Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0-only */
2 : /*
3 : * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
4 : */
5 :
6 : #ifndef __ASM_CPUFEATURE_H
7 : #define __ASM_CPUFEATURE_H
8 :
9 : #include <asm/alternative-macros.h>
10 : #include <asm/cpucaps.h>
11 : #include <asm/cputype.h>
12 : #include <asm/hwcap.h>
13 : #include <asm/sysreg.h>
14 :
15 : #define MAX_CPU_FEATURES 128
16 : #define cpu_feature(x) KERNEL_HWCAP_ ## x
17 :
18 : #define ARM64_SW_FEATURE_OVERRIDE_NOKASLR 0
19 : #define ARM64_SW_FEATURE_OVERRIDE_HVHE 4
20 :
21 : #ifndef __ASSEMBLY__
22 :
23 : #include <linux/bug.h>
24 : #include <linux/jump_label.h>
25 : #include <linux/kernel.h>
26 :
27 : /*
28 : * CPU feature register tracking
29 : *
30 : * The safe value of a CPUID feature field is dependent on the implications
31 : * of the values assigned to it by the architecture. Based on the relationship
32 : * between the values, the features are classified into 3 types - LOWER_SAFE,
33 : * HIGHER_SAFE and EXACT.
34 : *
35 : * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
36 : * for HIGHER_SAFE. It is expected that all CPUs have the same value for
37 : * a field when EXACT is specified, failing which, the safe value specified
38 : * in the table is chosen.
39 : */
40 :
41 : enum ftr_type {
42 : FTR_EXACT, /* Use a predefined safe value */
43 : FTR_LOWER_SAFE, /* Smaller value is safe */
44 : FTR_HIGHER_SAFE, /* Bigger value is safe */
45 : FTR_HIGHER_OR_ZERO_SAFE, /* Bigger value is safe, but 0 is biggest */
46 : };
47 :
48 : #define FTR_STRICT true /* SANITY check strict matching required */
49 : #define FTR_NONSTRICT false /* SANITY check ignored */
50 :
51 : #define FTR_SIGNED true /* Value should be treated as signed */
52 : #define FTR_UNSIGNED false /* Value should be treated as unsigned */
53 :
54 : #define FTR_VISIBLE true /* Feature visible to the user space */
55 : #define FTR_HIDDEN false /* Feature is hidden from the user */
56 :
57 : #define FTR_VISIBLE_IF_IS_ENABLED(config) \
58 : (IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)
59 :
60 : struct arm64_ftr_bits {
61 : bool sign; /* Value is signed ? */
62 : bool visible;
63 : bool strict; /* CPU Sanity check: strict matching required ? */
64 : enum ftr_type type;
65 : u8 shift;
66 : u8 width;
67 : s64 safe_val; /* safe value for FTR_EXACT features */
68 : };
69 :
70 : /*
71 : * Describe the early feature override to the core override code:
72 : *
73 : * @val Values that are to be merged into the final
74 : * sanitised value of the register. Only the bitfields
75 : * set to 1 in @mask are valid
76 : * @mask Mask of the features that are overridden by @val
77 : *
78 : * A @mask field set to full-1 indicates that the corresponding field
79 : * in @val is a valid override.
80 : *
81 : * A @mask field set to full-0 with the corresponding @val field set
82 : * to full-0 denotes that this field has no override
83 : *
84 : * A @mask field set to full-0 with the corresponding @val field set
85 : * to full-1 denotes thath this field has an invalid override.
86 : */
87 : struct arm64_ftr_override {
88 : u64 val;
89 : u64 mask;
90 : };
91 :
92 : /*
93 : * @arm64_ftr_reg - Feature register
94 : * @strict_mask Bits which should match across all CPUs for sanity.
95 : * @sys_val Safe value across the CPUs (system view)
96 : */
97 : struct arm64_ftr_reg {
98 : const char *name;
99 : u64 strict_mask;
100 : u64 user_mask;
101 : u64 sys_val;
102 : u64 user_val;
103 : struct arm64_ftr_override *override;
104 : const struct arm64_ftr_bits *ftr_bits;
105 : };
106 :
107 : extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
108 :
109 : /*
110 : * CPU capabilities:
111 : *
112 : * We use arm64_cpu_capabilities to represent system features, errata work
113 : * arounds (both used internally by kernel and tracked in system_cpucaps) and
114 : * ELF HWCAPs (which are exposed to user).
