LCOV - code coverage report
Current view: top level - fs/xfs - xfs_log_recover.c (source / functions) Hit Total Coverage
Test: fstests of 6.5.0-rc4-xfsa @ Mon Jul 31 20:08:27 PDT 2023 Lines: 1055 1292 81.7 %
Date: 2023-07-31 20:08:27 Functions: 55 56 98.2 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
       4             :  * All Rights Reserved.
       5             :  */
       6             : #include "xfs.h"
       7             : #include "xfs_fs.h"
       8             : #include "xfs_shared.h"
       9             : #include "xfs_format.h"
      10             : #include "xfs_log_format.h"
      11             : #include "xfs_trans_resv.h"
      12             : #include "xfs_bit.h"
      13             : #include "xfs_sb.h"
      14             : #include "xfs_mount.h"
      15             : #include "xfs_defer.h"
      16             : #include "xfs_inode.h"
      17             : #include "xfs_trans.h"
      18             : #include "xfs_log.h"
      19             : #include "xfs_log_priv.h"
      20             : #include "xfs_log_recover.h"
      21             : #include "xfs_trans_priv.h"
      22             : #include "xfs_alloc.h"
      23             : #include "xfs_ialloc.h"
      24             : #include "xfs_trace.h"
      25             : #include "xfs_icache.h"
      26             : #include "xfs_error.h"
      27             : #include "xfs_buf_item.h"
      28             : #include "xfs_ag.h"
      29             : #include "xfs_quota.h"
      30             : #include "xfs_reflink.h"
      31             : #include "xfs_rtgroup.h"
      32             : 
      33             : #define BLK_AVG(blk1, blk2)     ((blk1+blk2) >> 1)
      34             : 
      35             : STATIC int
      36             : xlog_find_zeroed(
      37             :         struct xlog     *,
      38             :         xfs_daddr_t     *);
      39             : STATIC int
      40             : xlog_clear_stale_blocks(
      41             :         struct xlog     *,
      42             :         xfs_lsn_t);
      43             : STATIC int
      44             : xlog_do_recovery_pass(
      45             :         struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
      46             : 
      47             : /*
      48             :  * Sector aligned buffer routines for buffer create/read/write/access
      49             :  */
      50             : 
      51             : /*
      52             :  * Verify the log-relative block number and length in basic blocks are valid for
      53             :  * an operation involving the given XFS log buffer. Returns true if the fields
      54             :  * are valid, false otherwise.
      55             :  */
      56             : static inline bool
      57             : xlog_verify_bno(
      58             :         struct xlog     *log,
      59             :         xfs_daddr_t     blk_no,
      60             :         int             bbcount)
      61             : {
      62    13120207 :         if (blk_no < 0 || blk_no >= log->l_logBBsize)
      63             :                 return false;
      64    13372753 :         if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
      65           0 :                 return false;
      66             :         return true;
      67             : }
      68             : 
      69             : /*
      70             :  * Allocate a buffer to hold log data.  The buffer needs to be able to map to
      71             :  * a range of nbblks basic blocks at any valid offset within the log.
      72             :  */
      73             : static char *
      74      252546 : xlog_alloc_buffer(
      75             :         struct xlog     *log,
      76             :         int             nbblks)
      77             : {
      78             :         /*
      79             :          * Pass log block 0 since we don't have an addr yet, buffer will be
      80             :          * verified on read.
      81             :          */
      82      505092 :         if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) {
      83           0 :                 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
      84             :                         nbblks);
      85           0 :                 return NULL;
      86             :         }
      87             : 
      88             :         /*
      89             :          * We do log I/O in units of log sectors (a power-of-2 multiple of the
      90             :          * basic block size), so we round up the requested size to accommodate
      91             :          * the basic blocks required for complete log sectors.
      92             :          *
      93             :          * In addition, the buffer may be used for a non-sector-aligned block
      94             :          * offset, in which case an I/O of the requested size could extend
      95             :          * beyond the end of the buffer.  If the requested size is only 1 basic
      96             :          * block it will never straddle a sector boundary, so this won't be an
      97             :          * issue.  Nor will this be a problem if the log I/O is done in basic
      98             :          * blocks (sector size 1).  But otherwise we extend the buffer by one
      99             :          * extra log sector to ensure there's space to accommodate this
     100             :          * possibility.
     101             :          */
     102      252546 :         if (nbblks > 1 && log->l_sectBBsize > 1)
     103      118798 :                 nbblks += log->l_sectBBsize;
     104      252546 :         nbblks = round_up(nbblks, log->l_sectBBsize);
     105      252546 :         return kvzalloc(BBTOB(nbblks), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
     106             : }
     107             : 
     108             : /*
     109             :  * Return the address of the start of the given block number's data
     110             :  * in a log buffer.  The buffer covers a log sector-aligned region.
     111             :  */
     112             : static inline unsigned int
     113             : xlog_align(
     114             :         struct xlog     *log,
     115             :         xfs_daddr_t     blk_no)
     116             : {
     117    13118789 :         return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1));
     118             : }
     119             : 
     120             : static int
     121    13120207 : xlog_do_io(
     122             :         struct xlog             *log,
     123             :         xfs_daddr_t             blk_no,
     124             :         unsigned int            nbblks,
     125             :         char                    *data,
     126             :         enum req_op             op)
     127             : {
     128    13120207 :         int                     error;
     129             : 
     130    26240414 :         if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) {
     131           0 :                 xfs_warn(log->l_mp,
     132             :                          "Invalid log block/length (0x%llx, 0x%x) for buffer",
     133             :                          blk_no, nbblks);
     134           0 :                 return -EFSCORRUPTED;
     135             :         }
     136             : 
     137    13120207 :         blk_no = round_down(blk_no, log->l_sectBBsize);
     138    13120207 :         nbblks = round_up(nbblks, log->l_sectBBsize);
     139    13120207 :         ASSERT(nbblks > 0);
     140             : 
     141    13120207 :         error = xfs_rw_bdev(xfs_buftarg_bdev(log->l_targ),
     142    13120207 :                         log->l_logBBstart + blk_no,
     143             :                         BBTOB(nbblks), data, op);
     144    13120207 :         if (error && !xlog_is_shutdown(log)) {
     145           0 :                 xfs_alert(log->l_mp,
     146             :                           "log recovery %s I/O error at daddr 0x%llx len %d error %d",
     147             :                           op == REQ_OP_WRITE ? "write" : "read",
     148             :                           blk_no, nbblks, error);
     149             :         }
     150             :         return error;
     151             : }
     152             : 
     153             : STATIC int
     154        1418 : xlog_bread_noalign(
     155             :         struct xlog     *log,
     156             :         xfs_daddr_t     blk_no,
     157             :         int             nbblks,
     158             :         char            *data)
     159             : {
     160        1418 :         return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
     161             : }
     162             : 
     163             : STATIC int
     164    13002983 : xlog_bread(
     165             :         struct xlog     *log,
     166             :         xfs_daddr_t     blk_no,
     167             :         int             nbblks,
     168             :         char            *data,
     169             :         char            **offset)
     170             : {
     171    13002983 :         int             error;
     172             : 
     173    13002983 :         error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
     174    13002983 :         if (!error)
     175    13002983 :                 *offset = data + xlog_align(log, blk_no);
     176    13002983 :         return error;
     177             : }
     178             : 
     179             : STATIC int
     180      115806 : xlog_bwrite(
     181             :         struct xlog     *log,
     182             :         xfs_daddr_t     blk_no,
     183             :         int             nbblks,
     184             :         char            *data)
     185             : {
     186      115806 :         return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE);
     187             : }
     188             : 
     189             : #ifdef DEBUG
     190             : /*
     191             :  * dump debug superblock and log record information
     192             :  */
     193             : STATIC void
     194           0 : xlog_header_check_dump(
     195             :         xfs_mount_t             *mp,
     196             :         xlog_rec_header_t       *head)
     197             : {
     198           0 :         xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
     199             :                 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
     200           0 :         xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
     201             :                 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
     202           0 : }
     203             : #else
     204             : #define xlog_header_check_dump(mp, head)
     205             : #endif
     206             : 
     207             : /*
     208             :  * check log record header for recovery
     209             :  */
     210             : STATIC int
     211     2654324 : xlog_header_check_recover(
     212             :         xfs_mount_t             *mp,
     213             :         xlog_rec_header_t       *head)
     214             : {
     215     2654324 :         ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
     216             : 
     217             :         /*
     218             :          * IRIX doesn't write the h_fmt field and leaves it zeroed
     219             :          * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
     220             :          * a dirty log created in IRIX.
