Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0 */
2 : /*
3 : * Copyright (C) 2007 Oracle. All rights reserved.
4 : */
5 :
6 : #ifndef BTRFS_CTREE_H
7 : #define BTRFS_CTREE_H
8 :
9 : #include <linux/mm.h>
10 : #include <linux/sched/signal.h>
11 : #include <linux/highmem.h>
12 : #include <linux/fs.h>
13 : #include <linux/rwsem.h>
14 : #include <linux/semaphore.h>
15 : #include <linux/completion.h>
16 : #include <linux/backing-dev.h>
17 : #include <linux/wait.h>
18 : #include <linux/slab.h>
19 : #include <trace/events/btrfs.h>
20 : #include <asm/unaligned.h>
21 : #include <linux/pagemap.h>
22 : #include <linux/btrfs.h>
23 : #include <linux/btrfs_tree.h>
24 : #include <linux/workqueue.h>
25 : #include <linux/security.h>
26 : #include <linux/sizes.h>
27 : #include <linux/dynamic_debug.h>
28 : #include <linux/refcount.h>
29 : #include <linux/crc32c.h>
30 : #include <linux/iomap.h>
31 : #include <linux/fscrypt.h>
32 : #include "extent-io-tree.h"
33 : #include "extent_io.h"
34 : #include "extent_map.h"
35 : #include "async-thread.h"
36 : #include "block-rsv.h"
37 : #include "locking.h"
38 : #include "misc.h"
39 : #include "fs.h"
40 :
41 : struct btrfs_trans_handle;
42 : struct btrfs_transaction;
43 : struct btrfs_pending_snapshot;
44 : struct btrfs_delayed_ref_root;
45 : struct btrfs_space_info;
46 : struct btrfs_block_group;
47 : struct btrfs_ordered_sum;
48 : struct btrfs_ref;
49 : struct btrfs_bio;
50 : struct btrfs_ioctl_encoded_io_args;
51 : struct btrfs_device;
52 : struct btrfs_fs_devices;
53 : struct btrfs_balance_control;
54 : struct btrfs_delayed_root;
55 : struct reloc_control;
56 :
57 : /* Read ahead values for struct btrfs_path.reada */
58 : enum {
59 : READA_NONE,
60 : READA_BACK,
61 : READA_FORWARD,
62 : /*
63 : * Similar to READA_FORWARD but unlike it:
64 : *
65 : * 1) It will trigger readahead even for leaves that are not close to
66 : * each other on disk;
67 : * 2) It also triggers readahead for nodes;
68 : * 3) During a search, even when a node or leaf is already in memory, it
69 : * will still trigger readahead for other nodes and leaves that follow
70 : * it.
71 : *
72 : * This is meant to be used only when we know we are iterating over the
73 : * entire tree or a very large part of it.
74 : */
75 : READA_FORWARD_ALWAYS,
76 : };
77 :
78 : /*
79 : * btrfs_paths remember the path taken from the root down to the leaf.
80 : * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
81 : * to any other levels that are present.
82 : *
83 : * The slots array records the index of the item or block pointer
84 : * used while walking the tree.
85 : */
86 : struct btrfs_path {
87 : struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
88 : int slots[BTRFS_MAX_LEVEL];
89 : /* if there is real range locking, this locks field will change */
90 : u8 locks[BTRFS_MAX_LEVEL];
91 : u8 reada;
92 : /* keep some upper locks as we walk down */
93 : u8 lowest_level;
94 :
95 : /*
96 : * set by btrfs_split_item, tells search_slot to keep all locks
97 : * and to force calls to keep space in the nodes
98 : */
99 : unsigned int search_for_split:1;
100 : unsigned int keep_locks:1;
101 : unsigned int skip_locking:1;
102 : unsigned int search_commit_root:1;
103 : unsigned int need_commit_sem:1;
104 : unsigned int skip_release_on_error:1;
105 : /*
106 : * Indicate that new item (btrfs_search_slot) is extending already
107 : * existing item and ins_len contains only the data size and not item
108 : * header (ie. sizeof(struct btrfs_item) is not included).