115 : *
116 : * To support systems with heterogeneous CPUs, we need to make sure that we
117 : * detect the capabilities correctly on the system and take appropriate
118 : * measures to ensure there are no incompatibilities.
119 : *
120 : * This comment tries to explain how we treat the capabilities.
121 : * Each capability has the following list of attributes :
122 : *
123 : * 1) Scope of Detection : The system detects a given capability by
124 : * performing some checks at runtime. This could be, e.g, checking the
125 : * value of a field in CPU ID feature register or checking the cpu
126 : * model. The capability provides a call back ( @matches() ) to
127 : * perform the check. Scope defines how the checks should be performed.
128 : * There are three cases:
129 : *
130 : * a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
131 : * matches. This implies, we have to run the check on all the
132 : * booting CPUs, until the system decides that state of the
133 : * capability is finalised. (See section 2 below)
134 : * Or
135 : * b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
136 : * matches. This implies, we run the check only once, when the
137 : * system decides to finalise the state of the capability. If the
138 : * capability relies on a field in one of the CPU ID feature
139 : * registers, we use the sanitised value of the register from the
140 : * CPU feature infrastructure to make the decision.
141 : * Or
142 : * c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
143 : * feature. This category is for features that are "finalised"
144 : * (or used) by the kernel very early even before the SMP cpus
145 : * are brought up.
146 : *
147 : * The process of detection is usually denoted by "update" capability
148 : * state in the code.
149 : *
150 : * 2) Finalise the state : The kernel should finalise the state of a
151 : * capability at some point during its execution and take necessary
152 : * actions if any. Usually, this is done, after all the boot-time
153 : * enabled CPUs are brought up by the kernel, so that it can make
154 : * better decision based on the available set of CPUs. However, there
155 : * are some special cases, where the action is taken during the early
156 : * boot by the primary boot CPU. (e.g, running the kernel at EL2 with
157 : * Virtualisation Host Extensions). The kernel usually disallows any
158 : * changes to the state of a capability once it finalises the capability
159 : * and takes any action, as it may be impossible to execute the actions
160 : * safely. A CPU brought up after a capability is "finalised" is
161 : * referred to as "Late CPU" w.r.t the capability. e.g, all secondary
162 : * CPUs are treated "late CPUs" for capabilities determined by the boot
163 : * CPU.
164 : *
165 : * At the moment there are two passes of finalising the capabilities.
166 : * a) Boot CPU scope capabilities - Finalised by primary boot CPU via
167 : * setup_boot_cpu_capabilities().
168 : * b) Everything except (a) - Run via setup_system_capabilities().
169 : *
170 : * 3) Verification: When a CPU is brought online (e.g, by user or by the
171 : * kernel), the kernel should make sure that it is safe to use the CPU,
172 : * by verifying that the CPU is compliant with the state of the
173 : * capabilities finalised already. This happens via :
174 : *
175 : * secondary_start_kernel()-> check_local_cpu_capabilities()
176 : *
177 : * As explained in (2) above, capabilities could be finalised at
178 : * different points in the execution. Each newly booted CPU is verified
179 : * against the capabilities that have been finalised by the time it
180 : * boots.
181 : *
182 : * a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
183 : * except for the primary boot CPU.
184 : *
185 : * b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
186 : * user after the kernel boot are verified against the capability.
187 : *
188 : * If there is a conflict, the kernel takes an action, based on the
189 : * severity (e.g, a CPU could be prevented from booting or cause a
190 : * kernel panic). The CPU is allowed to "affect" the state of the
191 : * capability, if it has not been finalised already. See section 5
192 : * for more details on conflicts.
193 : *
194 : * 4) Action: As mentioned in (2), the kernel can take an action for each
195 : * detected capability, on all CPUs on the system. Appropriate actions
196 : * include, turning on an architectural feature, modifying the control
197 : * registers (e.g, SCTLR, TCR etc.) or patching the kernel via
198 : * alternatives. The kernel patching is batched and performed at later
199 : * point. The actions are always initiated only after the capability
200 : * is finalised. This is usally denoted by "enabling" the capability.
201 : * The actions are initiated as follows :
202 : * a) Action is triggered on all online CPUs, after the capability is
203 : * finalised, invoked within the stop_machine() context from
204 : * enable_cpu_capabilitie().
205 : *
206 : * b) Any late CPU, brought up after (1), the action is triggered via:
207 : *
208 : * check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
209 : *
210 : * 5) Conflicts: Based on the state of the capability on a late CPU vs.