     221             :          */
     222     2654324 :         if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) {
     223           0 :                 xfs_warn(mp,
     224             :         "dirty log written in incompatible format - can't recover");
     225           0 :                 xlog_header_check_dump(mp, head);
     226           0 :                 return -EFSCORRUPTED;
     227             :         }
     228     2654324 :         if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
     229             :                                            &head->h_fs_uuid))) {
     230           0 :                 xfs_warn(mp,
     231             :         "dirty log entry has mismatched uuid - can't recover");
     232           0 :                 xlog_header_check_dump(mp, head);
     233           0 :                 return -EFSCORRUPTED;
     234             :         }
     235             :         return 0;
     236             : }
     237             : 
     238             : /*
     239             :  * read the head block of the log and check the header
     240             :  */
     241             : STATIC int
     242       24319 : xlog_header_check_mount(
     243             :         xfs_mount_t             *mp,
     244             :         xlog_rec_header_t       *head)
     245             : {
     246       24319 :         ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
     247             : 
     248       24319 :         if (uuid_is_null(&head->h_fs_uuid)) {
     249             :                 /*
     250             :                  * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
     251             :                  * h_fs_uuid is null, we assume this log was last mounted
     252             :                  * by IRIX and continue.
     253             :                  */
     254           0 :                 xfs_warn(mp, "null uuid in log - IRIX style log");
     255       24319 :         } else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
     256             :                                                   &head->h_fs_uuid))) {
     257           0 :                 xfs_warn(mp, "log has mismatched uuid - can't recover");
     258           0 :                 xlog_header_check_dump(mp, head);
     259           0 :                 return -EFSCORRUPTED;
     260             :         }
     261             :         return 0;
     262             : }
     263             : 
     264             : /*
     265             :  * This routine finds (to an approximation) the first block in the physical
     266             :  * log which contains the given cycle.  It uses a binary search algorithm.
     267             :  * Note that the algorithm can not be perfect because the disk will not
     268             :  * necessarily be perfect.
     269             :  */
     270             : STATIC int
     271       24319 : xlog_find_cycle_start(
     272             :         struct xlog     *log,
     273             :         char            *buffer,
     274             :         xfs_daddr_t     first_blk,
     275             :         xfs_daddr_t     *last_blk,
     276             :         uint            cycle)
     277             : {
     278       24319 :         char            *offset;
     279       24319 :         xfs_daddr_t     mid_blk;
     280       24319 :         xfs_daddr_t     end_blk;
     281       24319 :         uint            mid_cycle;
     282       24319 :         int             error;
     283             : 
     284       24319 :         end_blk = *last_blk;
     285       24319 :         mid_blk = BLK_AVG(first_blk, end_blk);
     286      435771 :         while (mid_blk != first_blk && mid_blk != end_blk) {
     287      411452 :                 error = xlog_bread(log, mid_blk, 1, buffer, &offset);
     288      411452 :                 if (error)
     289           0 :                         return error;
     290      411452 :                 mid_cycle = xlog_get_cycle(offset);
     291      411452 :                 if (mid_cycle == cycle)
     292             :                         end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
     293             :                 else
     294      133587 :                         first_blk = mid_blk; /* first_half_cycle == mid_cycle */
     295      411452 :                 mid_blk = BLK_AVG(first_blk, end_blk);
     296             :         }
     297       24319 :         ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
     298             :                (mid_blk == end_blk && mid_blk-1 == first_blk));
     299             : 
     300       24319 :         *last_blk = end_blk;
     301             : 
     302       24319 :         return 0;
     303             : }
     304             : 
     305             : /*
     306             :  * Check that a range of blocks does not contain stop_on_cycle_no.
     307             :  * Fill in *new_blk with the block offset where such a block is
     308             :  * found, or with -1 (an invalid block number) if there is no such
     309             :  * block in the range.  The scan needs to occur from front to back
     310             :  * and the pointer into the region must be updated since a later
     311             :  * routine will need to perform another test.
     312             :  */
     313             : STATIC int
     314       24917 : xlog_find_verify_cycle(
     315             :         struct xlog     *log,
     316             :         xfs_daddr_t     start_blk,
     317             :         int             nbblks,
     318             :         uint            stop_on_cycle_no,
     319             :         xfs_daddr_t     *new_blk)
     320             : {
     321       24917 :         xfs_daddr_t     i, j;
     322       24917 :         uint            cycle;
     323       24917 :         char            *buffer;
     324       24917 :         xfs_daddr_t     bufblks;
     325       24917 :         char            *buf = NULL;
     326       24917 :         int             error = 0;
     327             : 
     328             :         /*
     329             :          * Greedily allocate a buffer big enough to handle the full
     330             :          * range of basic blocks we'll be examining.  If that fails,
     331             :          * try a smaller size.  We need to be able to read at least
     332             :          * a log sector, or we're out of luck.
     333             :          */
     334       24917 :         bufblks = 1 << ffs(nbblks);
     335       24917 :         while (bufblks > log->l_logBBsize)
     336           0 :                 bufblks >>= 1;
     337       24917 :         while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
     338           0 :                 bufblks >>= 1;
     339           0 :                 if (bufblks < log->l_sectBBsize)
     340             :                         return -ENOMEM;
     341             :         }
     342             : 
     343      203719 :         for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
     344      178828 :                 int     bcount;
     345             : 
     346      178828 :                 bcount = min(bufblks, (start_blk + nbblks - i));
     347             : 
     348      178828 :                 error = xlog_bread(log, i, bcount, buffer, &buf);
     349      178828 :                 if (error)
     350           0 :                         goto out;
     351             : 
     352    72042397 :                 for (j = 0; j < bcount; j++) {
     353    71863595 :                         cycle = xlog_get_cycle(buf);
     354    71863595 :                         if (cycle == stop_on_cycle_no) {
     355          26 :                                 *new_blk = i+j;
     356          26 :                                 goto out;
     357             :                         }
     358             : 
     359    71863569 :                         buf += BBSIZE;
     360             :                 }
     361             :         }
     362             : 
     363       24891 :         *new_blk = -1;
     364             : 
     365       24917 : out:
     366       24917 :         kmem_free(buffer);
     367       24917 :         return error;
     368             : }
     369             : 
     370             : static inline int
     371       94129 : xlog_logrec_hblks(struct xlog *log, struct xlog_rec_header *rh)
     372             : {
     373       94129 :         if (xfs_has_logv2(log->l_mp)) {
     374       94117 :                 int     h_size = be32_to_cpu(rh->h_size);
     375             : 
     376       94117 :                 if ((be32_to_cpu(rh->h_version) & XLOG_VERSION_2) &&
     377             :                     h_size > XLOG_HEADER_CYCLE_SIZE)
     378         444 :                         return DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE);
     379             :         }
     380             :         return 1;
     381             : }
     382             : 
     383             : /*
     384             :  * Potentially backup over partial log record write.
