LCOV - code coverage report
Current view: top level - include/linux - slab.h (source / functions) Hit Total Coverage
Test: fstests of 6.5.0-rc3-djwx @ Mon Jul 31 20:08:22 PDT 2023 Lines: 41 43 95.3 %
Date: 2023-07-31 20:08:22 Functions: 2 2 100.0 %

          Line data    Source code
       1             : /* SPDX-License-Identifier: GPL-2.0 */
       2             : /*
       3             :  * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
       4             :  *
       5             :  * (C) SGI 2006, Christoph Lameter
       6             :  *      Cleaned up and restructured to ease the addition of alternative
       7             :  *      implementations of SLAB allocators.
       8             :  * (C) Linux Foundation 2008-2013
       9             :  *      Unified interface for all slab allocators
      10             :  */
      11             : 
      12             : #ifndef _LINUX_SLAB_H
      13             : #define _LINUX_SLAB_H
      14             : 
      15             : #include <linux/cache.h>
      16             : #include <linux/gfp.h>
      17             : #include <linux/overflow.h>
      18             : #include <linux/types.h>
      19             : #include <linux/workqueue.h>
      20             : #include <linux/percpu-refcount.h>
      21             : #include <linux/cleanup.h>
      22             : 
      23             : 
      24             : /*
      25             :  * Flags to pass to kmem_cache_create().
      26             :  * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
      27             :  */
      28             : /* DEBUG: Perform (expensive) checks on alloc/free */
      29             : #define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U)
      30             : /* DEBUG: Red zone objs in a cache */
      31             : #define SLAB_RED_ZONE           ((slab_flags_t __force)0x00000400U)
      32             : /* DEBUG: Poison objects */
      33             : #define SLAB_POISON             ((slab_flags_t __force)0x00000800U)
      34             : /* Indicate a kmalloc slab */
      35             : #define SLAB_KMALLOC            ((slab_flags_t __force)0x00001000U)
      36             : /* Align objs on cache lines */
      37             : #define SLAB_HWCACHE_ALIGN      ((slab_flags_t __force)0x00002000U)
      38             : /* Use GFP_DMA memory */
      39             : #define SLAB_CACHE_DMA          ((slab_flags_t __force)0x00004000U)
      40             : /* Use GFP_DMA32 memory */
      41             : #define SLAB_CACHE_DMA32        ((slab_flags_t __force)0x00008000U)
      42             : /* DEBUG: Store the last owner for bug hunting */
      43             : #define SLAB_STORE_USER         ((slab_flags_t __force)0x00010000U)
      44             : /* Panic if kmem_cache_create() fails */
      45             : #define SLAB_PANIC              ((slab_flags_t __force)0x00040000U)
      46             : /*
      47             :  * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
      48             :  *
      49             :  * This delays freeing the SLAB page by a grace period, it does _NOT_
      50             :  * delay object freeing. This means that if you do kmem_cache_free()
      51             :  * that memory location is free to be reused at any time. Thus it may
      52             :  * be possible to see another object there in the same RCU grace period.
      53             :  *
      54             :  * This feature only ensures the memory location backing the object
      55             :  * stays valid, the trick to using this is relying on an independent
      56             :  * object validation pass. Something like:
      57             :  *
      58             :  * begin:
      59             :  *  rcu_read_lock();
      60             :  *  obj = lockless_lookup(key);
      61             :  *  if (obj) {
      62             :  *    if (!try_get_ref(obj)) // might fail for free objects
      63             :  *      rcu_read_unlock();
      64             :  *      goto begin;
      65             :  *
      66             :  *    if (obj->key != key) { // not the object we expected
      67             :  *      put_ref(obj);
      68             :  *      rcu_read_unlock();
      69             :  *      goto begin;
      70             :  *    }
      71             :  *  }
      72             :  *  rcu_read_unlock();
      73             :  *
      74             :  * This is useful if we need to approach a kernel structure obliquely,
      75             :  * from its address obtained without the usual locking. We can lock
      76             :  * the structure to stabilize it and check it's still at the given address,
      77             :  * only if we can be sure that the memory has not been meanwhile reused
      78             :  * for some other kind of object (which our subsystem's lock might corrupt).
      79             :  *
      80             :  * rcu_read_lock before reading the address, then rcu_read_unlock after
      81             :  * taking the spinlock within the structure expected at that address.