211 : * the system state, we could have the following combinations :
212 : *
213 : * x-----------------------------x
214 : * | Type | System | Late CPU |
215 : * |-----------------------------|
216 : * | a | y | n |
217 : * |-----------------------------|
218 : * | b | n | y |
219 : * x-----------------------------x
220 : *
221 : * Two separate flag bits are defined to indicate whether each kind of
222 : * conflict can be allowed:
223 : * ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
224 : * ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
225 : *
226 : * Case (a) is not permitted for a capability that the system requires
227 : * all CPUs to have in order for the capability to be enabled. This is
228 : * typical for capabilities that represent enhanced functionality.
229 : *
230 : * Case (b) is not permitted for a capability that must be enabled
231 : * during boot if any CPU in the system requires it in order to run
232 : * safely. This is typical for erratum work arounds that cannot be
233 : * enabled after the corresponding capability is finalised.
234 : *
235 : * In some non-typical cases either both (a) and (b), or neither,
236 : * should be permitted. This can be described by including neither
237 : * or both flags in the capability's type field.
238 : *
239 : * In case of a conflict, the CPU is prevented from booting. If the
240 : * ARM64_CPUCAP_PANIC_ON_CONFLICT flag is specified for the capability,
241 : * then a kernel panic is triggered.
242 : */
243 :
244 :
245 : /*
246 : * Decide how the capability is detected.
247 : * On any local CPU vs System wide vs the primary boot CPU
248 : */
249 : #define ARM64_CPUCAP_SCOPE_LOCAL_CPU ((u16)BIT(0))
250 : #define ARM64_CPUCAP_SCOPE_SYSTEM ((u16)BIT(1))
251 : /*
252 : * The capabilitiy is detected on the Boot CPU and is used by kernel
253 : * during early boot. i.e, the capability should be "detected" and
254 : * "enabled" as early as possibly on all booting CPUs.
255 : */
256 : #define ARM64_CPUCAP_SCOPE_BOOT_CPU ((u16)BIT(2))
257 : #define ARM64_CPUCAP_SCOPE_MASK \
258 : (ARM64_CPUCAP_SCOPE_SYSTEM | \
259 : ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
260 : ARM64_CPUCAP_SCOPE_BOOT_CPU)
261 :
262 : #define SCOPE_SYSTEM ARM64_CPUCAP_SCOPE_SYSTEM
263 : #define SCOPE_LOCAL_CPU ARM64_CPUCAP_SCOPE_LOCAL_CPU
264 : #define SCOPE_BOOT_CPU ARM64_CPUCAP_SCOPE_BOOT_CPU
265 : #define SCOPE_ALL ARM64_CPUCAP_SCOPE_MASK
266 :
267 : /*
268 : * Is it permitted for a late CPU to have this capability when system
269 : * hasn't already enabled it ?
270 : */
271 : #define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU ((u16)BIT(4))
272 : /* Is it safe for a late CPU to miss this capability when system has it */
273 : #define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU ((u16)BIT(5))
274 : /* Panic when a conflict is detected */
275 : #define ARM64_CPUCAP_PANIC_ON_CONFLICT ((u16)BIT(6))
276 :
277 : /*
278 : * CPU errata workarounds that need to be enabled at boot time if one or
279 : * more CPUs in the system requires it. When one of these capabilities
280 : * has been enabled, it is safe to allow any CPU to boot that doesn't
281 : * require the workaround. However, it is not safe if a "late" CPU
282 : * requires a workaround and the system hasn't enabled it already.
283 : */
284 : #define ARM64_CPUCAP_LOCAL_CPU_ERRATUM \
285 : (ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
286 : /*
287 : * CPU feature detected at boot time based on system-wide value of a
288 : * feature. It is safe for a late CPU to have this feature even though
289 : * the system hasn't enabled it, although the feature will not be used
290 : * by Linux in this case. If the system has enabled this feature already,
291 : * then every late CPU must have it.
292 : */
293 : #define ARM64_CPUCAP_SYSTEM_FEATURE \
294 : (ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
295 : /*
296 : * CPU feature detected at boot time based on feature of one or more CPUs.
297 : * All possible conflicts for a late CPU are ignored.
298 : * NOTE: this means that a late CPU with the feature will *not* cause the
299 : * capability to be advertised by cpus_have_*cap()!