     385             :  *
     386             :  * In the typical case, last_blk is the number of the block directly after
     387             :  * a good log record.  Therefore, we subtract one to get the block number
     388             :  * of the last block in the given buffer.  extra_bblks contains the number
     389             :  * of blocks we would have read on a previous read.  This happens when the
     390             :  * last log record is split over the end of the physical log.
     391             :  *
     392             :  * extra_bblks is the number of blocks potentially verified on a previous
     393             :  * call to this routine.
     394             :  */
     395             : STATIC int
     396       24326 : xlog_find_verify_log_record(
     397             :         struct xlog             *log,
     398             :         xfs_daddr_t             start_blk,
     399             :         xfs_daddr_t             *last_blk,
     400             :         int                     extra_bblks)
     401             : {
     402       24326 :         xfs_daddr_t             i;
     403       24326 :         char                    *buffer;
     404       24326 :         char                    *offset = NULL;
     405       24326 :         xlog_rec_header_t       *head = NULL;
     406       24326 :         int                     error = 0;
     407       24326 :         int                     smallmem = 0;
     408       24326 :         int                     num_blks = *last_blk - start_blk;
     409       24326 :         int                     xhdrs;
     410             : 
     411       24326 :         ASSERT(start_blk != 0 || *last_blk != start_blk);
     412             : 
     413       24326 :         buffer = xlog_alloc_buffer(log, num_blks);
     414       24326 :         if (!buffer) {
     415           0 :                 buffer = xlog_alloc_buffer(log, 1);
     416           0 :                 if (!buffer)
     417             :                         return -ENOMEM;
     418             :                 smallmem = 1;
     419             :         } else {
     420       24326 :                 error = xlog_bread(log, start_blk, num_blks, buffer, &offset);
     421       24326 :                 if (error)
     422           0 :                         goto out;
     423       24326 :                 offset += ((num_blks - 1) << BBSHIFT);
     424             :         }
     425             : 
     426      547333 :         for (i = (*last_blk) - 1; i >= 0; i--) {
     427      547330 :                 if (i < start_blk) {
     428             :                         /* valid log record not found */
     429           4 :                         xfs_warn(log->l_mp,
     430             :                 "Log inconsistent (didn't find previous header)");
     431           4 :                         ASSERT(0);
     432           4 :                         error = -EFSCORRUPTED;
     433           4 :                         goto out;
     434             :                 }
     435             : 
     436      547326 :                 if (smallmem) {
     437           0 :                         error = xlog_bread(log, i, 1, buffer, &offset);
     438           0 :                         if (error)
     439           0 :                                 goto out;
     440             :                 }
     441             : 
     442      547326 :                 head = (xlog_rec_header_t *)offset;
     443             : 
     444      547326 :                 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
     445             :                         break;
     446             : 
     447      523007 :                 if (!smallmem)
     448      523007 :                         offset -= BBSIZE;
     449             :         }
     450             : 
     451             :         /*
     452             :          * We hit the beginning of the physical log & still no header.  Return
     453             :          * to caller.  If caller can handle a return of -1, then this routine
     454             :          * will be called again for the end of the physical log.
     455             :          */
     456       24322 :         if (i == -1) {
     457           3 :                 error = 1;
     458           3 :                 goto out;
     459             :         }
     460             : 
     461             :         /*
     462             :          * We have the final block of the good log (the first block
     463             :          * of the log record _before_ the head. So we check the uuid.
     464             :          */
     465       24319 :         if ((error = xlog_header_check_mount(log->l_mp, head)))
     466           0 :                 goto out;
     467             : 
     468             :         /*
     469             :          * We may have found a log record header before we expected one.
     470             :          * last_blk will be the 1st block # with a given cycle #.  We may end
     471             :          * up reading an entire log record.  In this case, we don't want to
     472             :          * reset last_blk.  Only when last_blk points in the middle of a log
     473             :          * record do we update last_blk.
     474             :          */
     475       24319 :         xhdrs = xlog_logrec_hblks(log, head);
     476             : 
     477       48638 :         if (*last_blk - i + extra_bblks !=
     478       24319 :             BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
     479          36 :                 *last_blk = i;
     480             : 
     481       24283 : out:
     482       24326 :         kmem_free(buffer);
     483       24326 :         return error;
     484             : }
     485             : 
     486             : /*
     487             :  * Head is defined to be the point of the log where the next log write
     488             :  * could go.  This means that incomplete LR writes at the end are
     489             :  * eliminated when calculating the head.  We aren't guaranteed that previous
     490             :  * LR have complete transactions.  We only know that a cycle number of
     491             :  * current cycle number -1 won't be present in the log if we start writing
     492             :  * from our current block number.
     493             :  *
     494             :  * last_blk contains the block number of the first block with a given
     495             :  * cycle number.
     496             :  *
     497             :  * Return: zero if normal, non-zero if error.
     498             :  */
     499             : STATIC int
     500       24323 : xlog_find_head(
     501             :         struct xlog     *log,
     502             :         xfs_daddr_t     *return_head_blk)
     503             : {
     504       24323 :         char            *buffer;
     505       24323 :         char            *offset;
     506       24323 :         xfs_daddr_t     new_blk, first_blk, start_blk, last_blk, head_blk;
     507       24323 :         int             num_scan_bblks;
     508       24323 :         uint            first_half_cycle, last_half_cycle;
     509       24323 :         uint            stop_on_cycle;
     510       24323 :         int             error, log_bbnum = log->l_logBBsize;
     511             : 
     512             :         /* Is the end of the log device zeroed? */
     513       24323 :         error = xlog_find_zeroed(log, &first_blk);
     514       24323 :         if (error < 0) {
     515           0 :                 xfs_warn(log->l_mp, "empty log check failed");
     516           0 :                 return error;
     517             :         }
     518       24323 :         if (error == 1) {
     519        8377 :                 *return_head_blk = first_blk;
     520             : 
     521             :                 /* Is the whole lot zeroed? */
     522        8377 :                 if (!first_blk) {
     523             :                         /* Linux XFS shouldn't generate totally zeroed logs -
     524             :                          * mkfs etc write a dummy unmount record to a fresh
     525             :                          * log so we can store the uuid in there
     526             :                          */
     527           0 :                         xfs_warn(log->l_mp, "totally zeroed log");
     528             :                 }
     529             : 
     530        8377 :                 return 0;
     531             :         }
     532             : 
     533       15946 :         first_blk = 0;                  /* get cycle # of 1st block */
     534       15946 :         buffer = xlog_alloc_buffer(log, 1);
     535       15946 :         if (!buffer)
     536             :                 return -ENOMEM;
     537             : 
     538       15946 :         error = xlog_bread(log, 0, 1, buffer, &offset);
     539       15946 :         if (error)
     540           0 :                 goto out_free_buffer;
     541             : 
     542       15946 :         first_half_cycle = xlog_get_cycle(offset);
     543             : 
     544       15946 :         last_blk = head_blk = log_bbnum - 1;    /* get cycle # of last block */
     545       15946 :         error = xlog_bread(log, last_blk, 1, buffer, &offset);
     546       15946 :         if (error)
     547           0 :                 goto out_free_buffer;
     548             : 
     549       15946 :         last_half_cycle = xlog_get_cycle(offset);
     550       15946 :         ASSERT(last_half_cycle != 0);
     551             : 
     552             :         /*
     553             :          * If the 1st half cycle number is equal to the last half cycle number,
     554             :          * then the entire log is stamped with the same cycle number.  In this
     555             :          * case, head_blk can't be set to zero (which makes sense).  The below
     556             :          * math doesn't work out properly with head_blk equal to zero.  Instead,
     557             :          * we set it to log_bbnum which is an invalid block number, but this
     558             :          * value makes the math correct.  If head_blk doesn't changed through
     559             :          * all the tests below, *head_blk is set to zero at the very end rather
     560             :          * than log_bbnum.  In a sense, log_bbnum and zero are the same block
     561             :          * in a circular file.