      82             :  *
      83             :  * Note that it is not possible to acquire a lock within a structure
      84             :  * allocated with SLAB_TYPESAFE_BY_RCU without first acquiring a reference
      85             :  * as described above.  The reason is that SLAB_TYPESAFE_BY_RCU pages
      86             :  * are not zeroed before being given to the slab, which means that any
      87             :  * locks must be initialized after each and every kmem_struct_alloc().
      88             :  * Alternatively, make the ctor passed to kmem_cache_create() initialize
      89             :  * the locks at page-allocation time, as is done in __i915_request_ctor(),
      90             :  * sighand_ctor(), and anon_vma_ctor().  Such a ctor permits readers
      91             :  * to safely acquire those ctor-initialized locks under rcu_read_lock()
      92             :  * protection.
      93             :  *
      94             :  * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
      95             :  */
      96             : /* Defer freeing slabs to RCU */
      97             : #define SLAB_TYPESAFE_BY_RCU    ((slab_flags_t __force)0x00080000U)
      98             : /* Spread some memory over cpuset */
      99             : #define SLAB_MEM_SPREAD         ((slab_flags_t __force)0x00100000U)
     100             : /* Trace allocations and frees */
     101             : #define SLAB_TRACE              ((slab_flags_t __force)0x00200000U)
     102             : 
     103             : /* Flag to prevent checks on free */
     104             : #ifdef CONFIG_DEBUG_OBJECTS
     105             : # define SLAB_DEBUG_OBJECTS     ((slab_flags_t __force)0x00400000U)
     106             : #else
     107             : # define SLAB_DEBUG_OBJECTS     0
     108             : #endif
     109             : 
     110             : /* Avoid kmemleak tracing */
     111             : #define SLAB_NOLEAKTRACE        ((slab_flags_t __force)0x00800000U)
     112             : 
     113             : /*
     114             :  * Prevent merging with compatible kmem caches. This flag should be used
     115             :  * cautiously. Valid use cases:
     116             :  *
     117             :  * - caches created for self-tests (e.g. kunit)
     118             :  * - general caches created and used by a subsystem, only when a
     119             :  *   (subsystem-specific) debug option is enabled
     120             :  * - performance critical caches, should be very rare and consulted with slab
     121             :  *   maintainers, and not used together with CONFIG_SLUB_TINY
     122             :  */
     123             : #define SLAB_NO_MERGE           ((slab_flags_t __force)0x01000000U)
     124             : 
     125             : /* Fault injection mark */
     126             : #ifdef CONFIG_FAILSLAB
     127             : # define SLAB_FAILSLAB          ((slab_flags_t __force)0x02000000U)
     128             : #else
     129             : # define SLAB_FAILSLAB          0
     130             : #endif
     131             : /* Account to memcg */
     132             : #ifdef CONFIG_MEMCG_KMEM
     133             : # define SLAB_ACCOUNT           ((slab_flags_t __force)0x04000000U)
     134             : #else
     135             : # define SLAB_ACCOUNT           0
     136             : #endif
     137             : 
     138             : #ifdef CONFIG_KASAN_GENERIC
     139             : #define SLAB_KASAN              ((slab_flags_t __force)0x08000000U)
     140             : #else
     141             : #define SLAB_KASAN              0
     142             : #endif
     143             : 
     144             : /*
     145             :  * Ignore user specified debugging flags.
     146             :  * Intended for caches created for self-tests so they have only flags
     147             :  * specified in the code and other flags are ignored.
     148             :  */
     149             : #define SLAB_NO_USER_FLAGS      ((slab_flags_t __force)0x10000000U)
     150             : 
     151             : #ifdef CONFIG_KFENCE
     152             : #define SLAB_SKIP_KFENCE        ((slab_flags_t __force)0x20000000U)
     153             : #else
     154             : #define SLAB_SKIP_KFENCE        0
     155             : #endif
     156             : 
     157             : /* The following flags affect the page allocator grouping pages by mobility */
     158             : /* Objects are reclaimable */
     159             : #ifndef CONFIG_SLUB_TINY
     160             : #define SLAB_RECLAIM_ACCOUNT    ((slab_flags_t __force)0x00020000U)
     161             : #else
     162             : #define SLAB_RECLAIM_ACCOUNT    ((slab_flags_t __force)0)
     163             : #endif
     164             : #define SLAB_TEMPORARY          SLAB_RECLAIM_ACCOUNT    /* Objects are short-lived */
     165             : 
     166             : /*
     167             :  * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
     168             :  *
     169             :  * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
     170             :  *
     171             :  * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
     172             :  * Both make kfree a no-op.
