LCOV - code coverage report
Current view: top level - fs/btrfs - scrub.c (source / functions) Hit Total Coverage
Test: fstests of 6.5.0-rc4-xfsa @ Mon Jul 31 20:08:27 PDT 2023 Lines: 0 1449 0.0 %
Date: 2023-07-31 20:08:27 Functions: 0 55 0.0 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
       4             :  */
       5             : 
       6             : #include <linux/blkdev.h>
       7             : #include <linux/ratelimit.h>
       8             : #include <linux/sched/mm.h>
       9             : #include <crypto/hash.h>
      10             : #include "ctree.h"
      11             : #include "discard.h"
      12             : #include "volumes.h"
      13             : #include "disk-io.h"
      14             : #include "ordered-data.h"
      15             : #include "transaction.h"
      16             : #include "backref.h"
      17             : #include "extent_io.h"
      18             : #include "dev-replace.h"
      19             : #include "check-integrity.h"
      20             : #include "raid56.h"
      21             : #include "block-group.h"
      22             : #include "zoned.h"
      23             : #include "fs.h"
      24             : #include "accessors.h"
      25             : #include "file-item.h"
      26             : #include "scrub.h"
      27             : 
      28             : /*
      29             :  * This is only the first step towards a full-features scrub. It reads all
      30             :  * extent and super block and verifies the checksums. In case a bad checksum
      31             :  * is found or the extent cannot be read, good data will be written back if
      32             :  * any can be found.
      33             :  *
      34             :  * Future enhancements:
      35             :  *  - In case an unrepairable extent is encountered, track which files are
      36             :  *    affected and report them
      37             :  *  - track and record media errors, throw out bad devices
      38             :  *  - add a mode to also read unallocated space
      39             :  */
      40             : 
      41             : struct scrub_ctx;
      42             : 
      43             : /*
      44             :  * The following value only influences the performance.
      45             :  *
      46             :  * This determines the batch size for stripe submitted in one go.
      47             :  */
      48             : #define SCRUB_STRIPES_PER_SCTX  8       /* That would be 8 64K stripe per-device. */
      49             : 
      50             : /*
      51             :  * The following value times PAGE_SIZE needs to be large enough to match the
      52             :  * largest node/leaf/sector size that shall be supported.
      53             :  */
      54             : #define SCRUB_MAX_SECTORS_PER_BLOCK     (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
      55             : 
      56             : /* Represent one sector and its needed info to verify the content. */
      57             : struct scrub_sector_verification {
      58             :         bool is_metadata;
      59             : 
      60             :         union {
      61             :                 /*
      62             :                  * Csum pointer for data csum verification.  Should point to a
      63             :                  * sector csum inside scrub_stripe::csums.
      64             :                  *
      65             :                  * NULL if this data sector has no csum.
      66             :                  */
      67             :                 u8 *csum;
      68             : 
      69             :                 /*
      70             :                  * Extra info for metadata verification.  All sectors inside a
      71             :                  * tree block share the same generation.
      72             :                  */
      73             :                 u64 generation;
      74             :         };
      75             : };
      76             : 
      77             : enum scrub_stripe_flags {
      78             :         /* Set when @mirror_num, @dev, @physical and @logical are set. */
      79             :         SCRUB_STRIPE_FLAG_INITIALIZED,
      80             : 
      81             :         /* Set when the read-repair is finished. */
      82             :         SCRUB_STRIPE_FLAG_REPAIR_DONE,
      83             : 
      84             :         /*
      85             :          * Set for data stripes if it's triggered from P/Q stripe.
      86             :          * During such scrub, we should not report errors in data stripes, nor
      87             :          * update the accounting.
      88             :          */
      89             :         SCRUB_STRIPE_FLAG_NO_REPORT,
      90             : };
      91             : 
      92             : #define SCRUB_STRIPE_PAGES              (BTRFS_STRIPE_LEN / PAGE_SIZE)
      93             : 
      94             : /*
      95             :  * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
      96             :  */
      97             : struct scrub_stripe {
      98             :         struct scrub_ctx *sctx;
      99             :         struct btrfs_block_group *bg;
     100             : 
     101             :         struct page *pages[SCRUB_STRIPE_PAGES];
     102             :         struct scrub_sector_verification *sectors;
     103             : 
     104             :         struct btrfs_device *dev;
     105             :         u64 logical;
     106             :         u64 physical;
     107             : 
     108             :         u16 mirror_num;
     109             : 
     110             :         /* Should be BTRFS_STRIPE_LEN / sectorsize. */
     111             :         u16 nr_sectors;
     112             : 
     113             :         /*
     114             :          * How many data/meta extents are in this stripe.  Only for scrub status
     115             :          * reporting purposes.
     116             :          */
     117             :         u16 nr_data_extents;
     118             :         u16 nr_meta_extents;
     119             : 
     120             :         atomic_t pending_io;
     121             :         wait_queue_head_t io_wait;
     122             :         wait_queue_head_t repair_wait;
     123             : 
     124             :         /*
     125             :          * Indicate the states of the stripe.  Bits are defined in
     126             :          * scrub_stripe_flags enum.
     127             :          */
     128             :         unsigned long state;
     129             : 
     130             :         /* Indicate which sectors are covered by extent items. */
     131             :         unsigned long extent_sector_bitmap;
     132             : 
     133             :         /*
     134             :          * The errors hit during the initial read of the stripe.
     135             :          *
     136             :          * Would be utilized for error reporting and repair.
     137             :          *
     138             :          * The remaining init_nr_* records the number of errors hit, only used
     139             :          * by error reporting.
     140             :          */
     141             :         unsigned long init_error_bitmap;
     142             :         unsigned int init_nr_io_errors;
     143             :         unsigned int init_nr_csum_errors;
     144             :         unsigned int init_nr_meta_errors;
     145             : 
     146             :         /*
     147             :          * The following error bitmaps are all for the current status.
     148             :          * Every time we submit a new read, these bitmaps may be updated.
     149             :          *
     150             :          * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
     151             :          *
     152             :          * IO and csum errors can happen for both metadata and data.
     153             :          */
     154             :         unsigned long error_bitmap;
     155             :         unsigned long io_error_bitmap;
     156             :         unsigned long csum_error_bitmap;
     157             :         unsigned long meta_error_bitmap;
     158             : 
     159             :         /* For writeback (repair or replace) error reporting. */
     160             :         unsigned long write_error_bitmap;
     161             : 
     162             :         /* Writeback can be concurrent, thus we need to protect the bitmap. */
     163             :         spinlock_t write_error_lock;
     164             : 
     165             :         /*
     166             :          * Checksum for the whole stripe if this stripe is inside a data block
     167             :          * group.
     168             :          */
     169             :         u8 *csums;
     170             : 
     171             :         struct work_struct work;
     172             : };
     173             : 
     174             : struct scrub_ctx {
     175             :         struct scrub_stripe     stripes[SCRUB_STRIPES_PER_SCTX];
     176             :         struct scrub_stripe     *raid56_data_stripes;
     177             :         struct btrfs_fs_info    *fs_info;
     178             :         int                     first_free;
     179             :         int                     cur_stripe;
     180             :         atomic_t                cancel_req;
     181             :         int                     readonly;
     182             :         int                     sectors_per_bio;
     183             : 
     184             :         /* State of IO submission throttling affecting the associated device */
     185             :         ktime_t                 throttle_deadline;
     186             :         u64                     throttle_sent;
     187             : 
     188             :         int                     is_dev_replace;
     189             :         u64                     write_pointer;
     190             : 
     191             :         struct mutex            wr_lock;
     192             :         struct btrfs_device     *wr_tgtdev;
     193             : 
     194             :         /*
     195             :          * statistics
     196             :          */
     197             :         struct btrfs_scrub_progress stat;
     198             :         spinlock_t              stat_lock;
     199             : 
     200             :         /*
     201             :          * Use a ref counter to avoid use-after-free issues. Scrub workers
     202             :          * decrement bios_in_flight and workers_pending and then do a wakeup
     203             :          * on the list_wait wait queue. We must ensure the main scrub task
     204             :          * doesn't free the scrub context before or while the workers are
     205             :          * doing the wakeup() call.
     206             :          */
     207             :         refcount_t              refs;
     208             : };
     209             : 
     210             : struct scrub_warning {
     211             :         struct btrfs_path       *path;
     212             :         u64                     extent_item_size;
     213             :         const char              *errstr;
     214             :         u64                     physical;
     215             :         u64                     logical;
     216             :         struct btrfs_device     *dev;
     217             : };
     218             : 
     219           0 : static void release_scrub_stripe(struct scrub_stripe *stripe)
     220             : {
     221           0 :         if (!stripe)
     222             :                 return;
     223             : 
     224           0 :         for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
     225           0 :                 if (stripe->pages[i])
     226           0 :                         __free_page(stripe->pages[i]);
     227           0 :                 stripe->pages[i] = NULL;
     228             :         }
     229           0 :         kfree(stripe->sectors);
     230           0 :         kfree(stripe->csums);
     231           0 :         stripe->sectors = NULL;
     232           0 :         stripe->csums = NULL;
     233           0 :         stripe->sctx = NULL;
     234           0 :         stripe->state = 0;
     235             : }
     236             : 
     237           0 : static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
     238             :                              struct scrub_stripe *stripe)
     239             : {
     240           0 :         int ret;
     241             : 
     242           0 :         memset(stripe, 0, sizeof(*stripe));
     243             : 
     244           0 :         stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
     245           0 :         stripe->state = 0;
     246             : 
     247           0 :         init_waitqueue_head(&stripe->io_wait);
     248           0 :         init_waitqueue_head(&stripe->repair_wait);
     249           0 :         atomic_set(&stripe->pending_io, 0);
     250           0 :         spin_lock_init(&stripe->write_error_lock);
     251             : 
     252           0 :         ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages);
     253           0 :         if (ret < 0)
     254           0 :                 goto error;
     255             : 
     256           0 :         stripe->sectors = kcalloc(stripe->nr_sectors,
     257             :                                   sizeof(struct scrub_sector_verification),
     258             :                                   GFP_KERNEL);
     259           0 :         if (!stripe->sectors)
     260           0 :                 goto error;
     261             : 
     262           0 :         stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
     263           0 :                                 fs_info->csum_size, GFP_KERNEL);
     264           0 :         if (!stripe->csums)
     265           0 :                 goto error;
     266             :         return 0;
     267           0 : error:
     268           0 :         release_scrub_stripe(stripe);
     269           0 :         return -ENOMEM;
     270             : }
     271             : 
     272           0 : static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
     273             : {
     274           0 :         wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
     275           0 : }
     276             : 
     277             : static void scrub_put_ctx(struct scrub_ctx *sctx);
     278             : 
     279           0 : static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
     280             : {
     281           0 :         while (atomic_read(&fs_info->scrub_pause_req)) {
     282           0 :                 mutex_unlock(&fs_info->scrub_lock);
     283           0 :                 wait_event(fs_info->scrub_pause_wait,
     284             :                    atomic_read(&fs_info->scrub_pause_req) == 0);
     285           0 :                 mutex_lock(&fs_info->scrub_lock);
     286             :         }
     287           0 : }
     288             : 
     289           0 : static void scrub_pause_on(struct btrfs_fs_info *fs_info)
     290             : {
     291           0 :         atomic_inc(&fs_info->scrubs_paused);
     292           0 :         wake_up(&fs_info->scrub_pause_wait);
     293           0 : }
     294             : 
     295           0 : static void scrub_pause_off(struct btrfs_fs_info *fs_info)
     296             : {
     297           0 :         mutex_lock(&fs_info->scrub_lock);
     298           0 :         __scrub_blocked_if_needed(fs_info);
     299           0 :         atomic_dec(&fs_info->scrubs_paused);
     300           0 :         mutex_unlock(&fs_info->scrub_lock);
     301             : 
     302           0 :         wake_up(&fs_info->scrub_pause_wait);
     303           0 : }
     304             : 
     305             : static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
     306             : {
     307           0 :         scrub_pause_on(fs_info);
     308           0 :         scrub_pause_off(fs_info);
     309           0 : }
     310             : 
     311           0 : static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
     312             : {
     313           0 :         int i;
     314             : 
     315           0 :         if (!sctx)
     316             :                 return;
     317             : 
     318           0 :         for (i = 0; i < SCRUB_STRIPES_PER_SCTX; i++)
     319           0 :                 release_scrub_stripe(&sctx->stripes[i]);
     320             : 
     321           0 :         kfree(sctx);
     322             : }
     323             : 
     324           0 : static void scrub_put_ctx(struct scrub_ctx *sctx)
     325             : {
     326           0 :         if (refcount_dec_and_test(&sctx->refs))
     327           0 :                 scrub_free_ctx(sctx);
     328           0 : }
     329             : 
     330           0 : static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
     331             :                 struct btrfs_fs_info *fs_info, int is_dev_replace)
     332             : {
     333           0 :         struct scrub_ctx *sctx;
     334           0 :         int             i;
     335             : 
     336           0 :         sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
     337           0 :         if (!sctx)
     338           0 :                 goto nomem;
     339           0 :         refcount_set(&sctx->refs, 1);
     340           0 :         sctx->is_dev_replace = is_dev_replace;
     341           0 :         sctx->fs_info = fs_info;
     342           0 :         for (i = 0; i < SCRUB_STRIPES_PER_SCTX; i++) {
     343           0 :                 int ret;
     344             : 
     345           0 :                 ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
     346           0 :                 if (ret < 0)
     347           0 :                         goto nomem;
     348           0 :                 sctx->stripes[i].sctx = sctx;
     349             :         }
     350           0 :         sctx->first_free = 0;
     351           0 :         atomic_set(&sctx->cancel_req, 0);
     352             : 
     353           0 :         spin_lock_init(&sctx->stat_lock);
     354           0 :         sctx->throttle_deadline = 0;
     355             : 
     356           0 :         mutex_init(&sctx->wr_lock);
     357           0 :         if (is_dev_replace) {
     358           0 :                 WARN_ON(!fs_info->dev_replace.tgtdev);
     359           0 :                 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
     360             :         }
     361             : 
     362             :         return sctx;
     363             : 
     364           0 : nomem:
     365           0 :         scrub_free_ctx(sctx);
     366           0 :         return ERR_PTR(-ENOMEM);
     367             : }
     368             : 
     369           0 : static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
     370             :                                      u64 root, void *warn_ctx)
     371             : {
     372           0 :         u32 nlink;
     373           0 :         int ret;
     374           0 :         int i;
     375           0 :         unsigned nofs_flag;
     376           0 :         struct extent_buffer *eb;
     377           0 :         struct btrfs_inode_item *inode_item;
     378           0 :         struct scrub_warning *swarn = warn_ctx;
     379           0 :         struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
     380           0 :         struct inode_fs_paths *ipath = NULL;
     381           0 :         struct btrfs_root *local_root;
     382           0 :         struct btrfs_key key;
     383             : 
     384           0 :         local_root = btrfs_get_fs_root(fs_info, root, true);
     385           0 :         if (IS_ERR(local_root)) {
     386           0 :                 ret = PTR_ERR(local_root);
     387           0 :                 goto err;
     388             :         }
     389             : 
     390             :         /*
     391             :          * this makes the path point to (inum INODE_ITEM ioff)
     392             :          */
     393           0 :         key.objectid = inum;
     394           0 :         key.type = BTRFS_INODE_ITEM_KEY;
     395           0 :         key.offset = 0;
     396             : 
     397           0 :         ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
     398           0 :         if (ret) {
     399           0 :                 btrfs_put_root(local_root);
     400           0 :                 btrfs_release_path(swarn->path);
     401           0 :                 goto err;
     402             :         }
     403             : 
     404           0 :         eb = swarn->path->nodes[0];
     405           0 :         inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
     406             :                                         struct btrfs_inode_item);
     407           0 :         nlink = btrfs_inode_nlink(eb, inode_item);
     408           0 :         btrfs_release_path(swarn->path);
     409             : 
     410             :         /*
     411             :          * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
     412             :          * uses GFP_NOFS in this context, so we keep it consistent but it does
     413             :          * not seem to be strictly necessary.