     562             :          */
     563       15946 :         if (first_half_cycle == last_half_cycle) {
     564             :                 /*
     565             :                  * In this case we believe that the entire log should have
     566             :                  * cycle number last_half_cycle.  We need to scan backwards
     567             :                  * from the end verifying that there are no holes still
     568             :                  * containing last_half_cycle - 1.  If we find such a hole,
     569             :                  * then the start of that hole will be the new head.  The
     570             :                  * simple case looks like
     571             :                  *        x | x ... | x - 1 | x
     572             :                  * Another case that fits this picture would be
     573             :                  *        x | x + 1 | x ... | x
     574             :                  * In this case the head really is somewhere at the end of the
     575             :                  * log, as one of the latest writes at the beginning was
     576             :                  * incomplete.
     577             :                  * One more case is
     578             :                  *        x | x + 1 | x ... | x - 1 | x
     579             :                  * This is really the combination of the above two cases, and
     580             :                  * the head has to end up at the start of the x-1 hole at the
     581             :                  * end of the log.
     582             :                  *
     583             :                  * In the 256k log case, we will read from the beginning to the
     584             :                  * end of the log and search for cycle numbers equal to x-1.
     585             :                  * We don't worry about the x+1 blocks that we encounter,
     586             :                  * because we know that they cannot be the head since the log
     587             :                  * started with x.
     588             :                  */
     589           4 :                 head_blk = log_bbnum;
     590           4 :                 stop_on_cycle = last_half_cycle - 1;
     591             :         } else {
     592             :                 /*
     593             :                  * In this case we want to find the first block with cycle
     594             :                  * number matching last_half_cycle.  We expect the log to be
     595             :                  * some variation on
     596             :                  *        x + 1 ... | x ... | x
     597             :                  * The first block with cycle number x (last_half_cycle) will
     598             :                  * be where the new head belongs.  First we do a binary search
     599             :                  * for the first occurrence of last_half_cycle.  The binary
     600             :                  * search may not be totally accurate, so then we scan back
     601             :                  * from there looking for occurrences of last_half_cycle before
     602             :                  * us.  If that backwards scan wraps around the beginning of
     603             :                  * the log, then we look for occurrences of last_half_cycle - 1
     604             :                  * at the end of the log.  The cases we're looking for look
     605             :                  * like
     606             :                  *                               v binary search stopped here
     607             :                  *        x + 1 ... | x | x + 1 | x ... | x
     608             :                  *                   ^ but we want to locate this spot
     609             :                  * or
     610             :                  *        <---------> less than scan distance
     611             :                  *        x + 1 ... | x ... | x - 1 | x
     612             :                  *                           ^ we want to locate this spot
     613             :                  */
     614       15942 :                 stop_on_cycle = last_half_cycle;
     615       15942 :                 error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk,
     616             :                                 last_half_cycle);
     617       15942 :                 if (error)
     618           0 :                         goto out_free_buffer;
     619             :         }
     620             : 
     621             :         /*
     622             :          * Now validate the answer.  Scan back some number of maximum possible
     623             :          * blocks and make sure each one has the expected cycle number.  The
     624             :          * maximum is determined by the total possible amount of buffering
     625             :          * in the in-core log.  The following number can be made tighter if
     626             :          * we actually look at the block size of the filesystem.
     627             :          */
     628       15946 :         num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
     629       15946 :         if (head_blk >= num_scan_bblks) {
     630             :                 /*
     631             :                  * We are guaranteed that the entire check can be performed
     632             :                  * in one buffer.
     633             :                  */
     634       15352 :                 start_blk = head_blk - num_scan_bblks;
     635       15352 :                 if ((error = xlog_find_verify_cycle(log,
     636             :                                                 start_blk, num_scan_bblks,
     637             :                                                 stop_on_cycle, &new_blk)))
     638           0 :                         goto out_free_buffer;
     639       15352 :                 if (new_blk != -1)
     640          22 :                         head_blk = new_blk;
     641             :         } else {                /* need to read 2 parts of log */
     642             :                 /*
     643             :                  * We are going to scan backwards in the log in two parts.
     644             :                  * First we scan the physical end of the log.  In this part
     645             :                  * of the log, we are looking for blocks with cycle number
     646             :                  * last_half_cycle - 1.
     647             :                  * If we find one, then we know that the log starts there, as
     648             :                  * we've found a hole that didn't get written in going around
     649             :                  * the end of the physical log.  The simple case for this is
     650             :                  *        x + 1 ... | x ... | x - 1 | x
     651             :                  *        <---------> less than scan distance
     652             :                  * If all of the blocks at the end of the log have cycle number
     653             :                  * last_half_cycle, then we check the blocks at the start of
     654             :                  * the log looking for occurrences of last_half_cycle.  If we
     655             :                  * find one, then our current estimate for the location of the
     656             :                  * first occurrence of last_half_cycle is wrong and we move
     657             :                  * back to the hole we've found.  This case looks like
     658             :                  *        x + 1 ... | x | x + 1 | x ...
     659             :                  *                               ^ binary search stopped here
     660             :                  * Another case we need to handle that only occurs in 256k
     661             :                  * logs is
     662             :                  *        x + 1 ... | x ... | x+1 | x ...
     663             :                  *                   ^ binary search stops here
     664             :                  * In a 256k log, the scan at the end of the log will see the
     665             :                  * x + 1 blocks.  We need to skip past those since that is
     666             :                  * certainly not the head of the log.  By searching for
     667             :                  * last_half_cycle-1 we accomplish that.
     668             :                  */
     669         594 :                 ASSERT(head_blk <= INT_MAX &&
     670             :                         (xfs_daddr_t) num_scan_bblks >= head_blk);
     671         594 :                 start_blk = log_bbnum - (num_scan_bblks - head_blk);
     672         594 :                 if ((error = xlog_find_verify_cycle(log, start_blk,
     673         594 :                                         num_scan_bblks - (int)head_blk,
     674             :                                         (stop_on_cycle - 1), &new_blk)))
     675           0 :                         goto out_free_buffer;
     676         594 :                 if (new_blk != -1) {
     677           0 :                         head_blk = new_blk;
     678           0 :                         goto validate_head;
     679             :                 }
     680             : 
     681             :                 /*
     682             :                  * Scan beginning of log now.  The last part of the physical
     683             :                  * log is good.  This scan needs to verify that it doesn't find
     684             :                  * the last_half_cycle.