     173             :  */
     174             : #define ZERO_SIZE_PTR ((void *)16)
     175             : 
     176             : #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
     177             :                                 (unsigned long)ZERO_SIZE_PTR)
     178             : 
     179             : #include <linux/kasan.h>
     180             : 
     181             : struct list_lru;
     182             : struct mem_cgroup;
     183             : /*
     184             :  * struct kmem_cache related prototypes
     185             :  */
     186             : bool slab_is_available(void);
     187             : 
     188             : struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
     189             :                         unsigned int align, slab_flags_t flags,
     190             :                         void (*ctor)(void *));
     191             : struct kmem_cache *kmem_cache_create_usercopy(const char *name,
     192             :                         unsigned int size, unsigned int align,
     193             :                         slab_flags_t flags,
     194             :                         unsigned int useroffset, unsigned int usersize,
     195             :                         void (*ctor)(void *));
     196             : void kmem_cache_destroy(struct kmem_cache *s);
     197             : int kmem_cache_shrink(struct kmem_cache *s);
     198             : 
     199             : /*
     200             :  * Please use this macro to create slab caches. Simply specify the
     201             :  * name of the structure and maybe some flags that are listed above.
     202             :  *
     203             :  * The alignment of the struct determines object alignment. If you
     204             :  * f.e. add ____cacheline_aligned_in_smp to the struct declaration
     205             :  * then the objects will be properly aligned in SMP configurations.
     206             :  */
     207             : #define KMEM_CACHE(__struct, __flags)                                   \
     208             :                 kmem_cache_create(#__struct, sizeof(struct __struct),   \
     209             :                         __alignof__(struct __struct), (__flags), NULL)
     210             : 
     211             : /*
     212             :  * To whitelist a single field for copying to/from usercopy, use this
     213             :  * macro instead for KMEM_CACHE() above.
     214             :  */
     215             : #define KMEM_CACHE_USERCOPY(__struct, __flags, __field)                 \
     216             :                 kmem_cache_create_usercopy(#__struct,                   \
     217             :                         sizeof(struct __struct),                        \
     218             :                         __alignof__(struct __struct), (__flags),        \
     219             :                         offsetof(struct __struct, __field),             \
     220             :                         sizeof_field(struct __struct, __field), NULL)
     221             : 
     222             : /*
     223             :  * Common kmalloc functions provided by all allocators
     224             :  */
     225             : void * __must_check krealloc(const void *objp, size_t new_size, gfp_t flags) __realloc_size(2);
     226             : void kfree(const void *objp);
     227             : void kfree_sensitive(const void *objp);
     228             : size_t __ksize(const void *objp);
     229             : 
     230             : DEFINE_FREE(kfree, void *, if (_T) kfree(_T))
     231             : 
     232             : /**
     233             :  * ksize - Report actual allocation size of associated object
     234             :  *
     235             :  * @objp: Pointer returned from a prior kmalloc()-family allocation.
     236             :  *
     237             :  * This should not be used for writing beyond the originally requested
     238             :  * allocation size. Either use krealloc() or round up the allocation size
     239             :  * with kmalloc_size_roundup() prior to allocation. If this is used to
     240             :  * access beyond the originally requested allocation size, UBSAN_BOUNDS
     241             :  * and/or FORTIFY_SOURCE may trip, since they only know about the
     242             :  * originally allocated size via the __alloc_size attribute.
     243             :  */
     244             : size_t ksize(const void *objp);
     245             : 
     246             : #ifdef CONFIG_PRINTK
     247             : bool kmem_valid_obj(void *object);
     248             : void kmem_dump_obj(void *object);
     249             : #endif
     250             : 
     251             : /*
     252             :  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
     253             :  * alignment larger than the alignment of a 64-bit integer.
     254             :  * Setting ARCH_DMA_MINALIGN in arch headers allows that.
     255             :  */
     256             : #ifdef ARCH_HAS_DMA_MINALIGN
     257             : #if ARCH_DMA_MINALIGN > 8 && !defined(ARCH_KMALLOC_MINALIGN)
     258             : #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
     259             : #endif
     260             : #endif
     261             : 
     262             : #ifndef ARCH_KMALLOC_MINALIGN
     263             : #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
     264             : #elif ARCH_KMALLOC_MINALIGN > 8
     265             : #define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN
     266             : #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
     267             : #endif
     268             : 
     269             : /*
     270             :  * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
     271             :  * Intended for arches that get misalignment faults even for 64 bit integer
     272             :  * aligned buffers.