     414             :          */
     415           0 :         nofs_flag = memalloc_nofs_save();
     416           0 :         ipath = init_ipath(4096, local_root, swarn->path);
     417           0 :         memalloc_nofs_restore(nofs_flag);
     418           0 :         if (IS_ERR(ipath)) {
     419           0 :                 btrfs_put_root(local_root);
     420           0 :                 ret = PTR_ERR(ipath);
     421           0 :                 ipath = NULL;
     422           0 :                 goto err;
     423             :         }
     424           0 :         ret = paths_from_inode(inum, ipath);
     425             : 
     426           0 :         if (ret < 0)
     427           0 :                 goto err;
     428             : 
     429             :         /*
     430             :          * we deliberately ignore the bit ipath might have been too small to
     431             :          * hold all of the paths here
     432             :          */
     433           0 :         for (i = 0; i < ipath->fspath->elem_cnt; ++i)
     434           0 :                 btrfs_warn_in_rcu(fs_info,
     435             : "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
     436             :                                   swarn->errstr, swarn->logical,
     437             :                                   btrfs_dev_name(swarn->dev),
     438             :                                   swarn->physical,
     439             :                                   root, inum, offset,
     440             :                                   fs_info->sectorsize, nlink,
     441             :                                   (char *)(unsigned long)ipath->fspath->val[i]);
     442             : 
     443           0 :         btrfs_put_root(local_root);
     444           0 :         free_ipath(ipath);
     445           0 :         return 0;
     446             : 
     447           0 : err:
     448           0 :         btrfs_warn_in_rcu(fs_info,
     449             :                           "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
     450             :                           swarn->errstr, swarn->logical,
     451             :                           btrfs_dev_name(swarn->dev),
     452             :                           swarn->physical,
     453             :                           root, inum, offset, ret);
     454             : 
     455           0 :         free_ipath(ipath);
     456           0 :         return 0;
     457             : }
     458             : 
     459           0 : static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
     460             :                                        bool is_super, u64 logical, u64 physical)
     461             : {
     462           0 :         struct btrfs_fs_info *fs_info = dev->fs_info;
     463           0 :         struct btrfs_path *path;
     464           0 :         struct btrfs_key found_key;
     465           0 :         struct extent_buffer *eb;
     466           0 :         struct btrfs_extent_item *ei;
     467           0 :         struct scrub_warning swarn;
     468           0 :         u64 flags = 0;
     469           0 :         u32 item_size;
     470           0 :         int ret;
     471             : 
     472             :         /* Super block error, no need to search extent tree. */
     473           0 :         if (is_super) {
     474           0 :                 btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
     475             :                                   errstr, btrfs_dev_name(dev), physical);
     476           0 :                 return;
     477             :         }
     478           0 :         path = btrfs_alloc_path();
     479           0 :         if (!path)
     480             :                 return;
     481             : 
     482           0 :         swarn.physical = physical;
     483           0 :         swarn.logical = logical;
     484           0 :         swarn.errstr = errstr;
     485           0 :         swarn.dev = NULL;
     486             : 
     487           0 :         ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
     488             :                                   &flags);
     489           0 :         if (ret < 0)
     490           0 :                 goto out;
     491             : 
     492           0 :         swarn.extent_item_size = found_key.offset;
     493             : 
     494           0 :         eb = path->nodes[0];
     495           0 :         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
     496           0 :         item_size = btrfs_item_size(eb, path->slots[0]);
     497             : 
     498           0 :         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
     499           0 :                 unsigned long ptr = 0;
     500           0 :                 u8 ref_level;
     501           0 :                 u64 ref_root;
     502             : 
     503           0 :                 while (true) {
     504           0 :                         ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
     505             :                                                       item_size, &ref_root,
     506             :                                                       &ref_level);
     507           0 :                         if (ret < 0) {
     508           0 :                                 btrfs_warn(fs_info,
     509             :                                 "failed to resolve tree backref for logical %llu: %d",
     510             :                                                   swarn.logical, ret);
     511           0 :                                 break;
     512             :                         }
     513           0 :                         if (ret > 0)
     514             :                                 break;
     515           0 :                         btrfs_warn_in_rcu(fs_info,
     516             : "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
     517             :                                 errstr, swarn.logical, btrfs_dev_name(dev),
     518             :                                 swarn.physical, (ref_level ? "node" : "leaf"),
     519             :                                 ref_level, ref_root);
     520             :                 }
     521           0 :                 btrfs_release_path(path);
     522             :         } else {
     523           0 :                 struct btrfs_backref_walk_ctx ctx = { 0 };
     524             : 
     525           0 :                 btrfs_release_path(path);
     526             : 
     527           0 :                 ctx.bytenr = found_key.objectid;
     528           0 :                 ctx.extent_item_pos = swarn.logical - found_key.objectid;
     529           0 :                 ctx.fs_info = fs_info;
     530             : 
     531           0 :                 swarn.path = path;
     532           0 :                 swarn.dev = dev;
     533             : 
     534           0 :                 iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
     535             :         }
     536             : 
     537           0 : out:
     538           0 :         btrfs_free_path(path);
     539             : }
     540             : 
     541           0 : static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
     542             : {
     543           0 :         int ret = 0;
     544           0 :         u64 length;
     545             : 
     546           0 :         if (!btrfs_is_zoned(sctx->fs_info))
     547             :                 return 0;
     548             : 
     549           0 :         if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
     550             :                 return 0;
     551             : 
     552           0 :         if (sctx->write_pointer < physical) {
     553           0 :                 length = physical - sctx->write_pointer;
     554             : 
     555           0 :                 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
     556             :                                                 sctx->write_pointer, length);
     557           0 :                 if (!ret)
     558           0 :                         sctx->write_pointer = physical;
     559             :         }
     560             :         return ret;
     561             : }
     562             : 
     563             : static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
     564             : {
     565           0 :         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
     566           0 :         int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
     567             : 
     568           0 :         return stripe->pages[page_index];
     569             : }
     570             : 
     571             : static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
     572             :                                                  int sector_nr)
     573             : {
     574           0 :         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
     575             : 
     576           0 :         return offset_in_page(sector_nr << fs_info->sectorsize_bits);
     577             : }
     578             : 
     579           0 : static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
     580             : {
     581           0 :         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
     582           0 :         const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
     583           0 :         const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
     584           0 :         const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
     585           0 :         const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
     586           0 :         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
     587           0 :         u8 on_disk_csum[BTRFS_CSUM_SIZE];
     588           0 :         u8 calculated_csum[BTRFS_CSUM_SIZE];
     589           0 :         struct btrfs_header *header;
     590             : 
     591             :         /*
     592             :          * Here we don't have a good way to attach the pages (and subpages)
     593             :          * to a dummy extent buffer, thus we have to directly grab the members
     594             :          * from pages.
     595             :          */
     596           0 :         header = (struct btrfs_header *)(page_address(first_page) + first_off);
     597           0 :         memcpy(on_disk_csum, header->csum, fs_info->csum_size);
     598             : 
     599           0 :         if (logical != btrfs_stack_header_bytenr(header)) {
     600           0 :                 bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
     601           0 :                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
     602           0 :                 btrfs_warn_rl(fs_info,
     603             :                 "tree block %llu mirror %u has bad bytenr, has %llu want %llu",
     604             :                               logical, stripe->mirror_num,
     605             :                               btrfs_stack_header_bytenr(header), logical);
     606           0 :                 return;
     607             :         }
     608           0 :         if (memcmp(header->fsid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE) != 0) {
     609           0 :                 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
     610           0 :                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
     611           0 :                 btrfs_warn_rl(fs_info,
     612             :                 "tree block %llu mirror %u has bad fsid, has %pU want %pU",
     613             :                               logical, stripe->mirror_num,
     614             :                               header->fsid, fs_info->fs_devices->fsid);
     615           0 :                 return;
     616             :         }
     617           0 :         if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
     618             :                    BTRFS_UUID_SIZE) != 0) {
     619           0 :                 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
     620           0 :                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
     621           0 :                 btrfs_warn_rl(fs_info,
     622             :                 "tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
     623             :                               logical, stripe->mirror_num,
     624             :                               header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
     625           0 :                 return;
     626             :         }
     627             : 
     628             :         /* Now check tree block csum. */
     629           0 :         shash->tfm = fs_info->csum_shash;
     630           0 :         crypto_shash_init(shash);
     631           0 :         crypto_shash_update(shash, page_address(first_page) + first_off +
     632           0 :                             BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
     633             : 
     634           0 :         for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
     635           0 :                 struct page *page = scrub_stripe_get_page(stripe, i);
     636           0 :                 unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
     637             : 
     638           0 :                 crypto_shash_update(shash, page_address(page) + page_off,
     639             :                                     fs_info->sectorsize);
     640             :         }
     641             : 
     642           0 :         crypto_shash_final(shash, calculated_csum);
     643           0 :         if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
     644           0 :                 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
     645           0 :                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
     646           0 :                 btrfs_warn_rl(fs_info,
     647             :                 "tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
     648             :                               logical, stripe->mirror_num,
     649             :                               CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
     650             :                               CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
     651           0 :                 return;
     652             :         }
     653           0 :         if (stripe->sectors[sector_nr].generation !=
     654             :             btrfs_stack_header_generation(header)) {
     655           0 :                 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
     656           0 :                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
     657           0 :                 btrfs_warn_rl(fs_info,
     658             :                 "tree block %llu mirror %u has bad generation, has %llu want %llu",
     659             :                               logical, stripe->mirror_num,
     660             :                               btrfs_stack_header_generation(header),
     661             :                               stripe->sectors[sector_nr].generation);
     662           0 :                 return;
     663             :         }
     664           0 :         bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
     665           0 :         bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
     666           0 :         bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
     667             : }
     668             : 
     669           0 : static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
     670             : {
     671           0 :         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
     672           0 :         struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
     673           0 :         const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
     674           0 :         struct page *page = scrub_stripe_get_page(stripe, sector_nr);
     675           0 :         unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
     676           0 :         u8 csum_buf[BTRFS_CSUM_SIZE];
     677           0 :         int ret;
     678             : 
     679           0 :         ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
     680             : 
     681             :         /* Sector not utilized, skip it. */
     682           0 :         if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
     683           0 :                 return;
     684             : 
     685             :         /* IO error, no need to check. */
     686           0 :         if (test_bit(sector_nr, &stripe->io_error_bitmap))
     687             :                 return;
     688             : 
     689             :         /* Metadata, verify the full tree block. */
     690           0 :         if (sector->is_metadata) {
     691             :                 /*
     692             :                  * Check if the tree block crosses the stripe boudary.  If
     693             :                  * crossed the boundary, we cannot verify it but only give a
     694             :                  * warning.
     695             :                  *
     696             :                  * This can only happen on a very old filesystem where chunks
     697             :                  * are not ensured to be stripe aligned.
     698             :                  */
     699           0 :                 if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
     700           0 :                         btrfs_warn_rl(fs_info,
     701             :                         "tree block at %llu crosses stripe boundary %llu",
     702             :                                       stripe->logical +
     703             :                                       (sector_nr << fs_info->sectorsize_bits),
     704             :                                       stripe->logical);
     705           0 :                         return;
     706             :                 }
     707           0 :                 scrub_verify_one_metadata(stripe, sector_nr);
     708           0 :                 return;
     709             :         }
     710             : 
     711             :         /*
     712             :          * Data is easier, we just verify the data csum (if we have it).  For
     713             :          * cases without csum, we have no other choice but to trust it.
     714             :          */
     715           0 :         if (!sector->csum) {
     716           0 :                 clear_bit(sector_nr, &stripe->error_bitmap);
     717           0 :                 return;
     718             :         }
     719             : 
     720           0 :         ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
     721           0 :         if (ret < 0) {
     722           0 :                 set_bit(sector_nr, &stripe->csum_error_bitmap);
     723           0 :                 set_bit(sector_nr, &stripe->error_bitmap);
     724             :         } else {
     725           0 :                 clear_bit(sector_nr, &stripe->csum_error_bitmap);
     726           0 :                 clear_bit(sector_nr, &stripe->error_bitmap);
     727             :         }
     728             : }
     729             : 
     730             : /* Verify specified sectors of a stripe. */
     731           0 : static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
     732             : {
     733           0 :         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
     734           0 :         const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
     735           0 :         int sector_nr;
     736             : 
     737           0 :         for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
     738           0 :                 scrub_verify_one_sector(stripe, sector_nr);
     739           0 :                 if (stripe->sectors[sector_nr].is_metadata)
     740           0 :                         sector_nr += sectors_per_tree - 1;
     741             :         }
     742           0 : }
     743             : 
     744           0 : static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
     745             : {
     746           0 :         int i;
     747             : 
     748           0 :         for (i = 0; i < stripe->nr_sectors; i++) {
     749           0 :                 if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
     750           0 :                     scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
     751             :                         break;
     752             :         }
     753           0 :         ASSERT(i < stripe->nr_sectors);
     754           0 :         return i;
     755             : }
     756             : 
     757             : /*
     758             :  * Repair read is different to the regular read:
     759             :  *
     760             :  * - Only reads the failed sectors
     761             :  * - May have extra blocksize limits
     762             :  */
     763           0 : static void scrub_repair_read_endio(struct btrfs_bio *bbio)
     764             : {
     765           0 :         struct scrub_stripe *stripe = bbio->private;
     766           0 :         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
     767           0 :         struct bio_vec *bvec;
     768           0 :         int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
     769           0 :         u32 bio_size = 0;
     770           0 :         int i;
     771             : 
     772           0 :         ASSERT(sector_nr < stripe->nr_sectors);
     773             : 
     774           0 :         bio_for_each_bvec_all(bvec, &bbio->bio, i)
     775           0 :                 bio_size += bvec->bv_len;
     776             : 
     777           0 :         if (bbio->bio.bi_status) {
     778           0 :                 bitmap_set(&stripe->io_error_bitmap, sector_nr,
     779           0 :                            bio_size >> fs_info->sectorsize_bits);
     780           0 :                 bitmap_set(&stripe->error_bitmap, sector_nr,
     781           0 :                            bio_size >> fs_info->sectorsize_bits);
     782             :         } else {
     783           0 :                 bitmap_clear(&stripe->io_error_bitmap, sector_nr,
     784           0 :                              bio_size >> fs_info->sectorsize_bits);
     785             :         }
     786           0 :         bio_put(&bbio->bio);
     787           0 :         if (atomic_dec_and_test(&stripe->pending_io))
     788           0 :                 wake_up(&stripe->io_wait);
     789           0 : }
     790             : 
     791             : static int calc_next_mirror(int mirror, int num_copies)
     792             : {
     793           0 :         ASSERT(mirror <= num_copies);
     794           0 :         return (mirror + 1 > num_copies) ? 1 : mirror + 1;
     795             : }
     796             : 
     797           0 : static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
     798             :                                             int mirror, int blocksize, bool wait)
     799             : {
     800           0 :         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
     801           0 :         struct btrfs_bio *bbio = NULL;
     802           0 :         const unsigned long old_error_bitmap = stripe->error_bitmap;
     803           0 :         int i;
     804             : 
     805           0 :         ASSERT(stripe->mirror_num >= 1);
     806           0 :         ASSERT(atomic_read(&stripe->pending_io) == 0);
     807             : 
     808           0 :         for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
     809           0 :                 struct page *page;
     810           0 :                 int pgoff;
     811           0 :                 int ret;
     812             : 
     813           0 :                 page = scrub_stripe_get_page(stripe, i);
     814           0 :                 pgoff = scrub_stripe_get_page_offset(stripe, i);
     815             : 
     816             :                 /* The current sector cannot be merged, submit the bio. */
     817           0 :                 if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
     818           0 :                              bbio->bio.bi_iter.bi_size >= blocksize)) {
     819           0 :                         ASSERT(bbio->bio.bi_iter.bi_size);
     820           0 :                         atomic_inc(&stripe->pending_io);
     821           0 :                         btrfs_submit_bio(bbio, mirror);
     822           0 :                         if (wait)
     823           0 :                                 wait_scrub_stripe_io(stripe);
     824             :                         bbio = NULL;
     825             :                 }
     826             : 
     827           0 :                 if (!bbio) {
     828           0 :                         bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
     829             :                                 fs_info, scrub_repair_read_endio, stripe);
     830           0 :                         bbio->bio.bi_iter.bi_sector = (stripe->logical +
     831           0 :                                 (i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
     832             :                 }
     833             : 
     834           0 :                 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
     835           0 :                 ASSERT(ret == fs_info->sectorsize);
     836             :         }
     837           0 :         if (bbio) {
     838           0 :                 ASSERT(bbio->bio.bi_iter.bi_size);
     839           0 :                 atomic_inc(&stripe->pending_io);
     840           0 :                 btrfs_submit_bio(bbio, mirror);
     841           0 :                 if (wait)
     842           0 :                         wait_scrub_stripe_io(stripe);
     843             :         }
     844           0 : }
     845             : 
     846           0 : static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
     847             :                                        struct scrub_stripe *stripe)
     848             : {
     849           0 :         static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
     850             :                                       DEFAULT_RATELIMIT_BURST);
     851           0 :         struct btrfs_fs_info *fs_info = sctx->fs_info;
     852           0 :         struct btrfs_device *dev = NULL;
     853           0 :         u64 physical = 0;
     854           0 :         int nr_data_sectors = 0;
     855           0 :         int nr_meta_sectors = 0;
     856           0 :         int nr_nodatacsum_sectors = 0;
     857           0 :         int nr_repaired_sectors = 0;
     858           0 :         int sector_nr;
     859             : 
     860           0 :         if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
     861             :                 return;
     862             : 
     863             :         /*
     864             :          * Init needed infos for error reporting.