     685             :                  */
     686         594 :                 start_blk = 0;
     687         594 :                 ASSERT(head_blk <= INT_MAX);
     688         594 :                 if ((error = xlog_find_verify_cycle(log,
     689             :                                         start_blk, (int)head_blk,
     690             :                                         stop_on_cycle, &new_blk)))
     691           0 :                         goto out_free_buffer;
     692         594 :                 if (new_blk != -1)
     693           2 :                         head_blk = new_blk;
     694             :         }
     695             : 
     696         592 : validate_head:
     697             :         /*
     698             :          * Now we need to make sure head_blk is not pointing to a block in
     699             :          * the middle of a log record.
     700             :          */
     701       15946 :         num_scan_bblks = XLOG_REC_SHIFT(log);
     702       15946 :         if (head_blk >= num_scan_bblks) {
     703       15864 :                 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
     704             : 
     705             :                 /* start ptr at last block ptr before head_blk */
     706       15864 :                 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
     707       15864 :                 if (error == 1)
     708             :                         error = -EIO;
     709       15864 :                 if (error)
     710           4 :                         goto out_free_buffer;
     711             :         } else {
     712          82 :                 start_blk = 0;
     713          82 :                 ASSERT(head_blk <= INT_MAX);
     714          82 :                 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
     715          82 :                 if (error < 0)
     716           0 :                         goto out_free_buffer;
     717          82 :                 if (error == 1) {
     718             :                         /* We hit the beginning of the log during our search */
     719           3 :                         start_blk = log_bbnum - (num_scan_bblks - head_blk);
     720           3 :                         new_blk = log_bbnum;
     721           3 :                         ASSERT(start_blk <= INT_MAX &&
     722             :                                 (xfs_daddr_t) log_bbnum-start_blk >= 0);
     723           3 :                         ASSERT(head_blk <= INT_MAX);
     724           3 :                         error = xlog_find_verify_log_record(log, start_blk,
     725             :                                                         &new_blk, (int)head_blk);
     726           3 :                         if (error == 1)
     727             :                                 error = -EIO;
     728           3 :                         if (error)
     729           0 :                                 goto out_free_buffer;
     730           3 :                         if (new_blk != log_bbnum)
     731           0 :                                 head_blk = new_blk;
     732          79 :                 } else if (error)
     733           0 :                         goto out_free_buffer;
     734             :         }
     735             : 
     736       15942 :         kmem_free(buffer);
     737       15942 :         if (head_blk == log_bbnum)
     738           0 :                 *return_head_blk = 0;
     739             :         else
     740       15942 :                 *return_head_blk = head_blk;
     741             :         /*
     742             :          * When returning here, we have a good block number.  Bad block
     743             :          * means that during a previous crash, we didn't have a clean break
     744             :          * from cycle number N to cycle number N-1.  In this case, we need
     745             :          * to find the first block with cycle number N-1.
     746             :          */
     747             :         return 0;
     748             : 
     749           4 : out_free_buffer:
     750           4 :         kmem_free(buffer);
     751           4 :         if (error)
     752           4 :                 xfs_warn(log->l_mp, "failed to find log head");
     753           4 :         return error;
     754             : }
     755             : 
     756             : /*
     757             :  * Seek backwards in the log for log record headers.
     758             :  *
     759             :  * Given a starting log block, walk backwards until we find the provided number
     760             :  * of records or hit the provided tail block. The return value is the number of
     761             :  * records encountered or a negative error code. The log block and buffer
     762             :  * pointer of the last record seen are returned in rblk and rhead respectively.
     763             :  */
     764             : STATIC int
     765       35701 : xlog_rseek_logrec_hdr(
     766             :         struct xlog             *log,
     767             :         xfs_daddr_t             head_blk,
     768             :         xfs_daddr_t             tail_blk,
     769             :         int                     count,
     770             :         char                    *buffer,
     771             :         xfs_daddr_t             *rblk,
     772             :         struct xlog_rec_header  **rhead,
     773             :         bool                    *wrapped)
     774             : {
     775       35701 :         int                     i;
     776       35701 :         int                     error;
     777       35701 :         int                     found = 0;
     778       35701 :         char                    *offset = NULL;
     779       35701 :         xfs_daddr_t             end_blk;
     780             : 
     781       35701 :         *wrapped = false;
     782             : 
     783             :         /*
     784             :          * Walk backwards from the head block until we hit the tail or the first
     785             :          * block in the log.
     786             :          */
     787       35701 :         end_blk = head_blk > tail_blk ? tail_blk : 0;
     788     4114481 :         for (i = (int) head_blk - 1; i >= end_blk; i--) {
     789     4111088 :                 error = xlog_bread(log, i, 1, buffer, &offset);
     790     4111088 :                 if (error)
     791           0 :                         goto out_error;
     792             : 
     793     4111088 :                 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
     794       95949 :                         *rblk = i;
     795       95949 :                         *rhead = (struct xlog_rec_header *) offset;
     796       95949 :                         if (++found == count)
     797             :                                 break;
     798             :                 }
     799             :         }
     800             : 
     801             :         /*
     802             :          * If we haven't hit the tail block or the log record header count,
     803             :          * start looking again from the end of the physical log. Note that
     804             :          * callers can pass head == tail if the tail is not yet known.
     805             :          */
     806       35701 :         if (tail_blk >= head_blk && found != count) {
     807       20480 :                 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
     808       20480 :                         error = xlog_bread(log, i, 1, buffer, &offset);
     809       20480 :                         if (error)
     810           0 :                                 goto out_error;
     811             : 
     812       20480 :                         if (*(__be32 *)offset ==
     813             :                             cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
     814         110 :                                 *wrapped = true;
     815         110 :                                 *rblk = i;
     816         110 :                                 *rhead = (struct xlog_rec_header *) offset;
     817         110 :                                 if (++found == count)
     818             :                                         break;
     819             :                         }
     820             :                 }
     821             :         }
     822             : 
     823             :         return found;
     824             : 
     825             : out_error:
     826             :         return error;
     827             : }
     828             : 
     829             : /*
     830             :  * Seek forward in the log for log record headers.
     831             :  *
     832             :  * Given head and tail blocks, walk forward from the tail block until we find
     833             :  * the provided number of records or hit the head block. The return value is the
     834             :  * number of records encountered or a negative error code. The log block and
     835             :  * buffer pointer of the last record seen are returned in rblk and rhead
     836             :  * respectively.
     837             :  */
     838             : STATIC int
     839       11371 : xlog_seek_logrec_hdr(
     840             :         struct xlog             *log,
     841             :         xfs_daddr_t             head_blk,
     842             :         xfs_daddr_t             tail_blk,
     843             :         int                     count,
     844             :         char                    *buffer,
     845             :         xfs_daddr_t             *rblk,
     846             :         struct xlog_rec_header  **rhead,
     847             :         bool                    *wrapped)
     848             : {
     849       11371 :         int                     i;
     850       11371 :         int                     error;
     851       11371 :         int                     found = 0;
     852       11371 :         char                    *offset = NULL;
     853       11371 :         xfs_daddr_t             end_blk;
     854             : 
     855       11371 :         *wrapped = false;
     856             : 
     857             :         /*
     858             :          * Walk forward from the tail block until we hit the head or the last
     859             :          * block in the log.