     273             :  */
     274             : #ifndef ARCH_SLAB_MINALIGN
     275             : #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
     276             : #endif
     277             : 
     278             : /*
     279             :  * Arches can define this function if they want to decide the minimum slab
     280             :  * alignment at runtime. The value returned by the function must be a power
     281             :  * of two and >= ARCH_SLAB_MINALIGN.
     282             :  */
     283             : #ifndef arch_slab_minalign
     284             : static inline unsigned int arch_slab_minalign(void)
     285             : {
     286             :         return ARCH_SLAB_MINALIGN;
     287             : }
     288             : #endif
     289             : 
     290             : /*
     291             :  * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN.
     292             :  * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN
     293             :  * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment.
     294             :  */
     295             : #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
     296             : #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
     297             : #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
     298             : 
     299             : /*
     300             :  * Kmalloc array related definitions
     301             :  */
     302             : 
     303             : #ifdef CONFIG_SLAB
     304             : /*
     305             :  * SLAB and SLUB directly allocates requests fitting in to an order-1 page
     306             :  * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
     307             :  */
     308             : #define KMALLOC_SHIFT_HIGH      (PAGE_SHIFT + 1)
     309             : #define KMALLOC_SHIFT_MAX       (MAX_ORDER + PAGE_SHIFT)
     310             : #ifndef KMALLOC_SHIFT_LOW
     311             : #define KMALLOC_SHIFT_LOW       5
     312             : #endif
     313             : #endif
     314             : 
     315             : #ifdef CONFIG_SLUB
     316             : #define KMALLOC_SHIFT_HIGH      (PAGE_SHIFT + 1)
     317             : #define KMALLOC_SHIFT_MAX       (MAX_ORDER + PAGE_SHIFT)
     318             : #ifndef KMALLOC_SHIFT_LOW
     319             : #define KMALLOC_SHIFT_LOW       3
     320             : #endif
     321             : #endif
     322             : 
     323             : /* Maximum allocatable size */
     324             : #define KMALLOC_MAX_SIZE        (1UL << KMALLOC_SHIFT_MAX)
     325             : /* Maximum size for which we actually use a slab cache */
     326             : #define KMALLOC_MAX_CACHE_SIZE  (1UL << KMALLOC_SHIFT_HIGH)
     327             : /* Maximum order allocatable via the slab allocator */
     328             : #define KMALLOC_MAX_ORDER       (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
     329             : 
     330             : /*
     331             :  * Kmalloc subsystem.
     332             :  */
     333             : #ifndef KMALLOC_MIN_SIZE
     334             : #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
     335             : #endif
     336             : 
     337             : /*
     338             :  * This restriction comes from byte sized index implementation.
     339             :  * Page size is normally 2^12 bytes and, in this case, if we want to use
     340             :  * byte sized index which can represent 2^8 entries, the size of the object
     341             :  * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
     342             :  * If minimum size of kmalloc is less than 16, we use it as minimum object
     343             :  * size and give up to use byte sized index.
     344             :  */
     345             : #define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
     346             :                                (KMALLOC_MIN_SIZE) : 16)
     347             : 
     348             : /*
     349             :  * Whenever changing this, take care of that kmalloc_type() and
     350             :  * create_kmalloc_caches() still work as intended.
     351             :  *
     352             :  * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP
     353             :  * is for accounted but unreclaimable and non-dma objects. All the other
     354             :  * kmem caches can have both accounted and unaccounted objects.
     355             :  */
     356             : enum kmalloc_cache_type {
     357             :         KMALLOC_NORMAL = 0,
     358             : #ifndef CONFIG_ZONE_DMA
     359             :         KMALLOC_DMA = KMALLOC_NORMAL,
     360             : #endif
     361             : #ifndef CONFIG_MEMCG_KMEM
     362             :         KMALLOC_CGROUP = KMALLOC_NORMAL,
     363             : #endif
     364             : #ifdef CONFIG_SLUB_TINY
     365             :         KMALLOC_RECLAIM = KMALLOC_NORMAL,
     366             : #else
     367             :         KMALLOC_RECLAIM,
     368             : #endif
     369             : #ifdef CONFIG_ZONE_DMA
     370             :         KMALLOC_DMA,
     371             : #endif
     372             : #ifdef CONFIG_MEMCG_KMEM
     373             :         KMALLOC_CGROUP,
     374             : #endif
     375             :         NR_KMALLOC_TYPES
     376             : };
     377             : 
     378             : extern struct kmem_cache *
     379             : kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1];
     380             : 
     381             : /*
     382             :  * Define gfp bits that should not be set for KMALLOC_NORMAL.