     865             :          *
     866             :          * Although our scrub_stripe infrastucture is mostly based on btrfs_submit_bio()
     867             :          * thus no need for dev/physical, error reporting still needs dev and physical.
     868             :          */
     869           0 :         if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
     870           0 :                 u64 mapped_len = fs_info->sectorsize;
     871           0 :                 struct btrfs_io_context *bioc = NULL;
     872           0 :                 int stripe_index = stripe->mirror_num - 1;
     873           0 :                 int ret;
     874             : 
     875             :                 /* For scrub, our mirror_num should always start at 1. */
     876           0 :                 ASSERT(stripe->mirror_num >= 1);
     877           0 :                 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
     878             :                                       stripe->logical, &mapped_len, &bioc,
     879             :                                       NULL, NULL, 1);
     880             :                 /*
     881             :                  * If we failed, dev will be NULL, and later detailed reports
     882             :                  * will just be skipped.
     883             :                  */
     884           0 :                 if (ret < 0)
     885           0 :                         goto skip;
     886           0 :                 physical = bioc->stripes[stripe_index].physical;
     887           0 :                 dev = bioc->stripes[stripe_index].dev;
     888           0 :                 btrfs_put_bioc(bioc);
     889             :         }
     890             : 
     891           0 : skip:
     892           0 :         for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
     893           0 :                 bool repaired = false;
     894             : 
     895           0 :                 if (stripe->sectors[sector_nr].is_metadata) {
     896           0 :                         nr_meta_sectors++;
     897             :                 } else {
     898           0 :                         nr_data_sectors++;
     899           0 :                         if (!stripe->sectors[sector_nr].csum)
     900           0 :                                 nr_nodatacsum_sectors++;
     901             :                 }
     902             : 
     903           0 :                 if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
     904           0 :                     !test_bit(sector_nr, &stripe->error_bitmap)) {
     905           0 :                         nr_repaired_sectors++;
     906           0 :                         repaired = true;
     907             :                 }
     908             : 
     909             :                 /* Good sector from the beginning, nothing need to be done. */
     910           0 :                 if (!test_bit(sector_nr, &stripe->init_error_bitmap))
     911           0 :                         continue;
     912             : 
     913             :                 /*
     914             :                  * Report error for the corrupted sectors.  If repaired, just
     915             :                  * output the message of repaired message.
     916             :                  */
     917           0 :                 if (repaired) {
     918           0 :                         if (dev) {
     919           0 :                                 btrfs_err_rl_in_rcu(fs_info,
     920             :                         "fixed up error at logical %llu on dev %s physical %llu",
     921             :                                             stripe->logical, btrfs_dev_name(dev),
     922             :                                             physical);
     923             :                         } else {
     924           0 :                                 btrfs_err_rl_in_rcu(fs_info,
     925             :                         "fixed up error at logical %llu on mirror %u",
     926             :                                             stripe->logical, stripe->mirror_num);
     927             :                         }
     928           0 :                         continue;
     929             :                 }
     930             : 
     931             :                 /* The remaining are all for unrepaired. */
     932           0 :                 if (dev) {
     933           0 :                         btrfs_err_rl_in_rcu(fs_info,
     934             :         "unable to fixup (regular) error at logical %llu on dev %s physical %llu",
     935             :                                             stripe->logical, btrfs_dev_name(dev),
     936             :                                             physical);
     937             :                 } else {
     938           0 :                         btrfs_err_rl_in_rcu(fs_info,
     939             :         "unable to fixup (regular) error at logical %llu on mirror %u",
     940             :                                             stripe->logical, stripe->mirror_num);
     941             :                 }
     942             : 
     943           0 :                 if (test_bit(sector_nr, &stripe->io_error_bitmap))
     944           0 :                         if (__ratelimit(&rs) && dev)
     945           0 :                                 scrub_print_common_warning("i/o error", dev, false,
     946             :                                                      stripe->logical, physical);
     947           0 :                 if (test_bit(sector_nr, &stripe->csum_error_bitmap))
     948           0 :                         if (__ratelimit(&rs) && dev)
     949           0 :                                 scrub_print_common_warning("checksum error", dev, false,
     950             :                                                      stripe->logical, physical);
     951           0 :                 if (test_bit(sector_nr, &stripe->meta_error_bitmap))
     952           0 :                         if (__ratelimit(&rs) && dev)
     953           0 :                                 scrub_print_common_warning("header error", dev, false,
     954             :                                                      stripe->logical, physical);
     955             :         }
     956             : 
     957           0 :         spin_lock(&sctx->stat_lock);
     958           0 :         sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
     959           0 :         sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
     960           0 :         sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
     961           0 :         sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
     962           0 :         sctx->stat.no_csum += nr_nodatacsum_sectors;
     963           0 :         sctx->stat.read_errors += stripe->init_nr_io_errors;
     964           0 :         sctx->stat.csum_errors += stripe->init_nr_csum_errors;
     965           0 :         sctx->stat.verify_errors += stripe->init_nr_meta_errors;
     966           0 :         sctx->stat.uncorrectable_errors +=
     967           0 :                 bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
     968           0 :         sctx->stat.corrected_errors += nr_repaired_sectors;
     969           0 :         spin_unlock(&sctx->stat_lock);
     970             : }
     971             : 
     972             : /*
     973             :  * The main entrance for all read related scrub work, including:
     974             :  *
     975             :  * - Wait for the initial read to finish
     976             :  * - Verify and locate any bad sectors
     977             :  * - Go through the remaining mirrors and try to read as large blocksize as
     978             :  *   possible
     979             :  * - Go through all mirrors (including the failed mirror) sector-by-sector
     980             :  *
     981             :  * Writeback does not happen here, it needs extra synchronization.
     982             :  */
     983           0 : static void scrub_stripe_read_repair_worker(struct work_struct *work)
     984             : {
     985           0 :         struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
     986           0 :         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
     987           0 :         int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
     988             :                                           stripe->bg->length);
     989           0 :         int mirror;
     990           0 :         int i;
     991             : 
     992           0 :         ASSERT(stripe->mirror_num > 0);
     993             : 
     994           0 :         wait_scrub_stripe_io(stripe);
     995           0 :         scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
     996             :         /* Save the initial failed bitmap for later repair and report usage. */
     997           0 :         stripe->init_error_bitmap = stripe->error_bitmap;
     998           0 :         stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
     999           0 :                                                   stripe->nr_sectors);
    1000           0 :         stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
    1001           0 :                                                     stripe->nr_sectors);
    1002           0 :         stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
    1003           0 :                                                     stripe->nr_sectors);
    1004             : 
    1005           0 :         if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
    1006           0 :                 goto out;
    1007             : 
    1008             :         /*
    1009             :          * Try all remaining mirrors.
    1010             :          *
    1011             :          * Here we still try to read as large block as possible, as this is
    1012             :          * faster and we have extra safety nets to rely on.
    1013             :          */
    1014           0 :         for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
    1015           0 :              mirror != stripe->mirror_num;
    1016           0 :              mirror = calc_next_mirror(mirror, num_copies)) {
    1017           0 :                 const unsigned long old_error_bitmap = stripe->error_bitmap;
    1018             : 
    1019           0 :                 scrub_stripe_submit_repair_read(stripe, mirror,
    1020             :                                                 BTRFS_STRIPE_LEN, false);
    1021           0 :                 wait_scrub_stripe_io(stripe);
    1022           0 :                 scrub_verify_one_stripe(stripe, old_error_bitmap);
    1023           0 :                 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
    1024           0 :                         goto out;
    1025             :         }
    1026             : 
    1027             :         /*
    1028             :          * Last safety net, try re-checking all mirrors, including the failed
    1029             :          * one, sector-by-sector.
    1030             :          *
    1031             :          * As if one sector failed the drive's internal csum, the whole read
    1032             :          * containing the offending sector would be marked as error.
    1033             :          * Thus here we do sector-by-sector read.
    1034             :          *
    1035             :          * This can be slow, thus we only try it as the last resort.
    1036             :          */
    1037             : 
    1038             :         for (i = 0, mirror = stripe->mirror_num;
    1039           0 :              i < num_copies;
    1040           0 :              i++, mirror = calc_next_mirror(mirror, num_copies)) {
    1041           0 :                 const unsigned long old_error_bitmap = stripe->error_bitmap;
    1042             : 
    1043           0 :                 scrub_stripe_submit_repair_read(stripe, mirror,
    1044           0 :                                                 fs_info->sectorsize, true);
    1045           0 :                 wait_scrub_stripe_io(stripe);
    1046           0 :                 scrub_verify_one_stripe(stripe, old_error_bitmap);
    1047           0 :                 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
    1048           0 :                         goto out;
    1049             :         }
    1050           0 : out:
    1051           0 :         scrub_stripe_report_errors(stripe->sctx, stripe);
    1052           0 :         set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
    1053           0 :         wake_up(&stripe->repair_wait);
    1054           0 : }
    1055             : 
    1056           0 : static void scrub_read_endio(struct btrfs_bio *bbio)
    1057             : {
    1058           0 :         struct scrub_stripe *stripe = bbio->private;
    1059             : 
    1060           0 :         if (bbio->bio.bi_status) {
    1061           0 :                 bitmap_set(&stripe->io_error_bitmap, 0, stripe->nr_sectors);
    1062           0 :                 bitmap_set(&stripe->error_bitmap, 0, stripe->nr_sectors);
    1063             :         } else {
    1064           0 :                 bitmap_clear(&stripe->io_error_bitmap, 0, stripe->nr_sectors);
    1065             :         }
    1066           0 :         bio_put(&bbio->bio);
    1067           0 :         if (atomic_dec_and_test(&stripe->pending_io)) {
    1068           0 :                 wake_up(&stripe->io_wait);
    1069           0 :                 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
    1070           0 :                 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
    1071             :         }
    1072           0 : }
    1073             : 
    1074           0 : static void scrub_write_endio(struct btrfs_bio *bbio)
    1075             : {
    1076           0 :         struct scrub_stripe *stripe = bbio->private;
    1077           0 :         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
    1078           0 :         struct bio_vec *bvec;
    1079           0 :         int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
    1080           0 :         u32 bio_size = 0;
    1081           0 :         int i;
    1082             : 
    1083           0 :         bio_for_each_bvec_all(bvec, &bbio->bio, i)
    1084           0 :                 bio_size += bvec->bv_len;
    1085             : 
    1086           0 :         if (bbio->bio.bi_status) {
    1087           0 :                 unsigned long flags;
    1088             : 
    1089           0 :                 spin_lock_irqsave(&stripe->write_error_lock, flags);
    1090           0 :                 bitmap_set(&stripe->write_error_bitmap, sector_nr,
    1091           0 :                            bio_size >> fs_info->sectorsize_bits);
    1092           0 :                 spin_unlock_irqrestore(&stripe->write_error_lock, flags);
    1093             :         }
    1094           0 :         bio_put(&bbio->bio);
    1095             : 
    1096           0 :         if (atomic_dec_and_test(&stripe->pending_io))
    1097           0 :                 wake_up(&stripe->io_wait);
    1098           0 : }
    1099             : 
    1100           0 : static void scrub_submit_write_bio(struct scrub_ctx *sctx,
    1101             :                                    struct scrub_stripe *stripe,
    1102             :                                    struct btrfs_bio *bbio, bool dev_replace)
    1103             : {
    1104           0 :         struct btrfs_fs_info *fs_info = sctx->fs_info;
    1105           0 :         u32 bio_len = bbio->bio.bi_iter.bi_size;
    1106           0 :         u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
    1107           0 :                       stripe->logical;
    1108             : 
    1109           0 :         fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
    1110           0 :         atomic_inc(&stripe->pending_io);
    1111           0 :         btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
    1112           0 :         if (!btrfs_is_zoned(fs_info))
    1113             :                 return;
    1114             :         /*
    1115             :          * For zoned writeback, queue depth must be 1, thus we must wait for
    1116             :          * the write to finish before the next write.
    1117             :          */
    1118           0 :         wait_scrub_stripe_io(stripe);
    1119             : 
    1120             :         /*
    1121             :          * And also need to update the write pointer if write finished
    1122             :          * successfully.
    1123             :          */
    1124           0 :         if (!test_bit(bio_off >> fs_info->sectorsize_bits,
    1125             :                       &stripe->write_error_bitmap))
    1126           0 :                 sctx->write_pointer += bio_len;
    1127             : }
    1128             : 
    1129             : /*
    1130             :  * Submit the write bio(s) for the sectors specified by @write_bitmap.
    1131             :  *
    1132             :  * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
    1133             :  *
    1134             :  * - Only needs logical bytenr and mirror_num
    1135             :  *   Just like the scrub read path
    1136             :  *
    1137             :  * - Would only result in writes to the specified mirror
    1138             :  *   Unlike the regular writeback path, which would write back to all stripes
    1139             :  *
    1140             :  * - Handle dev-replace and read-repair writeback differently
    1141             :  */
    1142           0 : static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
    1143             :                                 unsigned long write_bitmap, bool dev_replace)
    1144             : {
    1145           0 :         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
    1146           0 :         struct btrfs_bio *bbio = NULL;
    1147           0 :         int sector_nr;
    1148             : 
    1149           0 :         for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
    1150           0 :                 struct page *page = scrub_stripe_get_page(stripe, sector_nr);
    1151           0 :                 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
    1152           0 :                 int ret;
    1153             : 
    1154             :                 /* We should only writeback sectors covered by an extent. */
    1155           0 :                 ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
    1156             : 
    1157             :                 /* Cannot merge with previous sector, submit the current one. */
    1158           0 :                 if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
    1159           0 :                         scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
    1160           0 :                         bbio = NULL;
    1161             :                 }
    1162           0 :                 if (!bbio) {
    1163           0 :                         bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
    1164             :                                                fs_info, scrub_write_endio, stripe);
    1165           0 :                         bbio->bio.bi_iter.bi_sector = (stripe->logical +
    1166           0 :                                 (sector_nr << fs_info->sectorsize_bits)) >>
    1167             :                                 SECTOR_SHIFT;
    1168             :                 }
    1169           0 :                 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
    1170           0 :                 ASSERT(ret == fs_info->sectorsize);
    1171             :         }
    1172           0 :         if (bbio)
    1173           0 :                 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
    1174           0 : }
    1175             : 
    1176             : /*
    1177             :  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
    1178             :  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
    1179             :  */
    1180           0 : static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
    1181             :                                   unsigned int bio_size)
    1182             : {
    1183           0 :         const int time_slice = 1000;
    1184           0 :         s64 delta;
    1185           0 :         ktime_t now;
    1186           0 :         u32 div;
    1187           0 :         u64 bwlimit;
    1188             : 
    1189           0 :         bwlimit = READ_ONCE(device->scrub_speed_max);
    1190           0 :         if (bwlimit == 0)
    1191             :                 return;
    1192             : 
    1193             :         /*
    1194             :          * Slice is divided into intervals when the IO is submitted, adjust by
    1195             :          * bwlimit and maximum of 64 intervals.
