 : return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2037 : }
2038 :
2039 : static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2040 : {
2041 : return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2042 : }
2043 :
2044 : static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2045 : {
2046 61016424593 : return test_ti_thread_flag(task_thread_info(tsk), flag);
2047 : }
2048 :
2049 : static inline void set_tsk_need_resched(struct task_struct *tsk)
2050 : {
2051 : set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2052 : }
2053 :
2054 : static inline void clear_tsk_need_resched(struct task_struct *tsk)
2055 : {
2056 : clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2057 : }
2058 :
2059 : static inline int test_tsk_need_resched(struct task_struct *tsk)
2060 : {
2061 : return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2062 : }
2063 :
2064 : /*
2065 : * cond_resched() and cond_resched_lock(): latency reduction via
2066 : * explicit rescheduling in places that are safe. The return
2067 : * value indicates whether a reschedule was done in fact.
2068 : * cond_resched_lock() will drop the spinlock before scheduling,
2069 : */
2070 : #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2071 : extern int __cond_resched(void);
2072 :
2073 : #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2074 :
2075 : void sched_dynamic_klp_enable(void);
2076 : void sched_dynamic_klp_disable(void);
2077 :
2078 : DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2079 :
2080 : static __always_inline int _cond_resched(void)
2081 : {
2082 31491135251 : return static_call_mod(cond_resched)();
2083 : }
2084 :
2085 : #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2086 :
2087 : extern int dynamic_cond_resched(void);
2088 :
2089 : static __always_inline int _cond_resched(void)
2090 : {
2091 : return dynamic_cond_resched();
2092 : }
2093 :
2094 : #else /* !CONFIG_PREEMPTION */
2095 :
2096 : static inline int _cond_resched(void)
2097 : {
2098 : klp_sched_try_switch();
2099 : return __cond_resched();
2100 : }
2101 :
2102 : #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2103 :
2104 : #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2105 :
2106 : static inline int _cond_resched(void)
2107 : {
2108 : klp_sched_try_switch();
2109 : return 0;
2110 : }
2111 :
2112 : #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2113 :
2114 : #define cond_resched() ({ \
2115 : __might_resched(__FILE__, __LINE__, 0); \
2116 : _cond_resched(); \
2117 : })
2118 :
2119 : extern int __cond_resched_lock(spinlock_t *lock);
2120 : extern int __cond_resched_rwlock_read(rwlock_t *lock);
2121 : extern int __cond_resched_rwlock_write(rwlock_t *lock);
2122 :
2123 : #define MIGHT_RESCHED_RCU_SHIFT 8
2124 : #define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2125 :
2126 : #ifndef CONFIG_PREEMPT_RT
2127 : /*
2128 : * Non RT kernels have an elevated preempt count due to the held lock,
2129 : * but are not allowed to be inside a RCU read side critical section
2130 : */
2131 : # define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
2132 : #else
2133 : /*
2134 : * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2135 : * cond_resched*lock() has to take that into account because it checks for
2136 : * preempt_count() and rcu_preempt_depth().
2137 : */
2138 : # define PREEMPT_LOCK_RESCHED_OFFSETS \
2139 : (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2140 : #endif
2141 :
2142 : #define cond_resched_lock(lock) ({ \
2143 : __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2144 : __cond_resched_lock(lock); \
2145 : })
2146 :
2147 : #define cond_resched_rwlock_read(lock) ({ \
2148 : __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2149 : __cond_resched_rwlock_read(lock); \
2150 : })
2151 :
2152 : #define cond_resched_rwlock_write(lock) ({ \
2153 : __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2154 : __cond_resched_rwlock_write(lock); \
2155 : })
2156 :
2157 0 : static inline void cond_resched_rcu(void)
2158 : {
2159 : #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2160 0 : rcu_read_unlock();
2161 0 : cond_resched();
2162 0 : rcu_read_lock();
2163 : #endif
2164 0 : }
2165 :
2166 : #ifdef CONFIG_PREEMPT_DYNAMIC
2167 :
2168 : extern bool preempt_model_none(void);
2169 : extern bool preempt_model_voluntary(void);
2170 : extern bool preempt_model_full(void);
2171 :
2172 : #else
2173 :
2174 : static inline bool preempt_model_none(void)
2175 : {
2176 : return IS_ENABLED(CONFIG_PREEMPT_NONE);
2177 : }
2178 : static inline bool preempt_model_voluntary(void)
2179 : {
2180 : return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2181 : }
2182 : static inline bool preempt_model_full(void)
2183 : {
2184 : return IS_ENABLED(CONFIG_PREEMPT);
2185 : }
2186 :
2187 : #endif
2188 :
2189 : static inline bool preempt_model_rt(void)
2190 : {
2191 : return IS_ENABLED(CONFIG_PREEMPT_RT);
2192 : }
2193 :
2194 : /*
2195 : * Does the preemption model allow non-cooperative preemption?