     383             :  */
     384             : #define KMALLOC_NOT_NORMAL_BITS                                 \
     385             :         (__GFP_RECLAIMABLE |                                    \
     386             :         (IS_ENABLED(CONFIG_ZONE_DMA)   ? __GFP_DMA : 0) |       \
     387             :         (IS_ENABLED(CONFIG_MEMCG_KMEM) ? __GFP_ACCOUNT : 0))
     388             : 
     389             : static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags)
     390             : {
     391             :         /*
     392             :          * The most common case is KMALLOC_NORMAL, so test for it
     393             :          * with a single branch for all the relevant flags.
     394             :          */
     395  2349332164 :         if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0))
     396             :                 return KMALLOC_NORMAL;
     397             : 
     398             :         /*
     399             :          * At least one of the flags has to be set. Their priorities in
     400             :          * decreasing order are:
     401             :          *  1) __GFP_DMA
     402             :          *  2) __GFP_RECLAIMABLE
     403             :          *  3) __GFP_ACCOUNT
     404             :          */
     405    18859836 :         if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA))
     406             :                 return KMALLOC_DMA;
     407    18859836 :         if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || (flags & __GFP_RECLAIMABLE))
     408             :                 return KMALLOC_RECLAIM;
     409             :         else
     410    18859835 :                 return KMALLOC_CGROUP;
     411             : }
     412             : 
     413             : /*
     414             :  * Figure out which kmalloc slab an allocation of a certain size
     415             :  * belongs to.
     416             :  * 0 = zero alloc
     417             :  * 1 =  65 .. 96 bytes
     418             :  * 2 = 129 .. 192 bytes
     419             :  * n = 2^(n-1)+1 .. 2^n
     420             :  *
     421             :  * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized;
     422             :  * typical usage is via kmalloc_index() and therefore evaluated at compile-time.
     423             :  * Callers where !size_is_constant should only be test modules, where runtime
     424             :  * overheads of __kmalloc_index() can be tolerated.  Also see kmalloc_slab().
     425             :  */
     426             : static __always_inline unsigned int __kmalloc_index(size_t size,
     427             :                                                     bool size_is_constant)
     428             : {
     429  3342149320 :         if (!size)
     430             :                 return 0;
     431             : 
     432  3342149320 :         if (size <= KMALLOC_MIN_SIZE)
     433             :                 return KMALLOC_SHIFT_LOW;
     434             : 
     435  3235969062 :         if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
     436             :                 return 1;
     437  2661098647 :         if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
     438             :                 return 2;
     439   576920988 :         if (size <=          8) return 3;
     440   471890777 :         if (size <=         16) return 4;
     441   469988222 :         if (size <=         32) return 5;
     442   453729055 :         if (size <=         64) return 6;
     443   335555755 :         if (size <=        128) return 7;
     444   333421705 :         if (size <=        256) return 8;
     445   310646921 :         if (size <=        512) return 9;
     446   244988652 :         if (size <=       1024) return 10;
     447   244703984 :         if (size <=   2 * 1024) return 11;
     448      169130 :         if (size <=   4 * 1024) return 12;
     449           0 :         if (size <=   8 * 1024) return 13;
     450             :         if (size <=  16 * 1024) return 14;
     451             :         if (size <=  32 * 1024) return 15;
     452             :         if (size <=  64 * 1024) return 16;
     453             :         if (size <= 128 * 1024) return 17;
     454             :         if (size <= 256 * 1024) return 18;
     455             :         if (size <= 512 * 1024) return 19;
     456             :         if (size <= 1024 * 1024) return 20;
     457             :         if (size <=  2 * 1024 * 1024) return 21;
     458             : 
     459             :         if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant)
     460             :                 BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()");
     461             :         else
     462             :                 BUG();
     463             : 
     464             :         /* Will never be reached. Needed because the compiler may complain */
     465             :         return -1;
     466             : }
     467             : static_assert(PAGE_SHIFT <= 20);
     468             : #define kmalloc_index(s) __kmalloc_index(s, true)
     469             : 
     470             : void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __alloc_size(1);
     471             : 
     472             : /**
     473             :  * kmem_cache_alloc - Allocate an object
     474             :  * @cachep: The cache to allocate from.
     475             :  * @flags: See kmalloc().