    1196             :          */
    1197           0 :         div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
    1198           0 :         div = min_t(u32, 64, div);
    1199             : 
    1200             :         /* Start new epoch, set deadline */
    1201           0 :         now = ktime_get();
    1202           0 :         if (sctx->throttle_deadline == 0) {
    1203           0 :                 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
    1204           0 :                 sctx->throttle_sent = 0;
    1205             :         }
    1206             : 
    1207             :         /* Still in the time to send? */
    1208           0 :         if (ktime_before(now, sctx->throttle_deadline)) {
    1209             :                 /* If current bio is within the limit, send it */
    1210           0 :                 sctx->throttle_sent += bio_size;
    1211           0 :                 if (sctx->throttle_sent <= div_u64(bwlimit, div))
    1212             :                         return;
    1213             : 
    1214             :                 /* We're over the limit, sleep until the rest of the slice */
    1215           0 :                 delta = ktime_ms_delta(sctx->throttle_deadline, now);
    1216             :         } else {
    1217             :                 /* New request after deadline, start new epoch */
    1218             :                 delta = 0;
    1219             :         }
    1220             : 
    1221           0 :         if (delta) {
    1222           0 :                 long timeout;
    1223             : 
    1224           0 :                 timeout = div_u64(delta * HZ, 1000);
    1225           0 :                 schedule_timeout_interruptible(timeout);
    1226             :         }
    1227             : 
    1228             :         /* Next call will start the deadline period */
    1229           0 :         sctx->throttle_deadline = 0;
    1230             : }
    1231             : 
    1232             : /*
    1233             :  * Given a physical address, this will calculate it's
    1234             :  * logical offset. if this is a parity stripe, it will return
    1235             :  * the most left data stripe's logical offset.
    1236             :  *
    1237             :  * return 0 if it is a data stripe, 1 means parity stripe.
    1238             :  */
    1239           0 : static int get_raid56_logic_offset(u64 physical, int num,
    1240             :                                    struct map_lookup *map, u64 *offset,
    1241             :                                    u64 *stripe_start)
    1242             : {
    1243           0 :         int i;
    1244           0 :         int j = 0;
    1245           0 :         u64 last_offset;
    1246           0 :         const int data_stripes = nr_data_stripes(map);
    1247             : 
    1248           0 :         last_offset = (physical - map->stripes[num].physical) * data_stripes;
    1249           0 :         if (stripe_start)
    1250           0 :                 *stripe_start = last_offset;
    1251             : 
    1252           0 :         *offset = last_offset;
    1253           0 :         for (i = 0; i < data_stripes; i++) {
    1254           0 :                 u32 stripe_nr;
    1255           0 :                 u32 stripe_index;
    1256           0 :                 u32 rot;
    1257             : 
    1258           0 :                 *offset = last_offset + btrfs_stripe_nr_to_offset(i);
    1259             : 
    1260           0 :                 stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
    1261             : 
    1262             :                 /* Work out the disk rotation on this stripe-set */
    1263           0 :                 rot = stripe_nr % map->num_stripes;
    1264           0 :                 stripe_nr /= map->num_stripes;
    1265             :                 /* calculate which stripe this data locates */
    1266           0 :                 rot += i;
    1267           0 :                 stripe_index = rot % map->num_stripes;
    1268           0 :                 if (stripe_index == num)
    1269             :                         return 0;
    1270           0 :                 if (stripe_index < num)
    1271           0 :                         j++;
    1272             :         }
    1273           0 :         *offset = last_offset + btrfs_stripe_nr_to_offset(j);
    1274           0 :         return 1;
    1275             : }
    1276             : 
    1277             : /*
    1278             :  * Return 0 if the extent item range covers any byte of the range.
    1279             :  * Return <0 if the extent item is before @search_start.
    1280             :  * Return >0 if the extent item is after @start_start + @search_len.
    1281             :  */
    1282           0 : static int compare_extent_item_range(struct btrfs_path *path,
    1283             :                                      u64 search_start, u64 search_len)
    1284             : {
    1285           0 :         struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
    1286           0 :         u64 len;
    1287           0 :         struct btrfs_key key;
    1288             : 
    1289           0 :         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
    1290           0 :         ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
    1291             :                key.type == BTRFS_METADATA_ITEM_KEY);
    1292           0 :         if (key.type == BTRFS_METADATA_ITEM_KEY)
    1293           0 :                 len = fs_info->nodesize;
    1294             :         else
    1295           0 :                 len = key.offset;
    1296             : 
    1297           0 :         if (key.objectid + len <= search_start)
    1298             :                 return -1;
    1299           0 :         if (key.objectid >= search_start + search_len)
    1300           0 :                 return 1;
    1301             :         return 0;
    1302             : }
    1303             : 
    1304             : /*
    1305             :  * Locate one extent item which covers any byte in range
    1306             :  * [@search_start, @search_start + @search_length)
    1307             :  *
    1308             :  * If the path is not initialized, we will initialize the search by doing
    1309             :  * a btrfs_search_slot().
    1310             :  * If the path is already initialized, we will use the path as the initial
    1311             :  * slot, to avoid duplicated btrfs_search_slot() calls.
    1312             :  *
    1313             :  * NOTE: If an extent item starts before @search_start, we will still
    1314             :  * return the extent item. This is for data extent crossing stripe boundary.
    1315             :  *
    1316             :  * Return 0 if we found such extent item, and @path will point to the extent item.
    1317             :  * Return >0 if no such extent item can be found, and @path will be released.
    1318             :  * Return <0 if hit fatal error, and @path will be released.
    1319             :  */
    1320           0 : static int find_first_extent_item(struct btrfs_root *extent_root,
    1321             :                                   struct btrfs_path *path,
    1322             :                                   u64 search_start, u64 search_len)
    1323             : {
    1324           0 :         struct btrfs_fs_info *fs_info = extent_root->fs_info;
    1325           0 :         struct btrfs_key key;
    1326           0 :         int ret;
    1327             : 
    1328             :         /* Continue using the existing path */
    1329           0 :         if (path->nodes[0])
    1330           0 :                 goto search_forward;
    1331             : 
    1332           0 :         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
    1333           0 :                 key.type = BTRFS_METADATA_ITEM_KEY;
    1334             :         else
    1335           0 :                 key.type = BTRFS_EXTENT_ITEM_KEY;
    1336           0 :         key.objectid = search_start;
    1337           0 :         key.offset = (u64)-1;
    1338             : 
    1339           0 :         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
    1340           0 :         if (ret < 0)
    1341             :                 return ret;
    1342             : 
    1343           0 :         ASSERT(ret > 0);
    1344             :         /*
    1345             :          * Here we intentionally pass 0 as @min_objectid, as there could be
    1346             :          * an extent item starting before @search_start.
    1347             :          */
    1348           0 :         ret = btrfs_previous_extent_item(extent_root, path, 0);
    1349           0 :         if (ret < 0)
    1350             :                 return ret;
    1351             :         /*
    1352             :          * No matter whether we have found an extent item, the next loop will
    1353             :          * properly do every check on the key.
    1354             :          */
    1355           0 : search_forward:
    1356           0 :         while (true) {
    1357           0 :                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
    1358           0 :                 if (key.objectid >= search_start + search_len)
    1359             :                         break;
    1360           0 :                 if (key.type != BTRFS_METADATA_ITEM_KEY &&
    1361             :                     key.type != BTRFS_EXTENT_ITEM_KEY)
    1362           0 :                         goto next;
    1363             : 
    1364           0 :                 ret = compare_extent_item_range(path, search_start, search_len);
    1365           0 :                 if (ret == 0)
    1366             :                         return ret;
    1367           0 :                 if (ret > 0)
    1368             :                         break;
    1369           0 : next:
    1370           0 :                 path->slots[0]++;
    1371           0 :                 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
    1372           0 :                         ret = btrfs_next_leaf(extent_root, path);
    1373           0 :                         if (ret) {
    1374             :                                 /* Either no more item or fatal error */
    1375           0 :                                 btrfs_release_path(path);
    1376           0 :                                 return ret;
    1377             :                         }
    1378             :                 }
    1379             :         }
    1380           0 :         btrfs_release_path(path);
    1381           0 :         return 1;
    1382             : }
    1383             : 
    1384           0 : static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
    1385             :                             u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
    1386             : {
    1387           0 :         struct btrfs_key key;
    1388           0 :         struct btrfs_extent_item *ei;
    1389             : 
    1390           0 :         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
    1391           0 :         ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
    1392             :                key.type == BTRFS_EXTENT_ITEM_KEY);
    1393           0 :         *extent_start_ret = key.objectid;
    1394           0 :         if (key.type == BTRFS_METADATA_ITEM_KEY)
    1395           0 :                 *size_ret = path->nodes[0]->fs_info->nodesize;
    1396             :         else
    1397           0 :                 *size_ret = key.offset;
    1398           0 :         ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
    1399           0 :         *flags_ret = btrfs_extent_flags(path->nodes[0], ei);
    1400           0 :         *generation_ret = btrfs_extent_generation(path->nodes[0], ei);
    1401           0 : }
    1402             : 
    1403           0 : static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
    1404             :                                         u64 physical, u64 physical_end)
    1405             : {
    1406           0 :         struct btrfs_fs_info *fs_info = sctx->fs_info;
    1407           0 :         int ret = 0;
    1408             : 
    1409           0 :         if (!btrfs_is_zoned(fs_info))
    1410             :                 return 0;
    1411             : 
    1412           0 :         mutex_lock(&sctx->wr_lock);
    1413           0 :         if (sctx->write_pointer < physical_end) {
    1414           0 :                 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
    1415             :                                                     physical,
    1416             :                                                     sctx->write_pointer);
    1417           0 :                 if (ret)
    1418           0 :                         btrfs_err(fs_info,
    1419             :                                   "zoned: failed to recover write pointer");
    1420             :         }
    1421           0 :         mutex_unlock(&sctx->wr_lock);
    1422           0 :         btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
    1423             : 
    1424           0 :         return ret;
    1425             : }
    1426             : 
    1427           0 : static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
    1428             :                                  struct scrub_stripe *stripe,
    1429             :                                  u64 extent_start, u64 extent_len,
    1430             :                                  u64 extent_flags, u64 extent_gen)
    1431             : {
    1432           0 :         for (u64 cur_logical = max(stripe->logical, extent_start);
    1433           0 :              cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
    1434             :                                extent_start + extent_len);
    1435           0 :              cur_logical += fs_info->sectorsize) {
    1436           0 :                 const int nr_sector = (cur_logical - stripe->logical) >>
    1437           0 :                                       fs_info->sectorsize_bits;
    1438           0 :                 struct scrub_sector_verification *sector =
    1439           0 :                                                 &stripe->sectors[nr_sector];
    1440             : 
    1441           0 :                 set_bit(nr_sector, &stripe->extent_sector_bitmap);
    1442           0 :                 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
    1443           0 :                         sector->is_metadata = true;
    1444           0 :                         sector->generation = extent_gen;
    1445             :                 }
    1446             :         }
    1447           0 : }
    1448             : 
    1449             : static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
    1450             : {
    1451           0 :         stripe->extent_sector_bitmap = 0;
    1452           0 :         stripe->init_error_bitmap = 0;
    1453           0 :         stripe->init_nr_io_errors = 0;
    1454           0 :         stripe->init_nr_csum_errors = 0;
    1455           0 :         stripe->init_nr_meta_errors = 0;
    1456           0 :         stripe->error_bitmap = 0;
    1457           0 :         stripe->io_error_bitmap = 0;
    1458           0 :         stripe->csum_error_bitmap = 0;
    1459           0 :         stripe->meta_error_bitmap = 0;
    1460             : }
    1461             : 
    1462             : /*
    1463             :  * Locate one stripe which has at least one extent in its range.
    1464             :  *
    1465             :  * Return 0 if found such stripe, and store its info into @stripe.
    1466             :  * Return >0 if there is no such stripe in the specified range.
    1467             :  * Return <0 for error.
    1468             :  */
    1469           0 : static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
    1470             :                                         struct btrfs_device *dev, u64 physical,
    1471             :                                         int mirror_num, u64 logical_start,
    1472             :                                         u32 logical_len,
    1473             :                                         struct scrub_stripe *stripe)
    1474             : {
    1475           0 :         struct btrfs_fs_info *fs_info = bg->fs_info;
    1476           0 :         struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
    1477           0 :         struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
    1478           0 :         const u64 logical_end = logical_start + logical_len;
    1479           0 :         struct btrfs_path path = { 0 };
    1480           0 :         u64 cur_logical = logical_start;
    1481           0 :         u64 stripe_end;
    1482           0 :         u64 extent_start;
    1483           0 :         u64 extent_len;
    1484           0 :         u64 extent_flags;
    1485           0 :         u64 extent_gen;
    1486           0 :         int ret;
    1487             : 
    1488           0 :         memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
    1489             :                                    stripe->nr_sectors);
    1490           0 :         scrub_stripe_reset_bitmaps(stripe);
    1491             : 
    1492             :         /* The range must be inside the bg. */
    1493           0 :         ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
    1494             : 
    1495           0 :         path.search_commit_root = 1;
    1496           0 :         path.skip_locking = 1;
    1497             : 
    1498           0 :         ret = find_first_extent_item(extent_root, &path, logical_start, logical_len);
    1499             :         /* Either error or not found. */
    1500           0 :         if (ret)
    1501           0 :                 goto out;
    1502           0 :         get_extent_info(&path, &extent_start, &extent_len, &extent_flags, &extent_gen);
    1503           0 :         if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
    1504           0 :                 stripe->nr_meta_extents++;
    1505           0 :         if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
    1506           0 :                 stripe->nr_data_extents++;
    1507           0 :         cur_logical = max(extent_start, cur_logical);
    1508             : 
    1509             :         /*
    1510             :          * Round down to stripe boundary.
    1511             :          *
    1512             :          * The extra calculation against bg->start is to handle block groups
    1513             :          * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
    1514             :          */
    1515           0 :         stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
    1516             :                           bg->start;
    1517           0 :         stripe->physical = physical + stripe->logical - logical_start;
    1518           0 :         stripe->dev = dev;
    1519           0 :         stripe->bg = bg;
    1520           0 :         stripe->mirror_num = mirror_num;
    1521           0 :         stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
    1522             : 
    1523             :         /* Fill the first extent info into stripe->sectors[] array. */
    1524           0 :         fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
    1525             :                              extent_flags, extent_gen);
    1526           0 :         cur_logical = extent_start + extent_len;
    1527             : 
    1528             :         /* Fill the extent info for the remaining sectors. */
    1529           0 :         while (cur_logical <= stripe_end) {
    1530           0 :                 ret = find_first_extent_item(extent_root, &path, cur_logical,
    1531           0 :                                              stripe_end - cur_logical + 1);
    1532           0 :                 if (ret < 0)
    1533           0 :                         goto out;
    1534           0 :                 if (ret > 0) {
    1535             :                         ret = 0;
    1536             :                         break;
    1537             :                 }
    1538           0 :                 get_extent_info(&path, &extent_start, &extent_len,
    1539             :                                 &extent_flags, &extent_gen);
    1540           0 :                 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
    1541           0 :                         stripe->nr_meta_extents++;
    1542           0 :                 if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
    1543           0 :                         stripe->nr_data_extents++;
    1544           0 :                 fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
    1545             :                                      extent_flags, extent_gen);
    1546           0 :                 cur_logical = extent_start + extent_len;
    1547             :         }
    1548             : 
    1549             :         /* Now fill the data csum. */
    1550           0 :         if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
    1551           0 :                 int sector_nr;
    1552           0 :                 unsigned long csum_bitmap = 0;
    1553             : 
    1554             :                 /* Csum space should have already been allocated. */
    1555           0 :                 ASSERT(stripe->csums);
    1556             : 
    1557             :                 /*
    1558             :                  * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
    1559             :                  * should contain at most 16 sectors.