2196 : *
2197 : * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2198 : * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2199 : * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2200 : * PREEMPT_NONE model.
2201 : */
2202 : static inline bool preempt_model_preemptible(void)
2203 : {
2204 : return preempt_model_full() || preempt_model_rt();
2205 : }
2206 :
2207 : /*
2208 : * Does a critical section need to be broken due to another
2209 : * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2210 : * but a general need for low latency)
2211 : */
2212 : static inline int spin_needbreak(spinlock_t *lock)
2213 : {
2214 : #ifdef CONFIG_PREEMPTION
2215 389395 : return spin_is_contended(lock);
2216 : #else
2217 : return 0;
2218 : #endif
2219 : }
2220 :
2221 : /*
2222 : * Check if a rwlock is contended.
2223 : * Returns non-zero if there is another task waiting on the rwlock.
2224 : * Returns zero if the lock is not contended or the system / underlying
2225 : * rwlock implementation does not support contention detection.
2226 : * Technically does not depend on CONFIG_PREEMPTION, but a general need
2227 : * for low latency.
2228 : */
2229 : static inline int rwlock_needbreak(rwlock_t *lock)
2230 : {
2231 : #ifdef CONFIG_PREEMPTION
2232 : return rwlock_is_contended(lock);
2233 : #else
2234 : return 0;
2235 : #endif
2236 : }
2237 :
2238 : static __always_inline bool need_resched(void)
2239 : {
2240 563915974 : return unlikely(tif_need_resched());
2241 : }
2242 :
2243 : /*
2244 : * Wrappers for p->thread_info->cpu access. No-op on UP.
2245 : */
2246 : #ifdef CONFIG_SMP
2247 :
2248 : static inline unsigned int task_cpu(const struct task_struct *p)
2249 : {
2250 : return READ_ONCE(task_thread_info(p)->cpu);
2251 : }
2252 :
2253 : extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2254 :
2255 : #else
2256 :
2257 : static inline unsigned int task_cpu(const struct task_struct *p)
2258 : {
2259 : return 0;
2260 : }
2261 :
2262 : static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2263 : {
2264 : }
2265 :
2266 : #endif /* CONFIG_SMP */
2267 :
2268 : extern bool sched_task_on_rq(struct task_struct *p);
2269 : extern unsigned long get_wchan(struct task_struct *p);
2270 : extern struct task_struct *cpu_curr_snapshot(int cpu);
2271 :
2272 : /*
2273 : * In order to reduce various lock holder preemption latencies provide an
2274 : * interface to see if a vCPU is currently running or not.
2275 : *
2276 : * This allows us to terminate optimistic spin loops and block, analogous to
2277 : * the native optimistic spin heuristic of testing if the lock owner task is
2278 : * running or not.
2279 : */
2280 : #ifndef vcpu_is_preempted
2281 : static inline bool vcpu_is_preempted(int cpu)
2282 : {
2283 : return false;
2284 : }
2285 : #endif
2286 :
2287 : extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2288 : extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2289 :
2290 : #ifndef TASK_SIZE_OF
2291 : #define TASK_SIZE_OF(tsk) TASK_SIZE
2292 : #endif
2293 :
2294 : #ifdef CONFIG_SMP
2295 : static inline bool owner_on_cpu(struct task_struct *owner)
2296 : {
2297 : /*
2298 : * As lock holder preemption issue, we both skip spinning if
2299 : * task is not on cpu or its cpu is preempted
2300 : */
2301 : return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2302 : }
2303 :
2304 : /* Returns effective CPU energy utilization, as seen by the scheduler */
2305 : unsigned long sched_cpu_util(int cpu);
2306 : #endif /* CONFIG_SMP */
2307 :
2308 : #ifdef CONFIG_RSEQ
2309 :
2310 : /*
2311 : * Map the event mask on the user-space ABI enum rseq_cs_flags
2312 : * for direct mask checks.