     476             :  *
     477             :  * Allocate an object from this cache.
     478             :  * See kmem_cache_zalloc() for a shortcut of adding __GFP_ZERO to flags.
     479             :  *
     480             :  * Return: pointer to the new object or %NULL in case of error
     481             :  */
     482             : void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) __assume_slab_alignment __malloc;
     483             : void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
     484             :                            gfp_t gfpflags) __assume_slab_alignment __malloc;
     485             : void kmem_cache_free(struct kmem_cache *s, void *objp);
     486             : 
     487             : /*
     488             :  * Bulk allocation and freeing operations. These are accelerated in an
     489             :  * allocator specific way to avoid taking locks repeatedly or building
     490             :  * metadata structures unnecessarily.
     491             :  *
     492             :  * Note that interrupts must be enabled when calling these functions.
     493             :  */
     494             : void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
     495             : int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, void **p);
     496             : 
     497             : static __always_inline void kfree_bulk(size_t size, void **p)
     498             : {
     499             :         kmem_cache_free_bulk(NULL, size, p);
     500             : }
     501             : 
     502             : void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment
     503             :                                                          __alloc_size(1);
     504             : void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) __assume_slab_alignment
     505             :                                                                          __malloc;
     506             : 
     507             : void *kmalloc_trace(struct kmem_cache *s, gfp_t flags, size_t size)
     508             :                     __assume_kmalloc_alignment __alloc_size(3);
     509             : 
     510             : void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
     511             :                          int node, size_t size) __assume_kmalloc_alignment
     512             :                                                 __alloc_size(4);
     513             : void *kmalloc_large(size_t size, gfp_t flags) __assume_page_alignment
     514             :                                               __alloc_size(1);
     515             : 
     516             : void *kmalloc_large_node(size_t size, gfp_t flags, int node) __assume_page_alignment
     517             :                                                              __alloc_size(1);
     518             : 
     519             : /**
     520             :  * kmalloc - allocate kernel memory
     521             :  * @size: how many bytes of memory are required.
     522             :  * @flags: describe the allocation context
     523             :  *
     524             :  * kmalloc is the normal method of allocating memory
     525             :  * for objects smaller than page size in the kernel.
     526             :  *
     527             :  * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
     528             :  * bytes. For @size of power of two bytes, the alignment is also guaranteed
     529             :  * to be at least to the size.
     530             :  *
     531             :  * The @flags argument may be one of the GFP flags defined at
     532             :  * include/linux/gfp_types.h and described at
     533             :  * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
     534             :  *
     535             :  * The recommended usage of the @flags is described at
     536             :  * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
     537             :  *
     538             :  * Below is a brief outline of the most useful GFP flags
     539             :  *
     540             :  * %GFP_KERNEL
     541             :  *      Allocate normal kernel ram. May sleep.
     542             :  *
     543             :  * %GFP_NOWAIT
     544             :  *      Allocation will not sleep.
     545             :  *
     546             :  * %GFP_ATOMIC
     547             :  *      Allocation will not sleep.  May use emergency pools.
     548             :  *
     549             :  * Also it is possible to set different flags by OR'ing
     550             :  * in one or more of the following additional @flags:
     551             :  *
     552             :  * %__GFP_ZERO
     553             :  *      Zero the allocated memory before returning. Also see kzalloc().
     554             :  *
     555             :  * %__GFP_HIGH
     556             :  *      This allocation has high priority and may use emergency pools.
     557             :  *
     558             :  * %__GFP_NOFAIL
     559             :  *      Indicate that this allocation is in no way allowed to fail
     560             :  *      (think twice before using).
     561             :  *
     562             :  * %__GFP_NORETRY
     563             :  *      If memory is not immediately available,
     564             :  *      then give up at once.
     565             :  *
     566             :  * %__GFP_NOWARN
     567             :  *      If allocation fails, don't issue any warnings.
     568             :  *
     569             :  * %__GFP_RETRY_MAYFAIL
     570             :  *      Try really hard to succeed the allocation but fail
     571             :  *      eventually.