    1560             :                  */
    1561           0 :                 ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
    1562             : 
    1563           0 :                 ret = btrfs_lookup_csums_bitmap(csum_root, stripe->logical,
    1564             :                                                 stripe_end, stripe->csums,
    1565             :                                                 &csum_bitmap, true);
    1566           0 :                 if (ret < 0)
    1567           0 :                         goto out;
    1568             :                 if (ret > 0)
    1569             :                         ret = 0;
    1570             : 
    1571           0 :                 for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
    1572           0 :                         stripe->sectors[sector_nr].csum = stripe->csums +
    1573           0 :                                 sector_nr * fs_info->csum_size;
    1574             :                 }
    1575             :         }
    1576           0 :         set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
    1577           0 : out:
    1578           0 :         btrfs_release_path(&path);
    1579           0 :         return ret;
    1580             : }
    1581             : 
    1582           0 : static void scrub_reset_stripe(struct scrub_stripe *stripe)
    1583             : {
    1584           0 :         scrub_stripe_reset_bitmaps(stripe);
    1585             : 
    1586           0 :         stripe->nr_meta_extents = 0;
    1587           0 :         stripe->nr_data_extents = 0;
    1588           0 :         stripe->state = 0;
    1589             : 
    1590           0 :         for (int i = 0; i < stripe->nr_sectors; i++) {
    1591           0 :                 stripe->sectors[i].is_metadata = false;
    1592           0 :                 stripe->sectors[i].csum = NULL;
    1593           0 :                 stripe->sectors[i].generation = 0;
    1594             :         }
    1595           0 : }
    1596             : 
    1597           0 : static void scrub_submit_initial_read(struct scrub_ctx *sctx,
    1598             :                                       struct scrub_stripe *stripe)
    1599             : {
    1600           0 :         struct btrfs_fs_info *fs_info = sctx->fs_info;
    1601           0 :         struct btrfs_bio *bbio;
    1602           0 :         int mirror = stripe->mirror_num;
    1603             : 
    1604           0 :         ASSERT(stripe->bg);
    1605           0 :         ASSERT(stripe->mirror_num > 0);
    1606           0 :         ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
    1607             : 
    1608           0 :         bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
    1609             :                                scrub_read_endio, stripe);
    1610             : 
    1611             :         /* Read the whole stripe. */
    1612           0 :         bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
    1613           0 :         for (int i = 0; i < BTRFS_STRIPE_LEN >> PAGE_SHIFT; i++) {
    1614           0 :                 int ret;
    1615             : 
    1616           0 :                 ret = bio_add_page(&bbio->bio, stripe->pages[i], PAGE_SIZE, 0);
    1617             :                 /* We should have allocated enough bio vectors. */
    1618           0 :                 ASSERT(ret == PAGE_SIZE);
    1619             :         }
    1620           0 :         atomic_inc(&stripe->pending_io);
    1621             : 
    1622             :         /*
    1623             :          * For dev-replace, either user asks to avoid the source dev, or
    1624             :          * the device is missing, we try the next mirror instead.
    1625             :          */
    1626           0 :         if (sctx->is_dev_replace &&
    1627           0 :             (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
    1628           0 :              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
    1629           0 :              !stripe->dev->bdev)) {
    1630           0 :                 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
    1631             :                                                   stripe->bg->length);
    1632             : 
    1633           0 :                 mirror = calc_next_mirror(mirror, num_copies);
    1634             :         }
    1635           0 :         btrfs_submit_bio(bbio, mirror);
    1636           0 : }
    1637             : 
    1638           0 : static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
    1639             : {
    1640           0 :         int i;
    1641             : 
    1642           0 :         for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
    1643           0 :                 if (stripe->sectors[i].is_metadata) {
    1644           0 :                         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
    1645             : 
    1646           0 :                         btrfs_err(fs_info,
    1647             :                         "stripe %llu has unrepaired metadata sector at %llu",
    1648             :                                   stripe->logical,
    1649             :                                   stripe->logical + (i << fs_info->sectorsize_bits));
    1650           0 :                         return true;
    1651             :                 }
    1652             :         }
    1653             :         return false;
    1654             : }
    1655             : 
    1656           0 : static int flush_scrub_stripes(struct scrub_ctx *sctx)
    1657             : {
    1658           0 :         struct btrfs_fs_info *fs_info = sctx->fs_info;
    1659           0 :         struct scrub_stripe *stripe;
    1660           0 :         const int nr_stripes = sctx->cur_stripe;
    1661           0 :         int ret = 0;
    1662             : 
    1663           0 :         if (!nr_stripes)
    1664             :                 return 0;
    1665             : 
    1666           0 :         ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
    1667             : 
    1668           0 :         scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
    1669           0 :                               btrfs_stripe_nr_to_offset(nr_stripes));
    1670           0 :         for (int i = 0; i < nr_stripes; i++) {
    1671           0 :                 stripe = &sctx->stripes[i];
    1672           0 :                 scrub_submit_initial_read(sctx, stripe);
    1673             :         }
    1674             : 
    1675           0 :         for (int i = 0; i < nr_stripes; i++) {
    1676           0 :                 stripe = &sctx->stripes[i];
    1677             : 
    1678           0 :                 wait_event(stripe->repair_wait,
    1679             :                            test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
    1680             :         }
    1681             : 
    1682             :         /*
    1683             :          * Submit the repaired sectors.  For zoned case, we cannot do repair
    1684             :          * in-place, but queue the bg to be relocated.
    1685             :          */
    1686           0 :         if (btrfs_is_zoned(fs_info)) {
    1687           0 :                 for (int i = 0; i < nr_stripes; i++) {
    1688           0 :                         stripe = &sctx->stripes[i];
    1689             : 
    1690           0 :                         if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) {
    1691           0 :                                 btrfs_repair_one_zone(fs_info,
    1692           0 :                                                       sctx->stripes[0].bg->start);
    1693           0 :                                 break;
    1694             :                         }
    1695             :                 }
    1696           0 :         } else if (!sctx->readonly) {
    1697           0 :                 for (int i = 0; i < nr_stripes; i++) {
    1698           0 :                         unsigned long repaired;
    1699             : 
    1700           0 :                         stripe = &sctx->stripes[i];
    1701             : 
    1702           0 :                         bitmap_andnot(&repaired, &stripe->init_error_bitmap,
    1703           0 :                                       &stripe->error_bitmap, stripe->nr_sectors);
    1704           0 :                         scrub_write_sectors(sctx, stripe, repaired, false);
    1705             :                 }
    1706             :         }
    1707             : 
    1708             :         /* Submit for dev-replace. */
    1709           0 :         if (sctx->is_dev_replace) {
    1710             :                 /*
    1711             :                  * For dev-replace, if we know there is something wrong with
    1712             :                  * metadata, we should immedately abort.
    1713             :                  */
    1714           0 :                 for (int i = 0; i < nr_stripes; i++) {
    1715           0 :                         if (stripe_has_metadata_error(&sctx->stripes[i])) {
    1716           0 :                                 ret = -EIO;
    1717           0 :                                 goto out;
    1718             :                         }
    1719             :                 }
    1720           0 :                 for (int i = 0; i < nr_stripes; i++) {
    1721           0 :                         unsigned long good;
    1722             : 
    1723           0 :                         stripe = &sctx->stripes[i];
    1724             : 
    1725           0 :                         ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
    1726             : 
    1727           0 :                         bitmap_andnot(&good, &stripe->extent_sector_bitmap,
    1728           0 :                                       &stripe->error_bitmap, stripe->nr_sectors);
    1729           0 :                         scrub_write_sectors(sctx, stripe, good, true);
    1730             :                 }
    1731             :         }
    1732             : 
    1733             :         /* Wait for the above writebacks to finish. */
    1734           0 :         for (int i = 0; i < nr_stripes; i++) {
    1735           0 :                 stripe = &sctx->stripes[i];
    1736             : 
    1737           0 :                 wait_scrub_stripe_io(stripe);
    1738           0 :                 scrub_reset_stripe(stripe);
    1739             :         }
    1740           0 : out:
    1741           0 :         sctx->cur_stripe = 0;
    1742           0 :         return ret;
    1743             : }
    1744             : 
    1745           0 : static void raid56_scrub_wait_endio(struct bio *bio)
    1746             : {
    1747           0 :         complete(bio->bi_private);
    1748           0 : }
    1749             : 
    1750           0 : static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
    1751             :                               struct btrfs_device *dev, int mirror_num,
    1752             :                               u64 logical, u32 length, u64 physical)
    1753             : {
    1754           0 :         struct scrub_stripe *stripe;
    1755           0 :         int ret;
    1756             : 
    1757             :         /* No available slot, submit all stripes and wait for them. */
    1758           0 :         if (sctx->cur_stripe >= SCRUB_STRIPES_PER_SCTX) {
    1759           0 :                 ret = flush_scrub_stripes(sctx);
    1760           0 :                 if (ret < 0)
    1761             :                         return ret;
    1762             :         }
    1763             : 
    1764           0 :         stripe = &sctx->stripes[sctx->cur_stripe];
    1765             : 
    1766             :         /* We can queue one stripe using the remaining slot. */
    1767           0 :         scrub_reset_stripe(stripe);
    1768           0 :         ret = scrub_find_fill_first_stripe(bg, dev, physical, mirror_num,
    1769             :                                            logical, length, stripe);
    1770             :         /* Either >0 as no more extents or <0 for error. */
    1771           0 :         if (ret)
    1772             :                 return ret;
    1773           0 :         sctx->cur_stripe++;
    1774           0 :         return 0;
    1775             : }
    1776             : 
    1777           0 : static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
    1778             :                                       struct btrfs_device *scrub_dev,
    1779             :                                       struct btrfs_block_group *bg,
    1780             :                                       struct map_lookup *map,
    1781             :                                       u64 full_stripe_start)
    1782             : {
    1783           0 :         DECLARE_COMPLETION_ONSTACK(io_done);
    1784           0 :         struct btrfs_fs_info *fs_info = sctx->fs_info;
    1785           0 :         struct btrfs_raid_bio *rbio;
    1786           0 :         struct btrfs_io_context *bioc = NULL;
    1787           0 :         struct bio *bio;
    1788           0 :         struct scrub_stripe *stripe;
    1789           0 :         bool all_empty = true;
    1790           0 :         const int data_stripes = nr_data_stripes(map);
    1791           0 :         unsigned long extent_bitmap = 0;
    1792           0 :         u64 length = btrfs_stripe_nr_to_offset(data_stripes);
    1793           0 :         int ret;
    1794             : 
    1795           0 :         ASSERT(sctx->raid56_data_stripes);
    1796             : 
    1797           0 :         for (int i = 0; i < data_stripes; i++) {
    1798           0 :                 int stripe_index;
    1799           0 :                 int rot;
    1800           0 :                 u64 physical;
    1801             : 
    1802           0 :                 stripe = &sctx->raid56_data_stripes[i];
    1803           0 :                 rot = div_u64(full_stripe_start - bg->start,
    1804           0 :                               data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
    1805           0 :                 stripe_index = (i + rot) % map->num_stripes;
    1806           0 :                 physical = map->stripes[stripe_index].physical +
    1807             :                            btrfs_stripe_nr_to_offset(rot);
    1808             : 
    1809           0 :                 scrub_reset_stripe(stripe);
    1810           0 :                 set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
    1811           0 :                 ret = scrub_find_fill_first_stripe(bg,
    1812             :                                 map->stripes[stripe_index].dev, physical, 1,
    1813             :                                 full_stripe_start + btrfs_stripe_nr_to_offset(i),
    1814             :                                 BTRFS_STRIPE_LEN, stripe);
    1815           0 :                 if (ret < 0)
    1816           0 :                         goto out;
    1817             :                 /*
    1818             :                  * No extent in this data stripe, need to manually mark them
    1819             :                  * initialized to make later read submission happy.
    1820             :                  */
    1821           0 :                 if (ret > 0) {
    1822           0 :                         stripe->logical = full_stripe_start +
    1823             :                                           btrfs_stripe_nr_to_offset(i);
    1824           0 :                         stripe->dev = map->stripes[stripe_index].dev;
    1825           0 :                         stripe->mirror_num = 1;
    1826           0 :                         set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
    1827             :                 }
    1828             :         }
    1829             : 
    1830             :         /* Check if all data stripes are empty. */
    1831           0 :         for (int i = 0; i < data_stripes; i++) {
    1832           0 :                 stripe = &sctx->raid56_data_stripes[i];
    1833           0 :                 if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
    1834             :                         all_empty = false;
    1835             :                         break;
    1836             :                 }
    1837             :         }
    1838           0 :         if (all_empty) {
    1839           0 :                 ret = 0;
    1840           0 :                 goto out;
    1841             :         }
    1842             : 
    1843           0 :         for (int i = 0; i < data_stripes; i++) {
    1844           0 :                 stripe = &sctx->raid56_data_stripes[i];
    1845           0 :                 scrub_submit_initial_read(sctx, stripe);
    1846             :         }
    1847           0 :         for (int i = 0; i < data_stripes; i++) {
    1848           0 :                 stripe = &sctx->raid56_data_stripes[i];
    1849             : 
    1850           0 :                 wait_event(stripe->repair_wait,
    1851             :                            test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
    1852             :         }
    1853             :         /* For now, no zoned support for RAID56. */
    1854             :         ASSERT(!btrfs_is_zoned(sctx->fs_info));
    1855             : 
    1856             :         /* Writeback for the repaired sectors. */
    1857           0 :         for (int i = 0; i < data_stripes; i++) {
    1858           0 :                 unsigned long repaired;
    1859             : 
    1860           0 :                 stripe = &sctx->raid56_data_stripes[i];
    1861             : 
    1862           0 :                 bitmap_andnot(&repaired, &stripe->init_error_bitmap,
    1863           0 :                               &stripe->error_bitmap, stripe->nr_sectors);
    1864           0 :                 scrub_write_sectors(sctx, stripe, repaired, false);
    1865             :         }
    1866             : 
    1867             :         /* Wait for the above writebacks to finish. */
    1868           0 :         for (int i = 0; i < data_stripes; i++) {
    1869           0 :                 stripe = &sctx->raid56_data_stripes[i];
    1870             : 
    1871           0 :                 wait_scrub_stripe_io(stripe);
    1872             :         }
    1873             : 
    1874             :         /*
    1875             :          * Now all data stripes are properly verified. Check if we have any
    1876             :          * unrepaired, if so abort immediately or we could further corrupt the
    1877             :          * P/Q stripes.
    1878             :          *
    1879             :          * During the loop, also populate extent_bitmap.
    1880             :          */
    1881           0 :         for (int i = 0; i < data_stripes; i++) {
    1882           0 :                 unsigned long error;
    1883             : 
    1884           0 :                 stripe = &sctx->raid56_data_stripes[i];
    1885             : 
    1886             :                 /*
    1887             :                  * We should only check the errors where there is an extent.
    1888             :                  * As we may hit an empty data stripe while it's missing.
    1889             :                  */
    1890           0 :                 bitmap_and(&error, &stripe->error_bitmap,
    1891           0 :                            &stripe->extent_sector_bitmap, stripe->nr_sectors);
    1892           0 :                 if (!bitmap_empty(&error, stripe->nr_sectors)) {
    1893           0 :                         btrfs_err(fs_info,
    1894             : "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
    1895             :                                   full_stripe_start, i, stripe->nr_sectors,
    1896             :                                   &error);
    1897           0 :                         ret = -EIO;
    1898           0 :                         goto out;
    1899             :                 }
    1900           0 :                 bitmap_or(&extent_bitmap, &extent_bitmap,
    1901           0 :                           &stripe->extent_sector_bitmap, stripe->nr_sectors);
    1902             :         }
    1903             : 
    1904             :         /* Now we can check and regenerate the P/Q stripe. */
    1905           0 :         bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
    1906           0 :         bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
    1907           0 :         bio->bi_private = &io_done;
    1908           0 :         bio->bi_end_io = raid56_scrub_wait_endio;
    1909             : 
    1910           0 :         btrfs_bio_counter_inc_blocked(fs_info);
    1911           0 :         ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
    1912             :                               &length, &bioc, NULL, NULL, 1);
    1913           0 :         if (ret < 0) {
    1914           0 :                 btrfs_put_bioc(bioc);
    1915           0 :                 btrfs_bio_counter_dec(fs_info);
    1916           0 :                 goto out;
    1917             :         }
    1918           0 :         rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
    1919           0 :                                 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
    1920           0 :         btrfs_put_bioc(bioc);
    1921           0 :         if (!rbio) {
    1922           0 :                 ret = -ENOMEM;
    1923           0 :                 btrfs_bio_counter_dec(fs_info);
    1924           0 :                 goto out;
    1925             :         }
    1926             :         /* Use the recovered stripes as cache to avoid read them from disk again. */
    1927           0 :         for (int i = 0; i < data_stripes; i++) {
    1928           0 :                 stripe = &sctx->raid56_data_stripes[i];
    1929             : 
    1930           0 :                 raid56_parity_cache_data_pages(rbio, stripe->pages,
    1931           0 :                                 full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
    1932             :         }
    1933           0 :         raid56_parity_submit_scrub_rbio(rbio);
    1934           0 :         wait_for_completion_io(&io_done);
    1935           0 :         ret = blk_status_to_errno(bio->bi_status);
    1936           0 :         bio_put(bio);
    1937           0 :         btrfs_bio_counter_dec(fs_info);
    1938             : 
    1939           0 : out:
    1940           0 :         return ret;
    1941             : }
    1942             : 
    1943             : /*
    1944             :  * Scrub one range which can only has simple mirror based profile.