109 : */
110 : unsigned int search_for_extension:1;
111 : /* Stop search if any locks need to be taken (for read) */
112 : unsigned int nowait:1;
113 : };
114 :
115 : /*
116 : * The state of btrfs root
117 : */
118 : enum {
119 : /*
120 : * btrfs_record_root_in_trans is a multi-step process, and it can race
121 : * with the balancing code. But the race is very small, and only the
122 : * first time the root is added to each transaction. So IN_TRANS_SETUP
123 : * is used to tell us when more checks are required
124 : */
125 : BTRFS_ROOT_IN_TRANS_SETUP,
126 :
127 : /*
128 : * Set if tree blocks of this root can be shared by other roots.
129 : * Only subvolume trees and their reloc trees have this bit set.
130 : * Conflicts with TRACK_DIRTY bit.
131 : *
132 : * This affects two things:
133 : *
134 : * - How balance works
135 : * For shareable roots, we need to use reloc tree and do path
136 : * replacement for balance, and need various pre/post hooks for
137 : * snapshot creation to handle them.
138 : *
139 : * While for non-shareable trees, we just simply do a tree search
140 : * with COW.
141 : *
142 : * - How dirty roots are tracked
143 : * For shareable roots, btrfs_record_root_in_trans() is needed to
144 : * track them, while non-subvolume roots have TRACK_DIRTY bit, they
145 : * don't need to set this manually.
146 : */
147 : BTRFS_ROOT_SHAREABLE,
148 : BTRFS_ROOT_TRACK_DIRTY,
149 : BTRFS_ROOT_IN_RADIX,
150 : BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
151 : BTRFS_ROOT_DEFRAG_RUNNING,
152 : BTRFS_ROOT_FORCE_COW,
153 : BTRFS_ROOT_MULTI_LOG_TASKS,
154 : BTRFS_ROOT_DIRTY,
155 : BTRFS_ROOT_DELETING,
156 :
157 : /*
158 : * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
159 : *
160 : * Set for the subvolume tree owning the reloc tree.
161 : */
162 : BTRFS_ROOT_DEAD_RELOC_TREE,
163 : /* Mark dead root stored on device whose cleanup needs to be resumed */
164 : BTRFS_ROOT_DEAD_TREE,
165 : /* The root has a log tree. Used for subvolume roots and the tree root. */
166 : BTRFS_ROOT_HAS_LOG_TREE,
167 : /* Qgroup flushing is in progress */
168 : BTRFS_ROOT_QGROUP_FLUSHING,
169 : /* We started the orphan cleanup for this root. */
170 : BTRFS_ROOT_ORPHAN_CLEANUP,
171 : /* This root has a drop operation that was started previously. */
172 : BTRFS_ROOT_UNFINISHED_DROP,
173 : /* This reloc root needs to have its buffers lockdep class reset. */
174 : BTRFS_ROOT_RESET_LOCKDEP_CLASS,
175 : };
176 :
177 : /*
178 : * Record swapped tree blocks of a subvolume tree for delayed subtree trace
179 : * code. For detail check comment in fs/btrfs/qgroup.c.
180 : */
181 : struct btrfs_qgroup_swapped_blocks {
182 : spinlock_t lock;
183 : /* RM_EMPTY_ROOT() of above blocks[] */
184 : bool swapped;
185 : struct rb_root blocks[BTRFS_MAX_LEVEL];
186 : };
187 :
188 : /*
189 : * in ram representation of the tree. extent_root is used for all allocations
190 : * and for the extent tree extent_root root.