2313 : */
2314 : enum rseq_event_mask_bits {
2315 : RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2316 : RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2317 : RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2318 : };
2319 :
2320 : enum rseq_event_mask {
2321 : RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2322 : RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2323 : RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2324 : };
2325 :
2326 : static inline void rseq_set_notify_resume(struct task_struct *t)
2327 : {
2328 : if (t->rseq)
2329 : set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2330 : }
2331 :
2332 : void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2333 :
2334 : static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2335 : struct pt_regs *regs)
2336 : {
2337 : if (current->rseq)
2338 : __rseq_handle_notify_resume(ksig, regs);
2339 : }
2340 :
2341 : static inline void rseq_signal_deliver(struct ksignal *ksig,
2342 : struct pt_regs *regs)
2343 : {
2344 : preempt_disable();
2345 : __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
2346 : preempt_enable();
2347 : rseq_handle_notify_resume(ksig, regs);
2348 : }
2349 :
2350 : /* rseq_preempt() requires preemption to be disabled. */
2351 : static inline void rseq_preempt(struct task_struct *t)
2352 : {
2353 : __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2354 : rseq_set_notify_resume(t);
2355 : }
2356 :
2357 : /* rseq_migrate() requires preemption to be disabled. */
2358 : static inline void rseq_migrate(struct task_struct *t)
2359 : {
2360 : __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2361 : rseq_set_notify_resume(t);
2362 : }
2363 :
2364 : /*
2365 : * If parent process has a registered restartable sequences area, the
2366 : * child inherits. Unregister rseq for a clone with CLONE_VM set.
2367 : */
2368 : static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2369 : {
2370 : if (clone_flags & CLONE_VM) {
2371 : t->rseq = NULL;
2372 : t->rseq_len = 0;
2373 : t->rseq_sig = 0;
2374 : t->rseq_event_mask = 0;
2375 : } else {
2376 : t->rseq = current->rseq;
2377 : t->rseq_len = current->rseq_len;
2378 : t->rseq_sig = current->rseq_sig;
2379 : t->rseq_event_mask = current->rseq_event_mask;
2380 : }
2381 : }
2382 :
2383 : static inline void rseq_execve(struct task_struct *t)
2384 : {
2385 : t->rseq = NULL;
2386 : t->rseq_len = 0;
2387 : t->rseq_sig = 0;
2388 : t->rseq_event_mask = 0;
2389 : }
2390 :
2391 : #else
2392 :
2393 : static inline void rseq_set_notify_resume(struct task_struct *t)
2394 : {
2395 : }
2396 : static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2397 : struct pt_regs *regs)
2398 : {
2399 : }
2400 : static inline void rseq_signal_deliver(struct ksignal *ksig,
2401 : struct pt_regs *regs)
2402 : {
2403 : }
2404 : static inline void rseq_preempt(struct task_struct *t)
2405 : {
2406 : }
2407 : static inline void rseq_migrate(struct task_struct *t)
2408 : {
2409 : }
2410 : static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2411 : {
2412 : }
2413 : static inline void rseq_execve(struct task_struct *t)
2414 : {
2415 : }
2416 :
2417 : #endif
2418 :
2419 : #ifdef CONFIG_DEBUG_RSEQ
2420 :
2421 : void rseq_syscall(struct pt_regs *regs);
2422 :
2423 : #else
2424 :
2425 : static inline void rseq_syscall(struct pt_regs *regs)
2426 : {
2427 : }
2428 :
2429 : #endif
2430 :
2431 : #ifdef CONFIG_SCHED_CORE
2432 : extern void sched_core_free(struct task_struct *tsk);
2433 : extern void sched_core_fork(struct task_struct *p);
2434 : extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2435 : unsigned long uaddr);
2436 : #else
2437 : static inline void sched_core_free(struct task_struct *tsk) { }
2438 : static inline void sched_core_fork(struct task_struct *p) { }
2439 : #endif
2440 :
2441 : extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2442 :
2443 : #endif
|