     572             :  */
     573             : static __always_inline __alloc_size(1) void *kmalloc(size_t size, gfp_t flags)
     574             : {
     575  7597045290 :         if (__builtin_constant_p(size) && size) {
     576  3342149320 :                 unsigned int index;
     577             : 
     578  3236017832 :                 if (size > KMALLOC_MAX_CACHE_SIZE)
     579           0 :                         return kmalloc_large(size, flags);
     580             : 
     581  3236017832 :                 index = kmalloc_index(size);
     582  5619971917 :                 return kmalloc_trace(
     583  2280023797 :                                 kmalloc_caches[kmalloc_type(flags)][index],
     584             :                                 flags, size);
     585             :         }
     586  4702553591 :         return __kmalloc(size, flags);
     587             : }
     588             : 
     589             : static __always_inline __alloc_size(1) void *kmalloc_node(size_t size, gfp_t flags, int node)
     590             : {
     591             :         if (__builtin_constant_p(size) && size) {
     592             :                 unsigned int index;
     593             : 
     594             :                 if (size > KMALLOC_MAX_CACHE_SIZE)
     595             :                         return kmalloc_large_node(size, flags, node);
     596             : 
     597             :                 index = kmalloc_index(size);
     598             :                 return kmalloc_node_trace(
     599             :                                 kmalloc_caches[kmalloc_type(flags)][index],
     600             :                                 flags, node, size);
     601             :         }
     602             :         return __kmalloc_node(size, flags, node);
     603             : }
     604             : 
     605             : /**
     606             :  * kmalloc_array - allocate memory for an array.
     607             :  * @n: number of elements.
     608             :  * @size: element size.
     609             :  * @flags: the type of memory to allocate (see kmalloc).
     610             :  */
     611    76119861 : static inline __alloc_size(1, 2) void *kmalloc_array(size_t n, size_t size, gfp_t flags)
     612             : {
     613    76119861 :         size_t bytes;
     614             : 
     615    76119861 :         if (unlikely(check_mul_overflow(n, size, &bytes)))
     616             :                 return NULL;
     617    76119861 :         if (__builtin_constant_p(n) && __builtin_constant_p(size))
     618       27506 :                 return kmalloc(bytes, flags);
     619    76106108 :         return __kmalloc(bytes, flags);
     620             : }
     621             : 
     622             : /**
     623             :  * krealloc_array - reallocate memory for an array.
     624             :  * @p: pointer to the memory chunk to reallocate
     625             :  * @new_n: new number of elements to alloc
     626             :  * @new_size: new size of a single member of the array
     627             :  * @flags: the type of memory to allocate (see kmalloc)
     628             :  */
     629             : static inline __realloc_size(2, 3) void * __must_check krealloc_array(void *p,
     630             :                                                                       size_t new_n,
     631             :                                                                       size_t new_size,
     632             :                                                                       gfp_t flags)
     633             : {
     634             :         size_t bytes;
     635             : 
     636             :         if (unlikely(check_mul_overflow(new_n, new_size, &bytes)))
     637             :                 return NULL;
     638             : 
     639             :         return krealloc(p, bytes, flags);
     640             : }
     641             : 
     642             : /**
     643             :  * kcalloc - allocate memory for an array. The memory is set to zero.
     644             :  * @n: number of elements.
     645             :  * @size: element size.
     646             :  * @flags: the type of memory to allocate (see kmalloc).
     647             :  */
     648             : static inline __alloc_size(1, 2) void *kcalloc(size_t n, size_t size, gfp_t flags)
     649             : {
     650    47336276 :         return kmalloc_array(n, size, flags | __GFP_ZERO);
     651             : }
     652             : 
     653             : void *__kmalloc_node_track_caller(size_t size, gfp_t flags, int node,
     654             :                                   unsigned long caller) __alloc_size(1);
     655             : #define kmalloc_node_track_caller(size, flags, node) \
     656             :         __kmalloc_node_track_caller(size, flags, node, \
     657             :                                     _RET_IP_)
     658             : 
     659             : /*
     660             :  * kmalloc_track_caller is a special version of kmalloc that records the
     661             :  * calling function of the routine calling it for slab leak tracking instead
     662             :  * of just the calling function (confusing, eh?).
     663             :  * It's useful when the call to kmalloc comes from a widely-used standard
     664             :  * allocator where we care about the real place the memory allocation
     665             :  * request comes from.