300 : */
301 : #define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE \
302 : (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
303 : ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU | \
304 : ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
305 :
306 : /*
307 : * CPU feature detected at boot time, on one or more CPUs. A late CPU
308 : * is not allowed to have the capability when the system doesn't have it.
309 : * It is Ok for a late CPU to miss the feature.
310 : */
311 : #define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE \
312 : (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
313 : ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
314 :
315 : /*
316 : * CPU feature used early in the boot based on the boot CPU. All secondary
317 : * CPUs must match the state of the capability as detected by the boot CPU. In
318 : * case of a conflict, a kernel panic is triggered.
319 : */
320 : #define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE \
321 : (ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PANIC_ON_CONFLICT)
322 :
323 : /*
324 : * CPU feature used early in the boot based on the boot CPU. It is safe for a
325 : * late CPU to have this feature even though the boot CPU hasn't enabled it,
326 : * although the feature will not be used by Linux in this case. If the boot CPU
327 : * has enabled this feature already, then every late CPU must have it.
328 : */
329 : #define ARM64_CPUCAP_BOOT_CPU_FEATURE \
330 : (ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
331 :
332 : struct arm64_cpu_capabilities {
333 : const char *desc;
334 : u16 capability;
335 : u16 type;
336 : bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
337 : /*
338 : * Take the appropriate actions to configure this capability
339 : * for this CPU. If the capability is detected by the kernel
340 : * this will be called on all the CPUs in the system,
341 : * including the hotplugged CPUs, regardless of whether the
342 : * capability is available on that specific CPU. This is
343 : * useful for some capabilities (e.g, working around CPU
344 : * errata), where all the CPUs must take some action (e.g,
345 : * changing system control/configuration). Thus, if an action
346 : * is required only if the CPU has the capability, then the
347 : * routine must check it before taking any action.
348 : */
349 : void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
350 : union {
351 : struct { /* To be used for erratum handling only */
352 : struct midr_range midr_range;
353 : const struct arm64_midr_revidr {
354 : u32 midr_rv; /* revision/variant */
355 : u32 revidr_mask;
356 : } * const fixed_revs;
357 : };
358 :
359 : const struct midr_range *midr_range_list;
360 : struct { /* Feature register checking */
361 : u32 sys_reg;
362 : u8 field_pos;
363 : u8 field_width;
364 : u8 min_field_value;
365 : u8 hwcap_type;
366 : bool sign;
367 : unsigned long hwcap;
368 : };
369 : };
370 :
371 : /*
372 : * An optional list of "matches/cpu_enable" pair for the same
373 : * "capability" of the same "type" as described by the parent.
374 : * Only matches(), cpu_enable() and fields relevant to these
375 : * methods are significant in the list. The cpu_enable is
376 : * invoked only if the corresponding entry "matches()".
377 : * However, if a cpu_enable() method is associated
378 : * with multiple matches(), care should be taken that either
379 : * the match criteria are mutually exclusive, or that the
380 : * method is robust against being called multiple times.
381 : */
382 : const struct arm64_cpu_capabilities *match_list;
383 : };
384 :
385 : static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
386 : {
387 : return cap->type & ARM64_CPUCAP_SCOPE_MASK;
388 : }
389 :
390 : /*
391 : * Generic helper for handling capabilities with multiple (match,enable) pairs
392 : * of call backs, sharing the same capability bit.
393 : * Iterate over each entry to see if at least one matches.
394 : */
395 : static inline bool
396 : cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry,
397 : int scope)
398 : {
399 : const struct arm64_cpu_capabilities *caps;
400 :
401 : for (caps = entry->match_list; caps->matches; caps++)
402 : if (caps->matches(caps, scope))
403 : return true;
404 :
405 : return false;
406 : }
407 :
408 : static __always_inline bool is_vhe_hyp_code(void)
409 : {
410 : /* Only defined for code run in VHE hyp context */
411 : return __is_defined(__KVM_VHE_HYPERVISOR__);
412 : }
413 :
414 : static __always_inline bool is_nvhe_hyp_code(void)
415 : {
416 : /* Only defined for code run in NVHE hyp context */
417 : return __is_defined(__KVM_NVHE_HYPERVISOR__);
418 : }
419 :
420 : static __always_inline bool is_hyp_code(void)
421 : {
422 : return is_vhe_hyp_code() || is_nvhe_hyp_code();
423 : }
424 :
425 : extern DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
426 :
427 : extern DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
428 :
429 : #define for_each_available_cap(cap) \
430 : for_each_set_bit(cap, system_cpucaps, ARM64_NCAPS)
431 :
432 : bool this_cpu_has_cap(unsigned int cap);
433 : void cpu_set_feature(unsigned int num);
434 : bool cpu_have_feature(unsigned int num);
435 : unsigned long cpu_get_elf_hwcap(void);
436 : unsigned long cpu_get_elf_hwcap2(void);
437 :
438 : #define cpu_set_named_feature(name) cpu_set_feature(cpu_feature(name))
439 : #define cpu_have_named_feature(name) cpu_have_feature(cpu_feature(name))
440 :
441 : static __always_inline bool system_capabilities_finalized(void)
442 : {
443 0 : return alternative_has_cap_likely(ARM64_ALWAYS_SYSTEM);
444 : }
445 :
446 : /*
447 : * Test for a capability with a runtime check.