     860             :          */
     861       11371 :         end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
     862       11371 :         for (i = (int) tail_blk; i <= end_blk; i++) {
     863       11371 :                 error = xlog_bread(log, i, 1, buffer, &offset);
     864       11371 :                 if (error)
     865           0 :                         goto out_error;
     866             : 
     867       11371 :                 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
     868       11371 :                         *rblk = i;
     869       11371 :                         *rhead = (struct xlog_rec_header *) offset;
     870       11371 :                         if (++found == count)
     871             :                                 break;
     872             :                 }
     873             :         }
     874             : 
     875             :         /*
     876             :          * If we haven't hit the head block or the log record header count,
     877             :          * start looking again from the start of the physical log.
     878             :          */
     879       11371 :         if (tail_blk > head_blk && found != count) {
     880           0 :                 for (i = 0; i < (int) head_blk; i++) {
     881           0 :                         error = xlog_bread(log, i, 1, buffer, &offset);
     882           0 :                         if (error)
     883           0 :                                 goto out_error;
     884             : 
     885           0 :                         if (*(__be32 *)offset ==
     886             :                             cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
     887           0 :                                 *wrapped = true;
     888           0 :                                 *rblk = i;
     889           0 :                                 *rhead = (struct xlog_rec_header *) offset;
     890           0 :                                 if (++found == count)
     891             :                                         break;
     892             :                         }
     893             :                 }
     894             :         }
     895             : 
     896             :         return found;
     897             : 
     898             : out_error:
     899             :         return error;
     900             : }
     901             : 
     902             : /*
     903             :  * Calculate distance from head to tail (i.e., unused space in the log).
     904             :  */
     905             : static inline int
     906             : xlog_tail_distance(
     907             :         struct xlog     *log,
     908             :         xfs_daddr_t     head_blk,
     909             :         xfs_daddr_t     tail_blk)
     910             : {
     911           0 :         if (head_blk < tail_blk)
     912           0 :                 return tail_blk - head_blk;
     913             : 
     914           0 :         return tail_blk + (log->l_logBBsize - head_blk);
     915             : }
     916             : 
     917             : /*
     918             :  * Verify the log tail. This is particularly important when torn or incomplete
     919             :  * writes have been detected near the front of the log and the head has been
     920             :  * walked back accordingly.
     921             :  *
     922             :  * We also have to handle the case where the tail was pinned and the head
     923             :  * blocked behind the tail right before a crash. If the tail had been pushed
     924             :  * immediately prior to the crash and the subsequent checkpoint was only
     925             :  * partially written, it's possible it overwrote the last referenced tail in the
     926             :  * log with garbage. This is not a coherency problem because the tail must have
     927             :  * been pushed before it can be overwritten, but appears as log corruption to
     928             :  * recovery because we have no way to know the tail was updated if the
     929             :  * subsequent checkpoint didn't write successfully.
     930             :  *
     931             :  * Therefore, CRC check the log from tail to head. If a failure occurs and the
     932             :  * offending record is within max iclog bufs from the head, walk the tail
     933             :  * forward and retry until a valid tail is found or corruption is detected out
     934             :  * of the range of a possible overwrite.
     935             :  */
     936             : STATIC int
     937       11371 : xlog_verify_tail(
     938             :         struct xlog             *log,
     939             :         xfs_daddr_t             head_blk,
     940             :         xfs_daddr_t             *tail_blk,
     941             :         int                     hsize)
     942             : {
     943       11371 :         struct xlog_rec_header  *thead;
     944       11371 :         char                    *buffer;
     945       11371 :         xfs_daddr_t             first_bad;
     946       11371 :         int                     error = 0;
     947       11371 :         bool                    wrapped;
     948       11371 :         xfs_daddr_t             tmp_tail;
     949       11371 :         xfs_daddr_t             orig_tail = *tail_blk;
     950             : 
     951       11371 :         buffer = xlog_alloc_buffer(log, 1);
     952       11371 :         if (!buffer)
     953             :                 return -ENOMEM;
     954             : 
     955             :         /*
     956             :          * Make sure the tail points to a record (returns positive count on
     957             :          * success).
     958             :          */
     959       11371 :         error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer,
     960             :                         &tmp_tail, &thead, &wrapped);
     961       11371 :         if (error < 0)
     962           0 :                 goto out;
     963       11371 :         if (*tail_blk != tmp_tail)
     964           0 :                 *tail_blk = tmp_tail;
     965             : 
     966             :         /*
     967             :          * Run a CRC check from the tail to the head. We can't just check
     968             :          * MAX_ICLOGS records past the tail because the tail may point to stale
     969             :          * blocks cleared during the search for the head/tail. These blocks are
     970             :          * overwritten with zero-length records and thus record count is not a
     971             :          * reliable indicator of the iclog state before a crash.
     972             :          */
     973       11371 :         first_bad = 0;
     974       11371 :         error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
     975             :                                       XLOG_RECOVER_CRCPASS, &first_bad);
     976       11371 :         while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
     977           0 :                 int     tail_distance;
     978             : 
     979             :                 /*
     980             :                  * Is corruption within range of the head? If so, retry from
     981             :                  * the next record. Otherwise return an error.
     982             :                  */
     983           0 :                 tail_distance = xlog_tail_distance(log, head_blk, first_bad);
     984           0 :                 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
     985             :                         break;
     986             : 
     987             :                 /* skip to the next record; returns positive count on success */
     988           0 :                 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2,
     989             :                                 buffer, &tmp_tail, &thead, &wrapped);
     990           0 :                 if (error < 0)
     991           0 :                         goto out;
     992             : 
     993           0 :                 *tail_blk = tmp_tail;
     994           0 :                 first_bad = 0;
     995           0 :                 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
     996             :                                               XLOG_RECOVER_CRCPASS, &first_bad);
     997             :         }
     998             : 
     999       11371 :         if (!error && *tail_blk != orig_tail)
    1000           0 :                 xfs_warn(log->l_mp,
    1001             :                 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
    1002             :                          orig_tail, *tail_blk);
    1003       11371 : out:
    1004       11371 :         kmem_free(buffer);
    1005       11371 :         return error;
    1006             : }
    1007             : 
    1008             : /*
    1009             :  * Detect and trim torn writes from the head of the log.
    1010             :  *
    1011             :  * Storage without sector atomicity guarantees can result in torn writes in the
    1012             :  * log in the event of a crash. Our only means to detect this scenario is via
    1013             :  * CRC verification. While we can't always be certain that CRC verification
    1014             :  * failure is due to a torn write vs. an unrelated corruption, we do know that
    1015             :  * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
    1016             :  * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
    1017             :  * the log and treat failures in this range as torn writes as a matter of
    1018             :  * policy. In the event of CRC failure, the head is walked back to the last good
    1019             :  * record in the log and the tail is updated from that record and verified.
    1020             :  */
    1021             : STATIC int
    1022       11371 : xlog_verify_head(
    1023             :         struct xlog             *log,
    1024             :         xfs_daddr_t             *head_blk,      /* in/out: unverified head */
    1025             :         xfs_daddr_t             *tail_blk,      /* out: tail block */
    1026             :         char                    *buffer,
    1027             :         xfs_daddr_t             *rhead_blk,     /* start blk of last record */
    1028             :         struct xlog_rec_header  **rhead,        /* ptr to last record */
    1029             :         bool                    *wrapped)       /* last rec. wraps phys. log */
    1030             : {
    1031       11371 :         struct xlog_rec_header  *tmp_rhead;
    1032       11371 :         char                    *tmp_buffer;
    1033       11371 :         xfs_daddr_t             first_bad;
    1034       11371 :         xfs_daddr_t             tmp_rhead_blk;
    1035       11371 :         int                     found;
    1036       11371 :         int                     error;
    1037       11371 :         bool                    tmp_wrapped;
    1038             : 
    1039             :         /*
    1040             :          * Check the head of the log for torn writes. Search backwards from the
    1041             :          * head until we hit the tail or the maximum number of log record I/Os
    1042             :          * that could have been in flight at one time. Use a temporary buffer so
    1043             :          * we don't trash the rhead/buffer pointers from the caller.