     666             :  */
     667             : #define kmalloc_track_caller(size, flags) \
     668             :         __kmalloc_node_track_caller(size, flags, \
     669             :                                     NUMA_NO_NODE, _RET_IP_)
     670             : 
     671             : static inline __alloc_size(1, 2) void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
     672             :                                                           int node)
     673             : {
     674             :         size_t bytes;
     675             : 
     676             :         if (unlikely(check_mul_overflow(n, size, &bytes)))
     677             :                 return NULL;
     678             :         if (__builtin_constant_p(n) && __builtin_constant_p(size))
     679             :                 return kmalloc_node(bytes, flags, node);
     680             :         return __kmalloc_node(bytes, flags, node);
     681             : }
     682             : 
     683             : static inline __alloc_size(1, 2) void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
     684             : {
     685             :         return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
     686             : }
     687             : 
     688             : /*
     689             :  * Shortcuts
     690             :  */
     691             : static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
     692             : {
     693 24472365005 :         return kmem_cache_alloc(k, flags | __GFP_ZERO);
     694             : }
     695             : 
     696             : /**
     697             :  * kzalloc - allocate memory. The memory is set to zero.
     698             :  * @size: how many bytes of memory are required.
     699             :  * @flags: the type of memory to allocate (see kmalloc).
     700             :  */
     701  2632395751 : static inline __alloc_size(1) void *kzalloc(size_t size, gfp_t flags)
     702             : {
     703  2632395751 :         return kmalloc(size, flags | __GFP_ZERO);
     704             : }
     705             : 
     706             : /**
     707             :  * kzalloc_node - allocate zeroed memory from a particular memory node.
     708             :  * @size: how many bytes of memory are required.
     709             :  * @flags: the type of memory to allocate (see kmalloc).
     710             :  * @node: memory node from which to allocate
     711             :  */
     712             : static inline __alloc_size(1) void *kzalloc_node(size_t size, gfp_t flags, int node)
     713             : {
     714             :         return kmalloc_node(size, flags | __GFP_ZERO, node);
     715             : }
     716             : 
     717             : extern void *kvmalloc_node(size_t size, gfp_t flags, int node) __alloc_size(1);
     718             : static inline __alloc_size(1) void *kvmalloc(size_t size, gfp_t flags)
     719             : {
     720   239901472 :         return kvmalloc_node(size, flags, NUMA_NO_NODE);
     721             : }
     722             : static inline __alloc_size(1) void *kvzalloc_node(size_t size, gfp_t flags, int node)
     723             : {
     724             :         return kvmalloc_node(size, flags | __GFP_ZERO, node);
     725             : }
     726             : static inline __alloc_size(1) void *kvzalloc(size_t size, gfp_t flags)
     727             : {
     728   124921305 :         return kvmalloc(size, flags | __GFP_ZERO);
     729             : }
     730             : 
     731             : static inline __alloc_size(1, 2) void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
     732             : {
     733    17370465 :         size_t bytes;
     734             : 
     735    17370465 :         if (unlikely(check_mul_overflow(n, size, &bytes)))
     736             :                 return NULL;
     737             : 
     738    17370465 :         return kvmalloc(bytes, flags);
     739             : }
     740             : 
     741             : static inline __alloc_size(1, 2) void *kvcalloc(size_t n, size_t size, gfp_t flags)
     742             : {
     743     2483430 :         return kvmalloc_array(n, size, flags | __GFP_ZERO);
     744             : }
     745             : 
     746             : extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
     747             :                       __realloc_size(3);
     748             : extern void kvfree(const void *addr);
     749             : extern void kvfree_sensitive(const void *addr, size_t len);
     750             : 
     751             : unsigned int kmem_cache_size(struct kmem_cache *s);
     752             : 
     753             : /**
     754             :  * kmalloc_size_roundup - Report allocation bucket size for the given size
     755             :  *
     756             :  * @size: Number of bytes to round up from.
     757             :  *
     758             :  * This returns the number of bytes that would be available in a kmalloc()
     759             :  * allocation of @size bytes. For example, a 126 byte request would be
     760             :  * rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly
     761             :  * for the general-purpose kmalloc()-based allocations, and is not for the
     762             :  * pre-sized kmem_cache_alloc()-based allocations.)
     763             :  *
     764             :  * Use this to kmalloc() the full bucket size ahead of time instead of using
     765             :  * ksize() to query the size after an allocation.
     766             :  */
     767             : size_t kmalloc_size_roundup(size_t size);
     768             : 
     769             : void __init kmem_cache_init_late(void);
     770             : 
     771             : #if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
     772             : int slab_prepare_cpu(unsigned int cpu);
     773             : int slab_dead_cpu(unsigned int cpu);
     774             : #else
     775             : #define slab_prepare_cpu        NULL
     776             : #define slab_dead_cpu           NULL
     777             : #endif
     778             : 
     779             : #endif  /* _LINUX_SLAB_H */

Generated by: LCOV version 1.14