191 : */
192 : struct btrfs_root {
193 : struct rb_node rb_node;
194 :
195 : struct extent_buffer *node;
196 :
197 : struct extent_buffer *commit_root;
198 : struct btrfs_root *log_root;
199 : struct btrfs_root *reloc_root;
200 :
201 : unsigned long state;
202 : struct btrfs_root_item root_item;
203 : struct btrfs_key root_key;
204 : struct btrfs_fs_info *fs_info;
205 : struct extent_io_tree dirty_log_pages;
206 :
207 : struct mutex objectid_mutex;
208 :
209 : spinlock_t accounting_lock;
210 : struct btrfs_block_rsv *block_rsv;
211 :
212 : struct mutex log_mutex;
213 : wait_queue_head_t log_writer_wait;
214 : wait_queue_head_t log_commit_wait[2];
215 : struct list_head log_ctxs[2];
216 : /* Used only for log trees of subvolumes, not for the log root tree */
217 : atomic_t log_writers;
218 : atomic_t log_commit[2];
219 : /* Used only for log trees of subvolumes, not for the log root tree */
220 : atomic_t log_batch;
221 : int log_transid;
222 : /* No matter the commit succeeds or not*/
223 : int log_transid_committed;
224 : /* Just be updated when the commit succeeds. */
225 : int last_log_commit;
226 : pid_t log_start_pid;
227 :
228 : u64 last_trans;
229 :
230 : u32 type;
231 :
232 : u64 free_objectid;
233 :
234 : struct btrfs_key defrag_progress;
235 : struct btrfs_key defrag_max;
236 :
237 : /* The dirty list is only used by non-shareable roots */
238 : struct list_head dirty_list;
239 :
240 : struct list_head root_list;
241 :
242 : spinlock_t log_extents_lock[2];
243 : struct list_head logged_list[2];
244 :
245 : spinlock_t inode_lock;
246 : /* red-black tree that keeps track of in-memory inodes */
247 : struct rb_root inode_tree;
248 :
249 : /*
250 : * radix tree that keeps track of delayed nodes of every inode,
251 : * protected by inode_lock
252 : */
253 : struct radix_tree_root delayed_nodes_tree;
254 : /*
255 : * right now this just gets used so that a root has its own devid
256 : * for stat. It may be used for more later
257 : */
258 : dev_t anon_dev;
259 :
260 : spinlock_t root_item_lock;
261 : refcount_t refs;
262 :
263 : struct mutex delalloc_mutex;
264 : spinlock_t delalloc_lock;
265 : /*
266 : * all of the inodes that have delalloc bytes. It is possible for
267 : * this list to be empty even when there is still dirty data=ordered
268 : * extents waiting to finish IO.
269 : */
270 : struct list_head delalloc_inodes;
271 : struct list_head delalloc_root;
272 : u64 nr_delalloc_inodes;
273 :
274 : struct mutex ordered_extent_mutex;
275 : /*
276 : * this is used by the balancing code to wait for all the pending
277 : * ordered extents
278 : */
279 : spinlock_t ordered_extent_lock;
280 :
281 : /*
282 : * all of the data=ordered extents pending writeback
283 : * these can span multiple transactions and basically include
284 : * every dirty data page that isn't from nodatacow
285 : */
286 : struct list_head ordered_extents;
287 : struct list_head ordered_root;
288 : u64 nr_ordered_extents;
289 :
290 : /*
291 : * Not empty if this subvolume root has gone through tree block swap
292 : * (relocation)
293 : *
294 : * Will be used by reloc_control::dirty_subvol_roots.
295 : */
296 : struct list_head reloc_dirty_list;
297 :
298 : /*
299 : * Number of currently running SEND ioctls to prevent
300 : * manipulation with the read-only status via SUBVOL_SETFLAGS
301 : */
302 : int send_in_progress;
303 : /*
304 : * Number of currently running deduplication operations that have a
305 : * destination inode belonging to this root. Protected by the lock
306 : * root_item_lock.
307 : */
308 : int dedupe_in_progress;
309 : /* For exclusion of snapshot creation and nocow writes */
310 : struct btrfs_drew_lock snapshot_lock;
311 :
312 : atomic_t snapshot_force_cow;
313 :
314 : /* For qgroup metadata reserved space */
315 : spinlock_t qgroup_meta_rsv_lock;
316 : u64 qgroup_meta_rsv_pertrans;
317 : u64 qgroup_meta_rsv_prealloc;
318 : wait_queue_head_t qgroup_flush_wait;
319 :
320 : /* Number of active swapfiles */
321 : atomic_t nr_swapfiles;
322 :
323 : /* Record pairs of swapped blocks for qgroup */
324 : struct btrfs_qgroup_swapped_blocks swapped_blocks;
325 :
326 : /* Used only by log trees, when logging csum items */
327 : struct extent_io_tree log_csum_range;
328 :
329 : #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
330 : u64 alloc_bytenr;
331 : #endif
332 :
333 : #ifdef CONFIG_BTRFS_DEBUG
334 : struct list_head leak_list;
335 : #endif
336 : };
337 :
338 : static inline bool btrfs_root_readonly(const struct btrfs_root *root)
339 : {
340 : /* Byte-swap the constant at compile time, root_item::flags is LE */
341 0 : return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
342 : }
343 :
344 : static inline bool btrfs_root_dead(const struct btrfs_root *root)
345 : {
346 : /* Byte-swap the constant at compile time, root_item::flags is LE */
347 0 : return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
348 : }
349 :
350 : static inline u64 btrfs_root_id(const struct btrfs_root *root)
351 : {
352 0 : return root->root_key.objectid;
353 : }
354 :
355 : /*
356 : * Structure that conveys information about an extent that is going to replace
357 : * all the extents in a file range.