448 : *
449 : * Before the capability is detected, this returns false.
450 : */
451 : static __always_inline bool cpus_have_cap(unsigned int num)
452 : {
453 0 : if (num >= ARM64_NCAPS)
454 : return false;
455 0 : return arch_test_bit(num, system_cpucaps);
456 : }
457 :
458 : /*
459 : * Test for a capability without a runtime check.
460 : *
461 : * Before capabilities are finalized, this returns false.
462 : * After capabilities are finalized, this is patched to avoid a runtime check.
463 : *
464 : * @num must be a compile-time constant.
465 : */
466 : static __always_inline bool __cpus_have_const_cap(int num)
467 : {
468 0 : if (num >= ARM64_NCAPS)
469 : return false;
470 0 : return alternative_has_cap_unlikely(num);
471 : }
472 :
473 : /*
474 : * Test for a capability without a runtime check.
475 : *
476 : * Before capabilities are finalized, this will BUG().
477 : * After capabilities are finalized, this is patched to avoid a runtime check.
478 : *
479 : * @num must be a compile-time constant.
480 : */
481 : static __always_inline bool cpus_have_final_cap(int num)
482 : {
483 : if (system_capabilities_finalized())
484 : return __cpus_have_const_cap(num);
485 : else
486 : BUG();
487 : }
488 :
489 : /*
490 : * Test for a capability, possibly with a runtime check for non-hyp code.
491 : *
492 : * For hyp code, this behaves the same as cpus_have_final_cap().
493 : *
494 : * For non-hyp code:
495 : * Before capabilities are finalized, this behaves as cpus_have_cap().
496 : * After capabilities are finalized, this is patched to avoid a runtime check.
497 : *
498 : * @num must be a compile-time constant.
499 : */
500 : static __always_inline bool cpus_have_const_cap(int num)
501 : {
502 0 : if (is_hyp_code())
503 : return cpus_have_final_cap(num);
504 0 : else if (system_capabilities_finalized())
505 0 : return __cpus_have_const_cap(num);
506 : else
507 0 : return cpus_have_cap(num);
508 : }
509 :
510 : static inline int __attribute_const__
511 : cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
512 : {
513 : return (s64)(features << (64 - width - field)) >> (64 - width);
514 : }
515 :
516 : static inline int __attribute_const__
517 : cpuid_feature_extract_signed_field(u64 features, int field)
518 : {
519 : return cpuid_feature_extract_signed_field_width(features, field, 4);
520 : }
521 :
522 : static __always_inline unsigned int __attribute_const__
523 : cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
524 : {
525 : return (u64)(features << (64 - width - field)) >> (64 - width);
526 : }
527 :
528 : static __always_inline unsigned int __attribute_const__
529 : cpuid_feature_extract_unsigned_field(u64 features, int field)
530 : {
531 : return cpuid_feature_extract_unsigned_field_width(features, field, 4);
532 : }
533 :
534 : /*
535 : * Fields that identify the version of the Performance Monitors Extension do
536 : * not follow the standard ID scheme. See ARM DDI 0487E.a page D13-2825,
537 : * "Alternative ID scheme used for the Performance Monitors Extension version".