    1945             :  * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
    1946             :  *  RAID0/RAID10).
    1947             :  *
    1948             :  * Since we may need to handle a subset of block group, we need @logical_start
    1949             :  * and @logical_length parameter.
    1950             :  */
    1951           0 : static int scrub_simple_mirror(struct scrub_ctx *sctx,
    1952             :                                struct btrfs_block_group *bg,
    1953             :                                struct map_lookup *map,
    1954             :                                u64 logical_start, u64 logical_length,
    1955             :                                struct btrfs_device *device,
    1956             :                                u64 physical, int mirror_num)
    1957             : {
    1958           0 :         struct btrfs_fs_info *fs_info = sctx->fs_info;
    1959           0 :         const u64 logical_end = logical_start + logical_length;
    1960             :         /* An artificial limit, inherit from old scrub behavior */
    1961           0 :         struct btrfs_path path = { 0 };
    1962           0 :         u64 cur_logical = logical_start;
    1963           0 :         int ret;
    1964             : 
    1965             :         /* The range must be inside the bg */
    1966           0 :         ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
    1967             : 
    1968           0 :         path.search_commit_root = 1;
    1969           0 :         path.skip_locking = 1;
    1970             :         /* Go through each extent items inside the logical range */
    1971           0 :         while (cur_logical < logical_end) {
    1972           0 :                 u64 cur_physical = physical + cur_logical - logical_start;
    1973             : 
    1974             :                 /* Canceled? */
    1975           0 :                 if (atomic_read(&fs_info->scrub_cancel_req) ||
    1976             :                     atomic_read(&sctx->cancel_req)) {
    1977             :                         ret = -ECANCELED;
    1978             :                         break;
    1979             :                 }
    1980             :                 /* Paused? */
    1981           0 :                 if (atomic_read(&fs_info->scrub_pause_req)) {
    1982             :                         /* Push queued extents */
    1983           0 :                         scrub_blocked_if_needed(fs_info);
    1984             :                 }
    1985             :                 /* Block group removed? */
    1986           0 :                 spin_lock(&bg->lock);
    1987           0 :                 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
    1988           0 :                         spin_unlock(&bg->lock);
    1989           0 :                         ret = 0;
    1990           0 :                         break;
    1991             :                 }
    1992           0 :                 spin_unlock(&bg->lock);
    1993             : 
    1994           0 :                 ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
    1995             :                                          cur_logical, logical_end - cur_logical,
    1996             :                                          cur_physical);
    1997           0 :                 if (ret > 0) {
    1998             :                         /* No more extent, just update the accounting */
    1999           0 :                         sctx->stat.last_physical = physical + logical_length;
    2000           0 :                         ret = 0;
    2001           0 :                         break;
    2002             :                 }
    2003           0 :                 if (ret < 0)
    2004             :                         break;
    2005             : 
    2006           0 :                 ASSERT(sctx->cur_stripe > 0);
    2007           0 :                 cur_logical = sctx->stripes[sctx->cur_stripe - 1].logical
    2008             :                               + BTRFS_STRIPE_LEN;
    2009             : 
    2010             :                 /* Don't hold CPU for too long time */
    2011           0 :                 cond_resched();
    2012             :         }
    2013           0 :         btrfs_release_path(&path);
    2014           0 :         return ret;
    2015             : }
    2016             : 
    2017             : /* Calculate the full stripe length for simple stripe based profiles */
    2018             : static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
    2019             : {
    2020           0 :         ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
    2021             :                             BTRFS_BLOCK_GROUP_RAID10));
    2022             : 
    2023           0 :         return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
    2024             : }
    2025             : 
    2026             : /* Get the logical bytenr for the stripe */
    2027             : static u64 simple_stripe_get_logical(struct map_lookup *map,
    2028             :                                      struct btrfs_block_group *bg,
    2029             :                                      int stripe_index)
    2030             : {
    2031           0 :         ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
    2032             :                             BTRFS_BLOCK_GROUP_RAID10));
    2033           0 :         ASSERT(stripe_index < map->num_stripes);
    2034             : 
    2035             :         /*
    2036             :          * (stripe_index / sub_stripes) gives how many data stripes we need to
    2037             :          * skip.
    2038             :          */
    2039           0 :         return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
    2040           0 :                bg->start;
    2041             : }
    2042             : 
    2043             : /* Get the mirror number for the stripe */
    2044             : static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
    2045             : {
    2046           0 :         ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
    2047             :                             BTRFS_BLOCK_GROUP_RAID10));
    2048           0 :         ASSERT(stripe_index < map->num_stripes);
    2049             : 
    2050             :         /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
    2051           0 :         return stripe_index % map->sub_stripes + 1;
    2052             : }
    2053             : 
    2054           0 : static int scrub_simple_stripe(struct scrub_ctx *sctx,
    2055             :                                struct btrfs_block_group *bg,
    2056             :                                struct map_lookup *map,
    2057             :                                struct btrfs_device *device,
    2058             :                                int stripe_index)
    2059             : {
    2060           0 :         const u64 logical_increment = simple_stripe_full_stripe_len(map);
    2061           0 :         const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
    2062           0 :         const u64 orig_physical = map->stripes[stripe_index].physical;
    2063           0 :         const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
    2064           0 :         u64 cur_logical = orig_logical;
    2065           0 :         u64 cur_physical = orig_physical;
    2066           0 :         int ret = 0;
    2067             : 
    2068           0 :         while (cur_logical < bg->start + bg->length) {
    2069             :                 /*
    2070             :                  * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
    2071             :                  * just RAID1, so we can reuse scrub_simple_mirror() to scrub
    2072             :                  * this stripe.
    2073             :                  */
    2074           0 :                 ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
    2075             :                                           BTRFS_STRIPE_LEN, device, cur_physical,
    2076             :                                           mirror_num);
    2077           0 :                 if (ret)
    2078           0 :                         return ret;
    2079             :                 /* Skip to next stripe which belongs to the target device */
    2080           0 :                 cur_logical += logical_increment;
    2081             :                 /* For physical offset, we just go to next stripe */
    2082           0 :                 cur_physical += BTRFS_STRIPE_LEN;
    2083             :         }
    2084             :         return ret;
    2085             : }
    2086             : 
    2087           0 : static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
    2088             :                                            struct btrfs_block_group *bg,
    2089             :                                            struct extent_map *em,
    2090             :                                            struct btrfs_device *scrub_dev,
    2091             :                                            int stripe_index)
    2092             : {
    2093           0 :         struct btrfs_fs_info *fs_info = sctx->fs_info;
    2094           0 :         struct map_lookup *map = em->map_lookup;
    2095           0 :         const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
    2096           0 :         const u64 chunk_logical = bg->start;
    2097           0 :         int ret;
    2098           0 :         int ret2;
    2099           0 :         u64 physical = map->stripes[stripe_index].physical;
    2100           0 :         const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
    2101           0 :         const u64 physical_end = physical + dev_stripe_len;
    2102           0 :         u64 logical;
    2103           0 :         u64 logic_end;
    2104             :         /* The logical increment after finishing one stripe */
    2105           0 :         u64 increment;
    2106             :         /* Offset inside the chunk */
    2107           0 :         u64 offset;
    2108           0 :         u64 stripe_logical;
    2109           0 :         int stop_loop = 0;
    2110             : 
    2111           0 :         scrub_blocked_if_needed(fs_info);
    2112             : 
    2113           0 :         if (sctx->is_dev_replace &&
    2114           0 :             btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
    2115           0 :                 mutex_lock(&sctx->wr_lock);
    2116           0 :                 sctx->write_pointer = physical;
    2117           0 :                 mutex_unlock(&sctx->wr_lock);
    2118             :         }
    2119             : 
    2120             :         /* Prepare the extra data stripes used by RAID56. */
    2121           0 :         if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
    2122           0 :                 ASSERT(sctx->raid56_data_stripes == NULL);
    2123             : 
    2124           0 :                 sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
    2125             :                                                     sizeof(struct scrub_stripe),
    2126             :                                                     GFP_KERNEL);
    2127           0 :                 if (!sctx->raid56_data_stripes) {
    2128           0 :                         ret = -ENOMEM;
    2129           0 :                         goto out;
    2130             :                 }
    2131           0 :                 for (int i = 0; i < nr_data_stripes(map); i++) {
    2132           0 :                         ret = init_scrub_stripe(fs_info,
    2133           0 :                                                 &sctx->raid56_data_stripes[i]);
    2134           0 :                         if (ret < 0)
    2135           0 :                                 goto out;
    2136           0 :                         sctx->raid56_data_stripes[i].bg = bg;
    2137           0 :                         sctx->raid56_data_stripes[i].sctx = sctx;
    2138             :                 }
    2139             :         }
    2140             :         /*
    2141             :          * There used to be a big double loop to handle all profiles using the
    2142             :          * same routine, which grows larger and more gross over time.
    2143             :          *
    2144             :          * So here we handle each profile differently, so simpler profiles
    2145             :          * have simpler scrubbing function.
    2146             :          */
    2147           0 :         if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
    2148             :                          BTRFS_BLOCK_GROUP_RAID56_MASK))) {
    2149             :                 /*
    2150             :                  * Above check rules out all complex profile, the remaining
    2151             :                  * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
    2152             :                  * mirrored duplication without stripe.
    2153             :                  *
    2154             :                  * Only @physical and @mirror_num needs to calculated using
    2155             :                  * @stripe_index.
    2156             :                  */
    2157           0 :                 ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
    2158             :                                 scrub_dev, map->stripes[stripe_index].physical,
    2159             :                                 stripe_index + 1);
    2160           0 :                 offset = 0;
    2161           0 :                 goto out;
    2162             :         }
    2163           0 :         if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
    2164           0 :                 ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
    2165           0 :                 offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
    2166           0 :                 goto out;
    2167             :         }
    2168             : 
    2169             :         /* Only RAID56 goes through the old code */
    2170           0 :         ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
    2171           0 :         ret = 0;
    2172             : 
    2173             :         /* Calculate the logical end of the stripe */
    2174           0 :         get_raid56_logic_offset(physical_end, stripe_index,
    2175             :                                 map, &logic_end, NULL);
    2176           0 :         logic_end += chunk_logical;
    2177             : 
    2178             :         /* Initialize @offset in case we need to go to out: label */
    2179           0 :         get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
    2180           0 :         increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
    2181             : 
    2182             :         /*
    2183             :          * Due to the rotation, for RAID56 it's better to iterate each stripe
    2184             :          * using their physical offset.
    2185             :          */
    2186           0 :         while (physical < physical_end) {
    2187           0 :                 ret = get_raid56_logic_offset(physical, stripe_index, map,
    2188             :                                               &logical, &stripe_logical);
    2189           0 :                 logical += chunk_logical;
    2190           0 :                 if (ret) {
    2191             :                         /* it is parity strip */
    2192           0 :                         stripe_logical += chunk_logical;
    2193           0 :                         ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
    2194             :                                                          map, stripe_logical);
    2195           0 :                         if (ret)
    2196           0 :                                 goto out;
    2197           0 :                         goto next;
    2198             :                 }
    2199             : 
    2200             :                 /*
    2201             :                  * Now we're at a data stripe, scrub each extents in the range.
    2202             :                  *
    2203             :                  * At this stage, if we ignore the repair part, inside each data
    2204             :                  * stripe it is no different than SINGLE profile.
    2205             :                  * We can reuse scrub_simple_mirror() here, as the repair part
    2206             :                  * is still based on @mirror_num.
    2207             :                  */
    2208           0 :                 ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
    2209             :                                           scrub_dev, physical, 1);
    2210           0 :                 if (ret < 0)
    2211           0 :                         goto out;
    2212           0 : next:
    2213           0 :                 logical += increment;
    2214           0 :                 physical += BTRFS_STRIPE_LEN;
    2215           0 :                 spin_lock(&sctx->stat_lock);
    2216           0 :                 if (stop_loop)
    2217             :                         sctx->stat.last_physical =
    2218             :                                 map->stripes[stripe_index].physical + dev_stripe_len;
    2219             :                 else
    2220           0 :                         sctx->stat.last_physical = physical;
    2221           0 :                 spin_unlock(&sctx->stat_lock);
    2222           0 :                 if (stop_loop)
    2223             :                         break;
    2224             :         }
    2225           0 : out:
    2226           0 :         ret2 = flush_scrub_stripes(sctx);
    2227           0 :         if (!ret)
    2228           0 :                 ret = ret2;
    2229           0 :         if (sctx->raid56_data_stripes) {
    2230           0 :                 for (int i = 0; i < nr_data_stripes(map); i++)
    2231           0 :                         release_scrub_stripe(&sctx->raid56_data_stripes[i]);
    2232           0 :                 kfree(sctx->raid56_data_stripes);
    2233           0 :                 sctx->raid56_data_stripes = NULL;
    2234             :         }
    2235             : 
    2236           0 :         if (sctx->is_dev_replace && ret >= 0) {
    2237           0 :                 int ret2;
    2238             : 
    2239           0 :                 ret2 = sync_write_pointer_for_zoned(sctx,
    2240             :                                 chunk_logical + offset,
    2241             :                                 map->stripes[stripe_index].physical,
    2242             :                                 physical_end);
    2243           0 :                 if (ret2)
    2244           0 :                         ret = ret2;
    2245             :         }
    2246             : 
    2247           0 :         return ret < 0 ? ret : 0;
    2248             : }
    2249             : 
    2250           0 : static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
    2251             :                                           struct btrfs_block_group *bg,
    2252             :                                           struct btrfs_device *scrub_dev,
    2253             :                                           u64 dev_offset,
    2254             :                                           u64 dev_extent_len)
    2255             : {
    2256           0 :         struct btrfs_fs_info *fs_info = sctx->fs_info;
    2257           0 :         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
    2258           0 :         struct map_lookup *map;
    2259           0 :         struct extent_map *em;
    2260           0 :         int i;
    2261           0 :         int ret = 0;
    2262             : 
    2263           0 :         read_lock(&map_tree->lock);
    2264           0 :         em = lookup_extent_mapping(map_tree, bg->start, bg->length);
    2265           0 :         read_unlock(&map_tree->lock);
    2266             : 
    2267           0 :         if (!em) {
    2268             :                 /*
    2269             :                  * Might have been an unused block group deleted by the cleaner
    2270             :                  * kthread or relocation.