358 : */
359 : struct btrfs_replace_extent_info {
360 : u64 disk_offset;
361 : u64 disk_len;
362 : u64 data_offset;
363 : u64 data_len;
364 : u64 file_offset;
365 : /* Pointer to a file extent item of type regular or prealloc. */
366 : char *extent_buf;
367 : /*
368 : * Set to true when attempting to replace a file range with a new extent
369 : * described by this structure, set to false when attempting to clone an
370 : * existing extent into a file range.
371 : */
372 : bool is_new_extent;
373 : /* Indicate if we should update the inode's mtime and ctime. */
374 : bool update_times;
375 : /* Meaningful only if is_new_extent is true. */
376 : int qgroup_reserved;
377 : /*
378 : * Meaningful only if is_new_extent is true.
379 : * Used to track how many extent items we have already inserted in a
380 : * subvolume tree that refer to the extent described by this structure,
381 : * so that we know when to create a new delayed ref or update an existing
382 : * one.
383 : */
384 : int insertions;
385 : };
386 :
387 : /* Arguments for btrfs_drop_extents() */
388 : struct btrfs_drop_extents_args {
389 : /* Input parameters */
390 :
391 : /*
392 : * If NULL, btrfs_drop_extents() will allocate and free its own path.
393 : * If 'replace_extent' is true, this must not be NULL. Also the path
394 : * is always released except if 'replace_extent' is true and
395 : * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
396 : * the path is kept locked.
397 : */
398 : struct btrfs_path *path;
399 : /* Start offset of the range to drop extents from */
400 : u64 start;
401 : /* End (exclusive, last byte + 1) of the range to drop extents from */
402 : u64 end;
403 : /* If true drop all the extent maps in the range */
404 : bool drop_cache;
405 : /*
406 : * If true it means we want to insert a new extent after dropping all
407 : * the extents in the range. If this is true, the 'extent_item_size'
408 : * parameter must be set as well and the 'extent_inserted' field will
409 : * be set to true by btrfs_drop_extents() if it could insert the new
410 : * extent.
411 : * Note: when this is set to true the path must not be NULL.
412 : */
413 : bool replace_extent;
414 : /*
415 : * Used if 'replace_extent' is true. Size of the file extent item to
416 : * insert after dropping all existing extents in the range
417 : */
418 : u32 extent_item_size;
419 :
420 : /* Output parameters */
421 :
422 : /*
423 : * Set to the minimum between the input parameter 'end' and the end
424 : * (exclusive, last byte + 1) of the last dropped extent. This is always
425 : * set even if btrfs_drop_extents() returns an error.
426 : */
427 : u64 drop_end;
428 : /*
429 : * The number of allocated bytes found in the range. This can be smaller
430 : * than the range's length when there are holes in the range.
431 : */
432 : u64 bytes_found;
433 : /*
434 : * Only set if 'replace_extent' is true. Set to true if we were able
435 : * to insert a replacement extent after dropping all extents in the
436 : * range, otherwise set to false by btrfs_drop_extents().
437 : * Also, if btrfs_drop_extents() has set this to true it means it
438 : * returned with the path locked, otherwise if it has set this to
439 : * false it has returned with the path released.