538 : */
539 : static inline u64 __attribute_const__
540 : cpuid_feature_cap_perfmon_field(u64 features, int field, u64 cap)
541 : {
542 : u64 val = cpuid_feature_extract_unsigned_field(features, field);
543 : u64 mask = GENMASK_ULL(field + 3, field);
544 :
545 : /* Treat IMPLEMENTATION DEFINED functionality as unimplemented */
546 : if (val == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
547 : val = 0;
548 :
549 : if (val > cap) {
550 : features &= ~mask;
551 : features |= (cap << field) & mask;
552 : }
553 :
554 : return features;
555 : }
556 :
557 : static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
558 : {
559 : return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
560 : }
561 :
562 : static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
563 : {
564 : return (reg->user_val | (reg->sys_val & reg->user_mask));
565 : }
566 :
567 : static inline int __attribute_const__
568 : cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
569 : {
570 : if (WARN_ON_ONCE(!width))
571 : width = 4;
572 : return (sign) ?
573 : cpuid_feature_extract_signed_field_width(features, field, width) :
574 : cpuid_feature_extract_unsigned_field_width(features, field, width);
575 : }
576 :
577 : static inline int __attribute_const__
578 : cpuid_feature_extract_field(u64 features, int field, bool sign)
579 : {
580 : return cpuid_feature_extract_field_width(features, field, 4, sign);
581 : }
582 :
583 : static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
584 : {
585 : return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
586 : }
587 :
588 : static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
589 : {
590 : return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_BIGEND_SHIFT) == 0x1 ||
591 : cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT) == 0x1;
592 : }
593 :
594 : static inline bool id_aa64pfr0_32bit_el1(u64 pfr0)
595 : {
596 : u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_EL1_SHIFT);
597 :
598 : return val == ID_AA64PFR0_EL1_ELx_32BIT_64BIT;
599 : }
600 :
601 : static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
602 : {
603 : u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_EL0_SHIFT);
604 :
605 : return val == ID_AA64PFR0_EL1_ELx_32BIT_64BIT;
606 : }
607 :
608 : static inline bool id_aa64pfr0_sve(u64 pfr0)
609 : {
610 : u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_SVE_SHIFT);
611 :
612 : return val > 0;
613 : }
614 :
615 : static inline bool id_aa64pfr1_sme(u64 pfr1)
616 : {
617 : u32 val = cpuid_feature_extract_unsigned_field(pfr1, ID_AA64PFR1_EL1_SME_SHIFT);
618 :
619 : return val > 0;
620 : }
621 :
622 : static inline bool id_aa64pfr1_mte(u64 pfr1)
623 : {
624 : u32 val = cpuid_feature_extract_unsigned_field(pfr1, ID_AA64PFR1_EL1_MTE_SHIFT);
625 :
626 : return val >= ID_AA64PFR1_EL1_MTE_MTE2;
627 : }
628 :
629 : void __init setup_cpu_features(void);
630 : void check_local_cpu_capabilities(void);
631 :
632 : u64 read_sanitised_ftr_reg(u32 id);
633 : u64 __read_sysreg_by_encoding(u32 sys_id);
634 :
635 : static inline bool cpu_supports_mixed_endian_el0(void)
636 : {
637 : return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
638 : }
639 :
640 :
641 : static inline bool supports_csv2p3(int scope)
642 : {
643 : u64 pfr0;
644 : u8 csv2_val;
645 :
646 : if (scope == SCOPE_LOCAL_CPU)
647 : pfr0 = read_sysreg_s(SYS_ID_AA64PFR0_EL1);
648 : else
649 : pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
650 :
651 : csv2_val = cpuid_feature_extract_unsigned_field(pfr0,
652 : ID_AA64PFR0_EL1_CSV2_SHIFT);
653 : return csv2_val == 3;
654 : }
655 :
656 : static inline bool supports_clearbhb(int scope)
657 : {
658 : u64 isar2;
659 :
660 : if (scope == SCOPE_LOCAL_CPU)
661 : isar2 = read_sysreg_s(SYS_ID_AA64ISAR2_EL1);
662 : else
663 : isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
664 :
665 : return cpuid_feature_extract_unsigned_field(isar2,
666 : ID_AA64ISAR2_EL1_BC_SHIFT);
667 : }
668 :
669 : const struct cpumask *system_32bit_el0_cpumask(void);
670 : DECLARE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
671 :
672 : static inline bool system_supports_32bit_el0(void)
673 : {
674 : u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
675 :
676 : return static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
677 : id_aa64pfr0_32bit_el0(pfr0);
678 : }
679 :
680 : static inline bool system_supports_4kb_granule(void)
681 : {
682 : u64 mmfr0;
683 : u32 val;
684 :
685 : mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
686 : val = cpuid_feature_extract_unsigned_field(mmfr0,
687 : ID_AA64MMFR0_EL1_TGRAN4_SHIFT);
688 :
689 : return (val >= ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED_MIN) &&
690 : (val <= ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED_MAX);
691 : }
692 :
693 : static inline bool system_supports_64kb_granule(void)
694 : {