    1044             :          */
    1045       11371 :         tmp_buffer = xlog_alloc_buffer(log, 1);
    1046       11371 :         if (!tmp_buffer)
    1047             :                 return -ENOMEM;
    1048       11371 :         error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
    1049             :                                       XLOG_MAX_ICLOGS, tmp_buffer,
    1050             :                                       &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped);
    1051       11371 :         kmem_free(tmp_buffer);
    1052       11371 :         if (error < 0)
    1053             :                 return error;
    1054             : 
    1055             :         /*
    1056             :          * Now run a CRC verification pass over the records starting at the
    1057             :          * block found above to the current head. If a CRC failure occurs, the
    1058             :          * log block of the first bad record is saved in first_bad.
    1059             :          */
    1060       11371 :         error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
    1061             :                                       XLOG_RECOVER_CRCPASS, &first_bad);
    1062       11371 :         if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
    1063             :                 /*
    1064             :                  * We've hit a potential torn write. Reset the error and warn
    1065             :                  * about it.
    1066             :                  */
    1067          11 :                 error = 0;
    1068          11 :                 xfs_warn(log->l_mp,
    1069             : "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
    1070             :                          first_bad, *head_blk);
    1071             : 
    1072             :                 /*
    1073             :                  * Get the header block and buffer pointer for the last good
    1074             :                  * record before the bad record.
    1075             :                  *
    1076             :                  * Note that xlog_find_tail() clears the blocks at the new head
    1077             :                  * (i.e., the records with invalid CRC) if the cycle number
    1078             :                  * matches the current cycle.
    1079             :                  */
    1080          11 :                 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1,
    1081             :                                 buffer, rhead_blk, rhead, wrapped);
    1082          11 :                 if (found < 0)
    1083             :                         return found;
    1084          11 :                 if (found == 0)         /* XXX: right thing to do here? */
    1085             :                         return -EIO;
    1086             : 
    1087             :                 /*
    1088             :                  * Reset the head block to the starting block of the first bad
    1089             :                  * log record and set the tail block based on the last good
    1090             :                  * record.
    1091             :                  *
    1092             :                  * Bail out if the updated head/tail match as this indicates
    1093             :                  * possible corruption outside of the acceptable
    1094             :                  * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
    1095             :                  */
    1096          11 :                 *head_blk = first_bad;
    1097          11 :                 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
    1098          11 :                 if (*head_blk == *tail_blk) {
    1099           0 :                         ASSERT(0);
    1100           0 :                         return 0;
    1101             :                 }
    1102             :         }
    1103       11360 :         if (error)
    1104             :                 return error;
    1105             : 
    1106       11371 :         return xlog_verify_tail(log, *head_blk, tail_blk,
    1107       11371 :                                 be32_to_cpu((*rhead)->h_size));
    1108             : }
    1109             : 
    1110             : /*
    1111             :  * We need to make sure we handle log wrapping properly, so we can't use the
    1112             :  * calculated logbno directly. Make sure it wraps to the correct bno inside the
    1113             :  * log.
    1114             :  *
    1115             :  * The log is limited to 32 bit sizes, so we use the appropriate modulus
    1116             :  * operation here and cast it back to a 64 bit daddr on return.
    1117             :  */
    1118             : static inline xfs_daddr_t
    1119             : xlog_wrap_logbno(
    1120             :         struct xlog             *log,
    1121             :         xfs_daddr_t             bno)
    1122             : {
    1123      298257 :         int                     mod;
    1124             : 
    1125      298257 :         div_s64_rem(bno, log->l_logBBsize, &mod);
    1126      298257 :         return mod;
    1127             : }
    1128             : 
    1129             : /*
    1130             :  * Check whether the head of the log points to an unmount record. In other
    1131             :  * words, determine whether the log is clean. If so, update the in-core state
    1132             :  * appropriately.
    1133             :  */
    1134             : static int
    1135       24330 : xlog_check_unmount_rec(
    1136             :         struct xlog             *log,
    1137             :         xfs_daddr_t             *head_blk,
    1138             :         xfs_daddr_t             *tail_blk,
    1139             :         struct xlog_rec_header  *rhead,
    1140             :         xfs_daddr_t             rhead_blk,
    1141             :         char                    *buffer,
    1142             :         bool                    *clean)
    1143             : {
    1144       24330 :         struct xlog_op_header   *op_head;
    1145       24330 :         xfs_daddr_t             umount_data_blk;
    1146       24330 :         xfs_daddr_t             after_umount_blk;
    1147       24330 :         int                     hblks;
    1148       24330 :         int                     error;
    1149       24330 :         char                    *offset;
    1150             : 
    1151       24330 :         *clean = false;
    1152             : 
    1153             :         /*
    1154             :          * Look for unmount record. If we find it, then we know there was a
    1155             :          * clean unmount. Since 'i' could be the last block in the physical
    1156             :          * log, we convert to a log block before comparing to the head_blk.
    1157             :          *
    1158             :          * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
    1159             :          * below. We won't want to clear the unmount record if there is one, so
    1160             :          * we pass the lsn of the unmount record rather than the block after it.
    1161             :          */
    1162       24330 :         hblks = xlog_logrec_hblks(log, rhead);
    1163       48660 :         after_umount_blk = xlog_wrap_logbno(log,
    1164       24330 :                         rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
    1165             : 
    1166       48660 :         if (*head_blk == after_umount_blk &&
    1167       24330 :             be32_to_cpu(rhead->h_num_logops) == 1) {
    1168       12954 :                 umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
    1169       12954 :                 error = xlog_bread(log, umount_data_blk, 1, buffer, &offset);
    1170       12954 :                 if (error)
    1171             :                         return error;
    1172             : 
    1173       12954 :                 op_head = (struct xlog_op_header *)offset;
    1174       12954 :                 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
    1175             :                         /*
    1176             :                          * Set tail and last sync so that newly written log
    1177             :                          * records will point recovery to after the current
    1178             :                          * unmount record.
    1179             :                          */
    1180       12948 :                         xlog_assign_atomic_lsn(&log->l_tail_lsn,
    1181       12948 :                                         log->l_curr_cycle, after_umount_blk);
    1182       12948 :                         xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
    1183             :                                         log->l_curr_cycle, after_umount_blk);
    1184       12948 :                         *tail_blk = after_umount_blk;
    1185             : 
    1186       12948 :                         *clean = true;
    1187             :                 }
    1188             :         }
    1189             : 
    1190             :         return 0;
    1191             : }
    1192             : 
    1193             : static void
    1194       24330 : xlog_set_state(
    1195             :         struct xlog             *log,
    1196             :         xfs_daddr_t             head_blk,
    1197             :         struct xlog_rec_header  *rhead,
    1198             :         xfs_daddr_t             rhead_blk,
    1199             :         bool                    bump_cycle)
    1200             : {
    1201             :         /*
    1202             :          * Reset log values according to the state of the log when we
    1203             :          * crashed.  In the case where head_blk == 0, we bump curr_cycle
    1204             :          * one because the next write starts a new cycle rather than
    1205             :          * continuing the cycle of the last good log record.  At this
    1206             :          * point we have guaranteed that all partial log records have been
    1207             :          * accounted for.  Therefore, we know that the last good log record
    1208             :          * written was complete and ended exactly on the end boundary
    1209             :          * of the physical log.