    2271             :                  */
    2272           0 :                 spin_lock(&bg->lock);
    2273           0 :                 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
    2274           0 :                         ret = -EINVAL;
    2275           0 :                 spin_unlock(&bg->lock);
    2276             : 
    2277           0 :                 return ret;
    2278             :         }
    2279           0 :         if (em->start != bg->start)
    2280           0 :                 goto out;
    2281           0 :         if (em->len < dev_extent_len)
    2282           0 :                 goto out;
    2283             : 
    2284           0 :         map = em->map_lookup;
    2285           0 :         for (i = 0; i < map->num_stripes; ++i) {
    2286           0 :                 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
    2287           0 :                     map->stripes[i].physical == dev_offset) {
    2288           0 :                         ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
    2289           0 :                         if (ret)
    2290           0 :                                 goto out;
    2291             :                 }
    2292             :         }
    2293           0 : out:
    2294           0 :         free_extent_map(em);
    2295             : 
    2296           0 :         return ret;
    2297             : }
    2298             : 
    2299           0 : static int finish_extent_writes_for_zoned(struct btrfs_root *root,
    2300             :                                           struct btrfs_block_group *cache)
    2301             : {
    2302           0 :         struct btrfs_fs_info *fs_info = cache->fs_info;
    2303           0 :         struct btrfs_trans_handle *trans;
    2304             : 
    2305           0 :         if (!btrfs_is_zoned(fs_info))
    2306             :                 return 0;
    2307             : 
    2308           0 :         btrfs_wait_block_group_reservations(cache);
    2309           0 :         btrfs_wait_nocow_writers(cache);
    2310           0 :         btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
    2311             : 
    2312           0 :         trans = btrfs_join_transaction(root);
    2313           0 :         if (IS_ERR(trans))
    2314           0 :                 return PTR_ERR(trans);
    2315           0 :         return btrfs_commit_transaction(trans);
    2316             : }
    2317             : 
    2318             : static noinline_for_stack
    2319           0 : int scrub_enumerate_chunks(struct scrub_ctx *sctx,
    2320             :                            struct btrfs_device *scrub_dev, u64 start, u64 end)
    2321             : {
    2322           0 :         struct btrfs_dev_extent *dev_extent = NULL;
    2323           0 :         struct btrfs_path *path;
    2324           0 :         struct btrfs_fs_info *fs_info = sctx->fs_info;
    2325           0 :         struct btrfs_root *root = fs_info->dev_root;
    2326           0 :         u64 chunk_offset;
    2327           0 :         int ret = 0;
    2328           0 :         int ro_set;
    2329           0 :         int slot;
    2330           0 :         struct extent_buffer *l;
    2331           0 :         struct btrfs_key key;
    2332           0 :         struct btrfs_key found_key;
    2333           0 :         struct btrfs_block_group *cache;
    2334           0 :         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
    2335             : 
    2336           0 :         path = btrfs_alloc_path();
    2337           0 :         if (!path)
    2338             :                 return -ENOMEM;
    2339             : 
    2340           0 :         path->reada = READA_FORWARD;
    2341           0 :         path->search_commit_root = 1;
    2342           0 :         path->skip_locking = 1;
    2343             : 
    2344           0 :         key.objectid = scrub_dev->devid;
    2345           0 :         key.offset = 0ull;
    2346           0 :         key.type = BTRFS_DEV_EXTENT_KEY;
    2347             : 
    2348           0 :         while (1) {
    2349           0 :                 u64 dev_extent_len;
    2350             : 
    2351           0 :                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
    2352           0 :                 if (ret < 0)
    2353             :                         break;
    2354           0 :                 if (ret > 0) {
    2355           0 :                         if (path->slots[0] >=
    2356           0 :                             btrfs_header_nritems(path->nodes[0])) {
    2357           0 :                                 ret = btrfs_next_leaf(root, path);
    2358           0 :                                 if (ret < 0)
    2359             :                                         break;
    2360           0 :                                 if (ret > 0) {
    2361             :                                         ret = 0;
    2362             :                                         break;
    2363             :                                 }
    2364             :                         } else {
    2365             :                                 ret = 0;
    2366             :                         }
    2367             :                 }
    2368             : 
    2369           0 :                 l = path->nodes[0];
    2370           0 :                 slot = path->slots[0];
    2371             : 
    2372           0 :                 btrfs_item_key_to_cpu(l, &found_key, slot);
    2373             : 
    2374           0 :                 if (found_key.objectid != scrub_dev->devid)
    2375             :                         break;
    2376             : 
    2377           0 :                 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
    2378             :                         break;
    2379             : 
    2380           0 :                 if (found_key.offset >= end)
    2381             :                         break;
    2382             : 
    2383           0 :                 if (found_key.offset < key.offset)
    2384             :                         break;
    2385             : 
    2386           0 :                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
    2387           0 :                 dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
    2388             : 
    2389           0 :                 if (found_key.offset + dev_extent_len <= start)
    2390           0 :                         goto skip;
    2391             : 
    2392           0 :                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
    2393             : 
    2394             :                 /*
    2395             :                  * get a reference on the corresponding block group to prevent
    2396             :                  * the chunk from going away while we scrub it
    2397             :                  */
    2398           0 :                 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
    2399             : 
    2400             :                 /* some chunks are removed but not committed to disk yet,
    2401             :                  * continue scrubbing */
    2402           0 :                 if (!cache)
    2403           0 :                         goto skip;
    2404             : 
    2405           0 :                 ASSERT(cache->start <= chunk_offset);
    2406             :                 /*
    2407             :                  * We are using the commit root to search for device extents, so
    2408             :                  * that means we could have found a device extent item from a
    2409             :                  * block group that was deleted in the current transaction. The
    2410             :                  * logical start offset of the deleted block group, stored at
    2411             :                  * @chunk_offset, might be part of the logical address range of
    2412             :                  * a new block group (which uses different physical extents).
    2413             :                  * In this case btrfs_lookup_block_group() has returned the new
    2414             :                  * block group, and its start address is less than @chunk_offset.
    2415             :                  *
    2416             :                  * We skip such new block groups, because it's pointless to
    2417             :                  * process them, as we won't find their extents because we search
    2418             :                  * for them using the commit root of the extent tree. For a device
    2419             :                  * replace it's also fine to skip it, we won't miss copying them
    2420             :                  * to the target device because we have the write duplication
    2421             :                  * setup through the regular write path (by btrfs_map_block()),
    2422             :                  * and we have committed a transaction when we started the device
    2423             :                  * replace, right after setting up the device replace state.
    2424             :                  */
    2425           0 :                 if (cache->start < chunk_offset) {
    2426           0 :                         btrfs_put_block_group(cache);
    2427           0 :                         goto skip;
    2428             :                 }
    2429             : 
    2430           0 :                 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
    2431           0 :                         if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
    2432           0 :                                 btrfs_put_block_group(cache);
    2433           0 :                                 goto skip;
    2434             :                         }
    2435             :                 }
    2436             : 
    2437             :                 /*
    2438             :                  * Make sure that while we are scrubbing the corresponding block
    2439             :                  * group doesn't get its logical address and its device extents
    2440             :                  * reused for another block group, which can possibly be of a
    2441             :                  * different type and different profile. We do this to prevent
    2442             :                  * false error detections and crashes due to bogus attempts to
    2443             :                  * repair extents.
    2444             :                  */
    2445           0 :                 spin_lock(&cache->lock);
    2446           0 :                 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
    2447           0 :                         spin_unlock(&cache->lock);
    2448           0 :                         btrfs_put_block_group(cache);
    2449           0 :                         goto skip;
    2450             :                 }
    2451           0 :                 btrfs_freeze_block_group(cache);
    2452           0 :                 spin_unlock(&cache->lock);
    2453             : 
    2454             :                 /*
    2455             :                  * we need call btrfs_inc_block_group_ro() with scrubs_paused,
    2456             :                  * to avoid deadlock caused by:
    2457             :                  * btrfs_inc_block_group_ro()
    2458             :                  * -> btrfs_wait_for_commit()
    2459             :                  * -> btrfs_commit_transaction()
    2460             :                  * -> btrfs_scrub_pause()
    2461             :                  */
    2462           0 :                 scrub_pause_on(fs_info);
    2463             : 
    2464             :                 /*
    2465             :                  * Don't do chunk preallocation for scrub.
    2466             :                  *
    2467             :                  * This is especially important for SYSTEM bgs, or we can hit
    2468             :                  * -EFBIG from btrfs_finish_chunk_alloc() like:
    2469             :                  * 1. The only SYSTEM bg is marked RO.
    2470             :                  *    Since SYSTEM bg is small, that's pretty common.
    2471             :                  * 2. New SYSTEM bg will be allocated
    2472             :                  *    Due to regular version will allocate new chunk.
    2473             :                  * 3. New SYSTEM bg is empty and will get cleaned up
    2474             :                  *    Before cleanup really happens, it's marked RO again.
    2475             :                  * 4. Empty SYSTEM bg get scrubbed
    2476             :                  *    We go back to 2.
    2477             :                  *
    2478             :                  * This can easily boost the amount of SYSTEM chunks if cleaner
    2479             :                  * thread can't be triggered fast enough, and use up all space
    2480             :                  * of btrfs_super_block::sys_chunk_array
    2481             :                  *
    2482             :                  * While for dev replace, we need to try our best to mark block
    2483             :                  * group RO, to prevent race between:
    2484             :                  * - Write duplication
    2485             :                  *   Contains latest data
    2486             :                  * - Scrub copy
    2487             :                  *   Contains data from commit tree
    2488             :                  *
    2489             :                  * If target block group is not marked RO, nocow writes can
    2490             :                  * be overwritten by scrub copy, causing data corruption.
    2491             :                  * So for dev-replace, it's not allowed to continue if a block
    2492             :                  * group is not RO.
    2493             :                  */
    2494           0 :                 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
    2495           0 :                 if (!ret && sctx->is_dev_replace) {
    2496           0 :                         ret = finish_extent_writes_for_zoned(root, cache);
    2497           0 :                         if (ret) {
    2498           0 :                                 btrfs_dec_block_group_ro(cache);
    2499           0 :                                 scrub_pause_off(fs_info);
    2500           0 :                                 btrfs_put_block_group(cache);
    2501           0 :                                 break;
    2502             :                         }
    2503             :                 }
    2504             : 
    2505           0 :                 if (ret == 0) {
    2506             :                         ro_set = 1;
    2507           0 :                 } else if (ret == -ENOSPC && !sctx->is_dev_replace &&
    2508           0 :                            !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
    2509             :                         /*
    2510             :                          * btrfs_inc_block_group_ro return -ENOSPC when it
    2511             :                          * failed in creating new chunk for metadata.
    2512             :                          * It is not a problem for scrub, because
    2513             :                          * metadata are always cowed, and our scrub paused
    2514             :                          * commit_transactions.
    2515             :                          *
    2516             :                          * For RAID56 chunks, we have to mark them read-only
    2517             :                          * for scrub, as later we would use our own cache
    2518             :                          * out of RAID56 realm.
    2519             :                          * Thus we want the RAID56 bg to be marked RO to
    2520             :                          * prevent RMW from screwing up out cache.
    2521             :                          */
    2522             :                         ro_set = 0;
    2523           0 :                 } else if (ret == -ETXTBSY) {
    2524           0 :                         btrfs_warn(fs_info,
    2525             :                    "skipping scrub of block group %llu due to active swapfile",
    2526             :                                    cache->start);
    2527           0 :                         scrub_pause_off(fs_info);
    2528           0 :                         ret = 0;
    2529           0 :                         goto skip_unfreeze;
    2530             :                 } else {
    2531           0 :                         btrfs_warn(fs_info,
    2532             :                                    "failed setting block group ro: %d", ret);
    2533           0 :                         btrfs_unfreeze_block_group(cache);
    2534           0 :                         btrfs_put_block_group(cache);
    2535           0 :                         scrub_pause_off(fs_info);
    2536           0 :                         break;
    2537             :                 }
    2538             : 
    2539             :                 /*
    2540             :                  * Now the target block is marked RO, wait for nocow writes to
    2541             :                  * finish before dev-replace.
    2542             :                  * COW is fine, as COW never overwrites extents in commit tree.
    2543             :                  */
    2544           0 :                 if (sctx->is_dev_replace) {
    2545           0 :                         btrfs_wait_nocow_writers(cache);
    2546           0 :                         btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
    2547             :                                         cache->length);
    2548             :                 }
    2549             : 
    2550           0 :                 scrub_pause_off(fs_info);
    2551           0 :                 down_write(&dev_replace->rwsem);
    2552           0 :                 dev_replace->cursor_right = found_key.offset + dev_extent_len;
    2553           0 :                 dev_replace->cursor_left = found_key.offset;
    2554           0 :                 dev_replace->item_needs_writeback = 1;
    2555           0 :                 up_write(&dev_replace->rwsem);
    2556             : 
    2557           0 :                 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
    2558             :                                   dev_extent_len);
    2559           0 :                 if (sctx->is_dev_replace &&
    2560           0 :                     !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
    2561             :                                                       cache, found_key.offset))
    2562           0 :                         ro_set = 0;
    2563             : 
    2564           0 :                 down_write(&dev_replace->rwsem);
    2565           0 :                 dev_replace->cursor_left = dev_replace->cursor_right;
    2566           0 :                 dev_replace->item_needs_writeback = 1;
    2567           0 :                 up_write(&dev_replace->rwsem);
    2568             : 
    2569           0 :                 if (ro_set)
    2570           0 :                         btrfs_dec_block_group_ro(cache);
    2571             : 
    2572             :                 /*
    2573             :                  * We might have prevented the cleaner kthread from deleting
    2574             :                  * this block group if it was already unused because we raced
    2575             :                  * and set it to RO mode first. So add it back to the unused
    2576             :                  * list, otherwise it might not ever be deleted unless a manual
    2577             :                  * balance is triggered or it becomes used and unused again.