695 : u64 mmfr0;
696 : u32 val;
697 :
698 : mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
699 : val = cpuid_feature_extract_unsigned_field(mmfr0,
700 : ID_AA64MMFR0_EL1_TGRAN64_SHIFT);
701 :
702 : return (val >= ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED_MIN) &&
703 : (val <= ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED_MAX);
704 : }
705 :
706 : static inline bool system_supports_16kb_granule(void)
707 : {
708 : u64 mmfr0;
709 : u32 val;
710 :
711 : mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
712 : val = cpuid_feature_extract_unsigned_field(mmfr0,
713 : ID_AA64MMFR0_EL1_TGRAN16_SHIFT);
714 :
715 : return (val >= ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED_MIN) &&
716 : (val <= ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED_MAX);
717 : }
718 :
719 : static inline bool system_supports_mixed_endian_el0(void)
720 : {
721 : return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
722 : }
723 :
724 : static inline bool system_supports_mixed_endian(void)
725 : {
726 : u64 mmfr0;
727 : u32 val;
728 :
729 : mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
730 : val = cpuid_feature_extract_unsigned_field(mmfr0,
731 : ID_AA64MMFR0_EL1_BIGEND_SHIFT);
732 :
733 : return val == 0x1;
734 : }
735 :
736 : static __always_inline bool system_supports_fpsimd(void)
737 : {
738 : return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
739 : }
740 :
741 : static inline bool system_uses_hw_pan(void)
742 : {
743 : return IS_ENABLED(CONFIG_ARM64_PAN) &&
744 : cpus_have_const_cap(ARM64_HAS_PAN);
745 : }
746 :
747 : static inline bool system_uses_ttbr0_pan(void)
748 : {
749 : return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
750 : !system_uses_hw_pan();
751 : }
752 :
753 : static __always_inline bool system_supports_sve(void)
754 : {
755 : return IS_ENABLED(CONFIG_ARM64_SVE) &&
756 : cpus_have_const_cap(ARM64_SVE);
757 : }
758 :
759 : static __always_inline bool system_supports_sme(void)
760 : {
761 : return IS_ENABLED(CONFIG_ARM64_SME) &&
762 : cpus_have_const_cap(ARM64_SME);
763 : }
764 :
765 : static __always_inline bool system_supports_sme2(void)
766 : {
767 : return IS_ENABLED(CONFIG_ARM64_SME) &&
768 : cpus_have_const_cap(ARM64_SME2);
769 : }
770 :
771 : static __always_inline bool system_supports_fa64(void)
772 : {
773 : return IS_ENABLED(CONFIG_ARM64_SME) &&
774 : cpus_have_const_cap(ARM64_SME_FA64);
775 : }
776 :
777 : static __always_inline bool system_supports_tpidr2(void)
778 : {
779 : return system_supports_sme();
780 : }
781 :
782 : static __always_inline bool system_supports_cnp(void)
783 : {
784 : return IS_ENABLED(CONFIG_ARM64_CNP) &&
785 : cpus_have_const_cap(ARM64_HAS_CNP);
786 : }
787 :
788 : static inline bool system_supports_address_auth(void)
789 : {
790 : return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
791 : cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH);
792 : }
793 :
794 : static inline bool system_supports_generic_auth(void)
795 : {
796 : return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
797 : cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH);
798 : }
799 :
800 : static inline bool system_has_full_ptr_auth(void)
801 : {
802 : return system_supports_address_auth() && system_supports_generic_auth();
803 : }
804 :
805 : static __always_inline bool system_uses_irq_prio_masking(void)
806 : {
807 : return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
808 : cpus_have_const_cap(ARM64_HAS_GIC_PRIO_MASKING);
809 : }
810 :
811 : static inline bool system_supports_mte(void)
812 : {
813 : return IS_ENABLED(CONFIG_ARM64_MTE) &&
814 : cpus_have_const_cap(ARM64_MTE);
815 : }
816 :
817 : static inline bool system_has_prio_mask_debugging(void)
818 : {
819 : return IS_ENABLED(CONFIG_ARM64_DEBUG_PRIORITY_MASKING) &&
820 : system_uses_irq_prio_masking();
821 : }
822 :
823 0 : static inline bool system_supports_bti(void)
824 : {
825 0 : return IS_ENABLED(CONFIG_ARM64_BTI) && cpus_have_const_cap(ARM64_BTI);
826 : }
827 :
828 : static inline bool system_supports_tlb_range(void)
829 : {
830 : return IS_ENABLED(CONFIG_ARM64_TLB_RANGE) &&
831 : cpus_have_const_cap(ARM64_HAS_TLB_RANGE);
832 : }
833 :
834 : int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt);
835 : bool try_emulate_mrs(struct pt_regs *regs, u32 isn);
836 :
837 : static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange)
838 : {
839 : switch (parange) {
840 : case ID_AA64MMFR0_EL1_PARANGE_32: return 32;
841 : case ID_AA64MMFR0_EL1_PARANGE_36: return 36;
842 : case ID_AA64MMFR0_EL1_PARANGE_40: return 40;
843 : case ID_AA64MMFR0_EL1_PARANGE_42: return 42;
844 : case ID_AA64MMFR0_EL1_PARANGE_44: return 44;
845 : case ID_AA64MMFR0_EL1_PARANGE_48: return 48;
846 : case ID_AA64MMFR0_EL1_PARANGE_52: return 52;
847 : /*
848 : * A future PE could use a value unknown to the kernel.