440 : */
441 : bool extent_inserted;
442 : };
443 :
444 : struct btrfs_file_private {
445 : void *filldir_buf;
446 : struct extent_state *llseek_cached_state;
447 : };
448 :
449 : static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
450 : {
451 0 : return info->nodesize - sizeof(struct btrfs_header);
452 : }
453 :
454 : static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
455 : {
456 0 : return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
457 : }
458 :
459 : static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
460 : {
461 0 : return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
462 : }
463 :
464 : static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
465 : {
466 0 : return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
467 : }
468 :
469 : #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
470 : ((bytes) >> (fs_info)->sectorsize_bits)
471 :
472 : static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
473 : {
474 0 : return crc32c(crc, address, length);
475 : }
476 :
477 : static inline void btrfs_crc32c_final(u32 crc, u8 *result)
478 : {
479 0 : put_unaligned_le32(~crc, result);
480 : }
481 :
482 : static inline u64 btrfs_name_hash(const char *name, int len)
483 : {
484 2 : return crc32c((u32)~1, name, len);
485 : }
486 :
487 : /*
488 : * Figure the key offset of an extended inode ref
489 : */
490 : static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
491 : int len)
492 : {
493 0 : return (u64) crc32c(parent_objectid, name, len);
494 : }
495 :
496 : static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
497 : {
498 0 : return mapping_gfp_constraint(mapping, ~__GFP_FS);
499 : }
500 :
501 : int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
502 : u64 start, u64 end);
503 : int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
504 : u64 num_bytes, u64 *actual_bytes);
505 : int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
506 :
507 : /* ctree.c */
508 : int __init btrfs_ctree_init(void);
509 : void __cold btrfs_ctree_exit(void);
510 :
511 : int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
512 : const struct btrfs_key *key, int *slot);
513 :
514 : int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
515 : int btrfs_previous_item(struct btrfs_root *root,
516 : struct btrfs_path *path, u64 min_objectid,
517 : int type);
518 : int btrfs_previous_extent_item(struct btrfs_root *root,
519 : struct btrfs_path *path, u64 min_objectid);
520 : void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
521 : struct btrfs_path *path,
522 : const struct btrfs_key *new_key);
523 : struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
524 : int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
525 : struct btrfs_key *key, int lowest_level,
526 : u64 min_trans);
527 : int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
528 : struct btrfs_path *path,
529 : u64 min_trans);
530 : struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
531 : int slot);
532 :
533 : int btrfs_cow_block(struct btrfs_trans_handle *trans,
534 : struct btrfs_root *root, struct extent_buffer *buf,
535 : struct extent_buffer *parent, int parent_slot,
536 : struct extent_buffer **cow_ret,
537 : enum btrfs_lock_nesting nest);
538 : int btrfs_copy_root(struct btrfs_trans_handle *trans,
539 : struct btrfs_root *root,
540 : struct extent_buffer *buf,
541 : struct extent_buffer **cow_ret, u64 new_root_objectid);
542 : int btrfs_block_can_be_shared(struct btrfs_root *root,
543 : struct extent_buffer *buf);
544 : int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
545 : struct btrfs_path *path, int level, int slot);
546 : void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
547 : void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
548 : int btrfs_split_item(struct btrfs_trans_handle *trans,
549 : struct btrfs_root *root,
550 : struct btrfs_path *path,
551 : const struct btrfs_key *new_key,
552 : unsigned long split_offset);
553 : int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
554 : struct btrfs_root *root,
555 : struct btrfs_path *path,
556 : const struct btrfs_key *new_key);
557 : int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
558 : u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
559 : int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
560 : const struct btrfs_key *key, struct btrfs_path *p,
561 : int ins_len, int cow);
562 : int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
563 : struct btrfs_path *p, u64 time_seq);
564 : int btrfs_search_slot_for_read(struct btrfs_root *root,
565 : const struct btrfs_key *key,
566 : struct btrfs_path *p, int find_higher,
567 : int return_any);
568 : int btrfs_realloc_node(struct btrfs_trans_handle *trans,
569 : struct btrfs_root *root, struct extent_buffer *parent,
570 : int start_slot, u64 *last_ret,
571 : struct btrfs_key *progress);
572 : void btrfs_release_path(struct btrfs_path *p);
573 : struct btrfs_path *btrfs_alloc_path(void);
574 : void btrfs_free_path(struct btrfs_path *p);
575 :
576 : int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
577 : struct btrfs_path *path, int slot, int nr);
578 : static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
579 : struct btrfs_root *root,
580 : struct btrfs_path *path)
581 : {
582 0 : return btrfs_del_items(trans, root, path, path->slots[0], 1);
583 : }
584 :
585 : /*
586 : * Describes a batch of items to insert in a btree. This is used by
587 : * btrfs_insert_empty_items().
588 : */
589 : struct btrfs_item_batch {
590 : /*
591 : * Pointer to an array containing the keys of the items to insert (in
592 : * sorted order).
593 : */
594 : const struct btrfs_key *keys;
595 : /* Pointer to an array containing the data size for each item to insert. */
596 : const u32 *data_sizes;
597 : /*
598 : * The sum of data sizes for all items. The caller can compute this while
599 : * setting up the data_sizes array, so it ends up being more efficient
600 : * than having btrfs_insert_empty_items() or setup_item_for_insert()
601 : * doing it, as it would avoid an extra loop over a potentially large
602 : * array, and in the case of setup_item_for_insert(), we would be doing
603 : * it while holding a write lock on a leaf and often on upper level nodes
604 : * too, unnecessarily increasing the size of a critical section.