    2578             :                  */
    2579           0 :                 spin_lock(&cache->lock);
    2580           0 :                 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
    2581           0 :                     !cache->ro && cache->reserved == 0 && cache->used == 0) {
    2582           0 :                         spin_unlock(&cache->lock);
    2583           0 :                         if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
    2584           0 :                                 btrfs_discard_queue_work(&fs_info->discard_ctl,
    2585             :                                                          cache);
    2586             :                         else
    2587           0 :                                 btrfs_mark_bg_unused(cache);
    2588             :                 } else {
    2589           0 :                         spin_unlock(&cache->lock);
    2590             :                 }
    2591           0 : skip_unfreeze:
    2592           0 :                 btrfs_unfreeze_block_group(cache);
    2593           0 :                 btrfs_put_block_group(cache);
    2594           0 :                 if (ret)
    2595             :                         break;
    2596           0 :                 if (sctx->is_dev_replace &&
    2597             :                     atomic64_read(&dev_replace->num_write_errors) > 0) {
    2598             :                         ret = -EIO;
    2599             :                         break;
    2600             :                 }
    2601           0 :                 if (sctx->stat.malloc_errors > 0) {
    2602             :                         ret = -ENOMEM;
    2603             :                         break;
    2604             :                 }
    2605           0 : skip:
    2606           0 :                 key.offset = found_key.offset + dev_extent_len;
    2607           0 :                 btrfs_release_path(path);
    2608             :         }
    2609             : 
    2610           0 :         btrfs_free_path(path);
    2611             : 
    2612           0 :         return ret;
    2613             : }
    2614             : 
    2615           0 : static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
    2616             :                            struct page *page, u64 physical, u64 generation)
    2617             : {
    2618           0 :         struct btrfs_fs_info *fs_info = sctx->fs_info;
    2619           0 :         struct bio_vec bvec;
    2620           0 :         struct bio bio;
    2621           0 :         struct btrfs_super_block *sb = page_address(page);
    2622           0 :         int ret;
    2623             : 
    2624           0 :         bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
    2625           0 :         bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
    2626           0 :         __bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
    2627           0 :         ret = submit_bio_wait(&bio);
    2628           0 :         bio_uninit(&bio);
    2629             : 
    2630           0 :         if (ret < 0)
    2631             :                 return ret;
    2632           0 :         ret = btrfs_check_super_csum(fs_info, sb);
    2633           0 :         if (ret != 0) {
    2634           0 :                 btrfs_err_rl(fs_info,
    2635             :                         "super block at physical %llu devid %llu has bad csum",
    2636             :                         physical, dev->devid);
    2637           0 :                 return -EIO;
    2638             :         }
    2639           0 :         if (btrfs_super_generation(sb) != generation) {
    2640           0 :                 btrfs_err_rl(fs_info,
    2641             : "super block at physical %llu devid %llu has bad generation %llu expect %llu",
    2642             :                              physical, dev->devid,
    2643             :                              btrfs_super_generation(sb), generation);
    2644           0 :                 return -EUCLEAN;
    2645             :         }
    2646             : 
    2647           0 :         return btrfs_validate_super(fs_info, sb, -1);
    2648             : }
    2649             : 
    2650           0 : static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
    2651             :                                            struct btrfs_device *scrub_dev)
    2652             : {
    2653           0 :         int     i;
    2654           0 :         u64     bytenr;
    2655           0 :         u64     gen;
    2656           0 :         int ret = 0;
    2657           0 :         struct page *page;
    2658           0 :         struct btrfs_fs_info *fs_info = sctx->fs_info;
    2659             : 
    2660           0 :         if (BTRFS_FS_ERROR(fs_info))
    2661             :                 return -EROFS;
    2662             : 
    2663           0 :         page = alloc_page(GFP_KERNEL);
    2664           0 :         if (!page) {
    2665           0 :                 spin_lock(&sctx->stat_lock);
    2666           0 :                 sctx->stat.malloc_errors++;
    2667           0 :                 spin_unlock(&sctx->stat_lock);
    2668           0 :                 return -ENOMEM;
    2669             :         }
    2670             : 
    2671             :         /* Seed devices of a new filesystem has their own generation. */
    2672           0 :         if (scrub_dev->fs_devices != fs_info->fs_devices)
    2673           0 :                 gen = scrub_dev->generation;
    2674             :         else
    2675           0 :                 gen = fs_info->last_trans_committed;
    2676             : 
    2677           0 :         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
    2678           0 :                 bytenr = btrfs_sb_offset(i);
    2679           0 :                 if (bytenr + BTRFS_SUPER_INFO_SIZE >
    2680           0 :                     scrub_dev->commit_total_bytes)
    2681             :                         break;
    2682           0 :                 if (!btrfs_check_super_location(scrub_dev, bytenr))
    2683           0 :                         continue;
    2684             : 
    2685           0 :                 ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
    2686           0 :                 if (ret) {
    2687           0 :                         spin_lock(&sctx->stat_lock);
    2688           0 :                         sctx->stat.super_errors++;
    2689           0 :                         spin_unlock(&sctx->stat_lock);
    2690             :                 }
    2691             :         }
    2692           0 :         __free_page(page);
    2693           0 :         return 0;
    2694             : }
    2695             : 
    2696           0 : static void scrub_workers_put(struct btrfs_fs_info *fs_info)
    2697             : {
    2698           0 :         if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
    2699             :                                         &fs_info->scrub_lock)) {
    2700           0 :                 struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
    2701             : 
    2702           0 :                 fs_info->scrub_workers = NULL;
    2703           0 :                 mutex_unlock(&fs_info->scrub_lock);
    2704             : 
    2705           0 :                 if (scrub_workers)
    2706           0 :                         destroy_workqueue(scrub_workers);
    2707             :         }
    2708           0 : }
    2709             : 
    2710             : /*
    2711             :  * get a reference count on fs_info->scrub_workers. start worker if necessary
    2712             :  */
    2713           0 : static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
    2714             :                                                 int is_dev_replace)
    2715             : {
    2716           0 :         struct workqueue_struct *scrub_workers = NULL;
    2717           0 :         unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
    2718           0 :         int max_active = fs_info->thread_pool_size;
    2719           0 :         int ret = -ENOMEM;
    2720             : 
    2721           0 :         if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
    2722             :                 return 0;
    2723             : 
    2724           0 :         if (is_dev_replace)
    2725           0 :                 scrub_workers = alloc_ordered_workqueue("btrfs-scrub", flags);
    2726             :         else
    2727           0 :                 scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
    2728           0 :         if (!scrub_workers)
    2729             :                 return -ENOMEM;
    2730             : 
    2731           0 :         mutex_lock(&fs_info->scrub_lock);
    2732           0 :         if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
    2733           0 :                 ASSERT(fs_info->scrub_workers == NULL);
    2734           0 :                 fs_info->scrub_workers = scrub_workers;
    2735           0 :                 refcount_set(&fs_info->scrub_workers_refcnt, 1);
    2736           0 :                 mutex_unlock(&fs_info->scrub_lock);
    2737           0 :                 return 0;
    2738             :         }
    2739             :         /* Other thread raced in and created the workers for us */
    2740           0 :         refcount_inc(&fs_info->scrub_workers_refcnt);
    2741           0 :         mutex_unlock(&fs_info->scrub_lock);
    2742             : 
    2743           0 :         ret = 0;
    2744             : 
    2745           0 :         destroy_workqueue(scrub_workers);
    2746           0 :         return ret;
    2747             : }
    2748             : 
    2749           0 : int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
    2750             :                     u64 end, struct btrfs_scrub_progress *progress,
    2751             :                     int readonly, int is_dev_replace)
    2752             : {
    2753           0 :         struct btrfs_dev_lookup_args args = { .devid = devid };
    2754           0 :         struct scrub_ctx *sctx;
    2755           0 :         int ret;
    2756           0 :         struct btrfs_device *dev;
    2757           0 :         unsigned int nofs_flag;
    2758           0 :         bool need_commit = false;
    2759             : 
    2760           0 :         if (btrfs_fs_closing(fs_info))
    2761             :                 return -EAGAIN;
    2762             : 
    2763             :         /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
    2764           0 :         ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
    2765             : 
    2766             :         /*
    2767             :          * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
    2768             :          * value (max nodesize / min sectorsize), thus nodesize should always
    2769             :          * be fine.
    2770             :          */
    2771           0 :         ASSERT(fs_info->nodesize <=
    2772             :                SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
    2773             : 
    2774             :         /* Allocate outside of device_list_mutex */
    2775           0 :         sctx = scrub_setup_ctx(fs_info, is_dev_replace);
    2776           0 :         if (IS_ERR(sctx))
    2777           0 :                 return PTR_ERR(sctx);
    2778             : 
    2779           0 :         ret = scrub_workers_get(fs_info, is_dev_replace);
    2780           0 :         if (ret)
    2781           0 :                 goto out_free_ctx;
    2782             : 
    2783           0 :         mutex_lock(&fs_info->fs_devices->device_list_mutex);
    2784           0 :         dev = btrfs_find_device(fs_info->fs_devices, &args);
    2785           0 :         if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
    2786             :                      !is_dev_replace)) {
    2787           0 :                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
    2788           0 :                 ret = -ENODEV;
    2789           0 :                 goto out;
    2790             :         }
    2791             : 
    2792           0 :         if (!is_dev_replace && !readonly &&
    2793           0 :             !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
    2794           0 :                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
    2795           0 :                 btrfs_err_in_rcu(fs_info,
    2796             :                         "scrub on devid %llu: filesystem on %s is not writable",
    2797             :                                  devid, btrfs_dev_name(dev));
    2798           0 :                 ret = -EROFS;
    2799           0 :                 goto out;
    2800             :         }
    2801             : 
    2802           0 :         mutex_lock(&fs_info->scrub_lock);
    2803           0 :         if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
    2804           0 :             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
    2805           0 :                 mutex_unlock(&fs_info->scrub_lock);
    2806           0 :                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
    2807           0 :                 ret = -EIO;
    2808           0 :                 goto out;
    2809             :         }
    2810             : 
    2811           0 :         down_read(&fs_info->dev_replace.rwsem);
    2812           0 :         if (dev->scrub_ctx ||
    2813           0 :             (!is_dev_replace &&
    2814           0 :              btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
    2815           0 :                 up_read(&fs_info->dev_replace.rwsem);
    2816           0 :                 mutex_unlock(&fs_info->scrub_lock);
    2817           0 :                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
    2818           0 :                 ret = -EINPROGRESS;
    2819           0 :                 goto out;
    2820             :         }
    2821           0 :         up_read(&fs_info->dev_replace.rwsem);
    2822             : 
    2823           0 :         sctx->readonly = readonly;
    2824           0 :         dev->scrub_ctx = sctx;
    2825           0 :         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
    2826             : 
    2827             :         /*
    2828             :          * checking @scrub_pause_req here, we can avoid
    2829             :          * race between committing transaction and scrubbing.
    2830             :          */
    2831           0 :         __scrub_blocked_if_needed(fs_info);
    2832           0 :         atomic_inc(&fs_info->scrubs_running);
    2833           0 :         mutex_unlock(&fs_info->scrub_lock);
    2834             : 
    2835             :         /*
    2836             :          * In order to avoid deadlock with reclaim when there is a transaction
    2837             :          * trying to pause scrub, make sure we use GFP_NOFS for all the
    2838             :          * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
    2839             :          * invoked by our callees. The pausing request is done when the
    2840             :          * transaction commit starts, and it blocks the transaction until scrub
    2841             :          * is paused (done at specific points at scrub_stripe() or right above
    2842             :          * before incrementing fs_info->scrubs_running).
    2843             :          */
    2844           0 :         nofs_flag = memalloc_nofs_save();
    2845           0 :         if (!is_dev_replace) {
    2846           0 :                 u64 old_super_errors;
    2847             : 
    2848           0 :                 spin_lock(&sctx->stat_lock);
    2849           0 :                 old_super_errors = sctx->stat.super_errors;
    2850           0 :                 spin_unlock(&sctx->stat_lock);
    2851             : 
    2852           0 :                 btrfs_info(fs_info, "scrub: started on devid %llu", devid);
    2853             :                 /*
    2854             :                  * by holding device list mutex, we can
    2855             :                  * kick off writing super in log tree sync.
    2856             :                  */
    2857           0 :                 mutex_lock(&fs_info->fs_devices->device_list_mutex);
    2858           0 :                 ret = scrub_supers(sctx, dev);
    2859           0 :                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
    2860             : 
    2861           0 :                 spin_lock(&sctx->stat_lock);
    2862             :                 /*
    2863             :                  * Super block errors found, but we can not commit transaction
    2864             :                  * at current context, since btrfs_commit_transaction() needs
    2865             :                  * to pause the current running scrub (hold by ourselves).
    2866             :                  */
    2867           0 :                 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
    2868           0 :                         need_commit = true;
    2869           0 :                 spin_unlock(&sctx->stat_lock);
    2870             :         }
    2871             : 
    2872           0 :         if (!ret)
    2873           0 :                 ret = scrub_enumerate_chunks(sctx, dev, start, end);
    2874           0 :         memalloc_nofs_restore(nofs_flag);
    2875             : 
    2876           0 :         atomic_dec(&fs_info->scrubs_running);
    2877           0 :         wake_up(&fs_info->scrub_pause_wait);
    2878             : 
    2879           0 :         if (progress)
    2880           0 :                 memcpy(progress, &sctx->stat, sizeof(*progress));
    2881             : 
    2882           0 :         if (!is_dev_replace)
    2883           0 :                 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
    2884             :                         ret ? "not finished" : "finished", devid, ret);
    2885             : 
    2886           0 :         mutex_lock(&fs_info->scrub_lock);
    2887           0 :         dev->scrub_ctx = NULL;
    2888           0 :         mutex_unlock(&fs_info->scrub_lock);
    2889             : 
    2890           0 :         scrub_workers_put(fs_info);
    2891           0 :         scrub_put_ctx(sctx);
    2892             : 
    2893             :         /*
    2894             :          * We found some super block errors before, now try to force a
    2895             :          * transaction commit, as scrub has finished.
    2896             :          */
    2897           0 :         if (need_commit) {
    2898           0 :                 struct btrfs_trans_handle *trans;
    2899             : 
    2900           0 :                 trans = btrfs_start_transaction(fs_info->tree_root, 0);
    2901           0 :                 if (IS_ERR(trans)) {
    2902           0 :                         ret = PTR_ERR(trans);
    2903           0 :                         btrfs_err(fs_info,
    2904             :         "scrub: failed to start transaction to fix super block errors: %d", ret);
    2905           0 :                         return ret;
    2906             :                 }
    2907           0 :                 ret = btrfs_commit_transaction(trans);
    2908           0 :                 if (ret < 0)
    2909           0 :                         btrfs_err(fs_info,
    2910             :         "scrub: failed to commit transaction to fix super block errors: %d", ret);
    2911             :         }
    2912             :         return ret;
    2913           0 : out:
    2914           0 :         scrub_workers_put(fs_info);
    2915           0 : out_free_ctx:
    2916           0 :         scrub_free_ctx(sctx);
    2917             : 
    2918           0 :         return ret;
    2919             : }
    2920             : 
    2921           0 : void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
    2922             : {
    2923           0 :         mutex_lock(&fs_info->scrub_lock);
    2924           0 :         atomic_inc(&fs_info->scrub_pause_req);
    2925           0 :         while (atomic_read(&fs_info->scrubs_paused) !=
    2926             :                atomic_read(&fs_info->scrubs_running)) {
    2927           0 :                 mutex_unlock(&fs_info->scrub_lock);
    2928           0 :                 wait_event(fs_info->scrub_pause_wait,
    2929             :                            atomic_read(&fs_info->scrubs_paused) ==
    2930             :                            atomic_read(&fs_info->scrubs_running));
    2931           0 :                 mutex_lock(&fs_info->scrub_lock);
    2932             :         }
    2933           0 :         mutex_unlock(&fs_info->scrub_lock);
    2934           0 : }
    2935             : 
    2936           0 : void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
    2937             : {
    2938           0 :         atomic_dec(&fs_info->scrub_pause_req);
    2939           0 :         wake_up(&fs_info->scrub_pause_wait);
    2940           0 : }
    2941             : 
    2942           0 : int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
    2943             : {
    2944           0 :         mutex_lock(&fs_info->scrub_lock);
    2945           0 :         if (!atomic_read(&fs_info->scrubs_running)) {
    2946           0 :                 mutex_unlock(&fs_info->scrub_lock);
    2947           0 :                 return -ENOTCONN;
    2948             :         }
    2949             : 
    2950           0 :         atomic_inc(&fs_info->scrub_cancel_req);
    2951           0 :         while (atomic_read(&fs_info->scrubs_running)) {
    2952           0 :                 mutex_unlock(&fs_info->scrub_lock);
    2953           0 :                 wait_event(fs_info->scrub_pause_wait,
    2954             :                            atomic_read(&fs_info->scrubs_running) == 0);
    2955           0 :                 mutex_lock(&fs_info->scrub_lock);
    2956             :         }
    2957           0 :         atomic_dec(&fs_info->scrub_cancel_req);
    2958           0 :         mutex_unlock(&fs_info->scrub_lock);
    2959             : 
    2960           0 :         return 0;
    2961             : }
    2962             : 
    2963           0 : int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
    2964             : {
    2965           0 :         struct btrfs_fs_info *fs_info = dev->fs_info;
    2966           0 :         struct scrub_ctx *sctx;
    2967             : 
    2968           0 :         mutex_lock(&fs_info->scrub_lock);
    2969           0 :         sctx = dev->scrub_ctx;
    2970           0 :         if (!sctx) {
    2971           0 :                 mutex_unlock(&fs_info->scrub_lock);
    2972           0 :                 return -ENOTCONN;
    2973             :         }
    2974           0 :         atomic_inc(&sctx->cancel_req);
    2975           0 :         while (dev->scrub_ctx) {
    2976           0 :                 mutex_unlock(&fs_info->scrub_lock);
    2977           0 :                 wait_event(fs_info->scrub_pause_wait,
    2978             :                            dev->scrub_ctx == NULL);
    2979           0 :                 mutex_lock(&fs_info->scrub_lock);
    2980             :         }
    2981           0 :         mutex_unlock(&fs_info->scrub_lock);
    2982             : 
    2983           0 :         return 0;
    2984             : }
    2985             : 
    2986           0 : int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
    2987             :                          struct btrfs_scrub_progress *progress)
    2988             : {
    2989           0 :         struct btrfs_dev_lookup_args args = { .devid = devid };
    2990           0 :         struct btrfs_device *dev;
    2991           0 :         struct scrub_ctx *sctx = NULL;
    2992             : 
    2993           0 :         mutex_lock(&fs_info->fs_devices->device_list_mutex);
    2994           0 :         dev = btrfs_find_device(fs_info->fs_devices, &args);
    2995           0 :         if (dev)
    2996           0 :                 sctx = dev->scrub_ctx;
    2997           0 :         if (sctx)
    2998           0 :                 memcpy(progress, &sctx->stat, sizeof(*progress));
    2999           0 :         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
    3000             : 
    3001           0 :         return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
    3002             : }

Generated by: LCOV version 1.14