849 : * However, by the "D10.1.4 Principles of the ID scheme
850 : * for fields in ID registers", ARM DDI 0487C.a, any new
851 : * value is guaranteed to be higher than what we know already.
852 : * As a safe limit, we return the limit supported by the kernel.
853 : */
854 : default: return CONFIG_ARM64_PA_BITS;
855 : }
856 : }
857 :
858 : /* Check whether hardware update of the Access flag is supported */
859 : static inline bool cpu_has_hw_af(void)
860 : {
861 : u64 mmfr1;
862 :
863 : if (!IS_ENABLED(CONFIG_ARM64_HW_AFDBM))
864 : return false;
865 :
866 : /*
867 : * Use cached version to avoid emulated msr operation on KVM
868 : * guests.
869 : */
870 : mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
871 : return cpuid_feature_extract_unsigned_field(mmfr1,
872 : ID_AA64MMFR1_EL1_HAFDBS_SHIFT);
873 : }
874 :
875 : static inline bool cpu_has_pan(void)
876 : {
877 : u64 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
878 : return cpuid_feature_extract_unsigned_field(mmfr1,
879 : ID_AA64MMFR1_EL1_PAN_SHIFT);
880 : }
881 :
882 : #ifdef CONFIG_ARM64_AMU_EXTN
883 : /* Check whether the cpu supports the Activity Monitors Unit (AMU) */
884 : extern bool cpu_has_amu_feat(int cpu);
885 : #else
886 : static inline bool cpu_has_amu_feat(int cpu)
887 : {
888 : return false;
889 : }
890 : #endif
891 :
892 : /* Get a cpu that supports the Activity Monitors Unit (AMU) */
893 : extern int get_cpu_with_amu_feat(void);
894 :
895 : static inline unsigned int get_vmid_bits(u64 mmfr1)
896 : {
897 : int vmid_bits;
898 :
899 : vmid_bits = cpuid_feature_extract_unsigned_field(mmfr1,
900 : ID_AA64MMFR1_EL1_VMIDBits_SHIFT);
901 : if (vmid_bits == ID_AA64MMFR1_EL1_VMIDBits_16)
902 : return 16;
903 :
904 : /*
905 : * Return the default here even if any reserved
906 : * value is fetched from the system register.
907 : */
908 : return 8;
909 : }
910 :
911 : s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new, s64 cur);
912 : struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id);
913 :
914 : extern struct arm64_ftr_override id_aa64mmfr1_override;
915 : extern struct arm64_ftr_override id_aa64pfr0_override;
916 : extern struct arm64_ftr_override id_aa64pfr1_override;
917 : extern struct arm64_ftr_override id_aa64zfr0_override;
918 : extern struct arm64_ftr_override id_aa64smfr0_override;
919 : extern struct arm64_ftr_override id_aa64isar1_override;
920 : extern struct arm64_ftr_override id_aa64isar2_override;
921 :
922 : extern struct arm64_ftr_override arm64_sw_feature_override;
923 :
924 : u32 get_kvm_ipa_limit(void);
925 : void dump_cpu_features(void);
926 :
927 : #endif /* __ASSEMBLY__ */
928 :
929 : #endif
|