605 : */
606 : u32 total_data_size;
607 : /* Size of the keys and data_sizes arrays (number of items in the batch). */
608 : int nr;
609 : };
610 :
611 : void btrfs_setup_item_for_insert(struct btrfs_root *root,
612 : struct btrfs_path *path,
613 : const struct btrfs_key *key,
614 : u32 data_size);
615 : int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
616 : const struct btrfs_key *key, void *data, u32 data_size);
617 : int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
618 : struct btrfs_root *root,
619 : struct btrfs_path *path,
620 : const struct btrfs_item_batch *batch);
621 :
622 : static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
623 : struct btrfs_root *root,
624 : struct btrfs_path *path,
625 : const struct btrfs_key *key,
626 : u32 data_size)
627 : {
628 0 : struct btrfs_item_batch batch;
629 :
630 0 : batch.keys = key;
631 0 : batch.data_sizes = &data_size;
632 0 : batch.total_data_size = data_size;
633 0 : batch.nr = 1;
634 :
635 0 : return btrfs_insert_empty_items(trans, root, path, &batch);
636 : }
637 :
638 : int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
639 : u64 time_seq);
640 :
641 : int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
642 : struct btrfs_path *path);
643 :
644 : int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
645 : struct btrfs_path *path);
646 :
647 : /*
648 : * Search in @root for a given @key, and store the slot found in @found_key.
649 : *
650 : * @root: The root node of the tree.
651 : * @key: The key we are looking for.
652 : * @found_key: Will hold the found item.
653 : * @path: Holds the current slot/leaf.
654 : * @iter_ret: Contains the value returned from btrfs_search_slot or
655 : * btrfs_get_next_valid_item, whichever was executed last.
656 : *
657 : * The @iter_ret is an output variable that will contain the return value of
658 : * btrfs_search_slot, if it encountered an error, or the value returned from
659 : * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
660 : * slot was found, 1 if there were no more leaves, and <0 if there was an error.
661 : *
662 : * It's recommended to use a separate variable for iter_ret and then use it to
663 : * set the function return value so there's no confusion of the 0/1/errno
664 : * values stemming from btrfs_search_slot.
665 : */
666 : #define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \
667 : for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \
668 : (iter_ret) >= 0 && \
669 : (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
670 : (path)->slots[0]++ \
671 : )
672 :
673 : int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq);
674 :
675 : /*
676 : * Search the tree again to find a leaf with greater keys.
677 : *
678 : * Returns 0 if it found something or 1 if there are no greater leaves.
679 : * Returns < 0 on error.
680 : */
681 : static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
682 : {
683 0 : return btrfs_next_old_leaf(root, path, 0);
684 : }
685 :
686 : static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
687 : {
688 0 : return btrfs_next_old_item(root, p, 0);
689 : }
690 : int btrfs_leaf_free_space(const struct extent_buffer *leaf);
691 :
692 : static inline int is_fstree(u64 rootid)
693 : {
694 0 : if (rootid == BTRFS_FS_TREE_OBJECTID ||
695 0 : ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
696 : !btrfs_qgroup_level(rootid)))
697 0 : return 1;
698 : return 0;
699 : }
700 :
701 : static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
702 : {
703 0 : return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
704 : }
705 :
706 : u16 btrfs_csum_type_size(u16 type);
707 : int btrfs_super_csum_size(const struct btrfs_super_block *s);
708 : const char *btrfs_super_csum_name(u16 csum_type);
709 : const char *btrfs_super_csum_driver(u16 csum_type);
710 : size_t __attribute_const__ btrfs_get_num_csums(void);
711 :
712 : /*
713 : * We use page status Private2 to indicate there is an ordered extent with
714 : * unfinished IO.
715 : *
716 : * Rename the Private2 accessors to Ordered, to improve readability.
717 : */
718 : #define PageOrdered(page) PagePrivate2(page)
719 : #define SetPageOrdered(page) SetPagePrivate2(page)
720 : #define ClearPageOrdered(page) ClearPagePrivate2(page)
721 : #define folio_test_ordered(folio) folio_test_private_2(folio)
722 : #define folio_set_ordered(folio) folio_set_private_2(folio)
723 : #define folio_clear_ordered(folio) folio_clear_private_2(folio)
724 :
725 : #endif
|