    1210             :          */
    1211       24330 :         log->l_prev_block = rhead_blk;
    1212       24330 :         log->l_curr_block = (int)head_blk;
    1213       24330 :         log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
    1214       24330 :         if (bump_cycle)
    1215          39 :                 log->l_curr_cycle++;
    1216       24330 :         atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
    1217       24330 :         atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
    1218       24330 :         xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
    1219             :                                         BBTOB(log->l_curr_block));
    1220       24330 :         xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
    1221             :                                         BBTOB(log->l_curr_block));
    1222       24330 : }
    1223             : 
    1224             : /*
    1225             :  * Find the sync block number or the tail of the log.
    1226             :  *
    1227             :  * This will be the block number of the last record to have its
    1228             :  * associated buffers synced to disk.  Every log record header has
    1229             :  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
    1230             :  * to get a sync block number.  The only concern is to figure out which
    1231             :  * log record header to believe.
    1232             :  *
    1233             :  * The following algorithm uses the log record header with the largest
    1234             :  * lsn.  The entire log record does not need to be valid.  We only care
    1235             :  * that the header is valid.
    1236             :  *
    1237             :  * We could speed up search by using current head_blk buffer, but it is not
    1238             :  * available.
    1239             :  */
    1240             : STATIC int
    1241       24323 : xlog_find_tail(
    1242             :         struct xlog             *log,
    1243             :         xfs_daddr_t             *head_blk,
    1244             :         xfs_daddr_t             *tail_blk)
    1245             : {
    1246       24323 :         xlog_rec_header_t       *rhead;
    1247       24323 :         char                    *offset = NULL;
    1248       24323 :         char                    *buffer;
    1249       24323 :         int                     error;
    1250       24323 :         xfs_daddr_t             rhead_blk;
    1251       24323 :         xfs_lsn_t               tail_lsn;
    1252       24323 :         bool                    wrapped = false;
    1253       24323 :         bool                    clean = false;
    1254             : 
    1255             :         /*
    1256             :          * Find previous log record
    1257             :          */
    1258       24323 :         if ((error = xlog_find_head(log, head_blk)))
    1259             :                 return error;
    1260       24319 :         ASSERT(*head_blk < INT_MAX);
    1261             : 
    1262       24319 :         buffer = xlog_alloc_buffer(log, 1);
    1263       24319 :         if (!buffer)
    1264             :                 return -ENOMEM;
    1265       24319 :         if (*head_blk == 0) {                           /* special case */
    1266          36 :                 error = xlog_bread(log, 0, 1, buffer, &offset);
    1267          36 :                 if (error)
    1268           0 :                         goto done;
    1269             : 
    1270          36 :                 if (xlog_get_cycle(offset) == 0) {
    1271           0 :                         *tail_blk = 0;
    1272             :                         /* leave all other log inited values alone */
    1273           0 :                         goto done;
    1274             :                 }
    1275             :         }
    1276             : 
    1277             :         /*
    1278             :          * Search backwards through the log looking for the log record header
    1279             :          * block. This wraps all the way back around to the head so something is
    1280             :          * seriously wrong if we can't find it.
    1281             :          */
    1282       24319 :         error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer,
    1283             :                                       &rhead_blk, &rhead, &wrapped);
    1284       24319 :         if (error < 0)
    1285           0 :                 goto done;
    1286       24319 :         if (!error) {
    1287           0 :                 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
    1288           0 :                 error = -EFSCORRUPTED;
    1289           0 :                 goto done;
    1290             :         }
    1291       24319 :         *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
    1292             : 
    1293             :         /*
    1294             :          * Set the log state based on the current head record.
    1295             :          */
    1296       24319 :         xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
    1297       24319 :         tail_lsn = atomic64_read(&log->l_tail_lsn);
    1298             : 
    1299             :         /*
    1300             :          * Look for an unmount record at the head of the log. This sets the log
    1301             :          * state to determine whether recovery is necessary.
    1302             :          */
    1303       24319 :         error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
    1304             :                                        rhead_blk, buffer, &clean);
    1305       24319 :         if (error)
    1306           0 :                 goto done;
    1307             : 
    1308             :         /*
    1309             :          * Verify the log head if the log is not clean (e.g., we have anything
    1310             :          * but an unmount record at the head). This uses CRC verification to
    1311             :          * detect and trim torn writes. If discovered, CRC failures are
    1312             :          * considered torn writes and the log head is trimmed accordingly.
    1313             :          *
    1314             :          * Note that we can only run CRC verification when the log is dirty
    1315             :          * because there's no guarantee that the log data behind an unmount
    1316             :          * record is compatible with the current architecture.
    1317             :          */
    1318       24319 :         if (!clean) {
    1319       11371 :                 xfs_daddr_t     orig_head = *head_blk;
    1320             : 
    1321       11371 :                 error = xlog_verify_head(log, head_blk, tail_blk, buffer,
    1322             :                                          &rhead_blk, &rhead, &wrapped);
    1323       11371 :                 if (error)
    1324           0 :                         goto done;
    1325             : 
    1326             :                 /* update in-core state again if the head changed */
    1327       11371 :                 if (*head_blk != orig_head) {
    1328          11 :                         xlog_set_state(log, *head_blk, rhead, rhead_blk,
    1329             :                                        wrapped);
    1330          11 :                         tail_lsn = atomic64_read(&log->l_tail_lsn);
    1331          11 :                         error = xlog_check_unmount_rec(log, head_blk, tail_blk,
    1332             :                                                        rhead, rhead_blk, buffer,
    1333             :                                                        &clean);
    1334          11 :                         if (error)
    1335           0 :                                 goto done;
    1336             :                 }
    1337             :         }
    1338             : 
    1339             :         /*
    1340             :          * Note that the unmount was clean. If the unmount was not clean, we
    1341             :          * need to know this to rebuild the superblock counters from the perag
    1342             :          * headers if we have a filesystem using non-persistent counters.
    1343             :          */
    1344       24319 :         if (clean)
    1345       12948 :                 set_bit(XFS_OPSTATE_CLEAN, &log->l_mp->m_opstate);
    1346             : 
    1347             :         /*
    1348             :          * Make sure that there are no blocks in front of the head
    1349             :          * with the same cycle number as the head.  This can happen
    1350             :          * because we allow multiple outstanding log writes concurrently,
    1351             :          * and the later writes might make it out before earlier ones.
    1352             :          *
    1353             :          * We use the lsn from before modifying it so that we'll never
    1354             :          * overwrite the unmount record after a clean unmount.
    1355             :          *
    1356             :          * Do this only if we are going to recover the filesystem
    1357             :          *
    1358             :          * NOTE: This used to say "if (!readonly)"
    1359             :          * However on Linux, we can & do recover a read-only filesystem.
    1360             :          * We only skip recovery if NORECOVERY is specified on mount,
    1361             :          * in which case we would not be here.
    1362             :          *
    1363             :          * But... if the -device- itself is readonly, just skip this.
    1364             :          * We can't recover this device anyway, so it won't matter.
    1365             :          */
    1366       24319 :         if (!xfs_readonly_buftarg(log->l_targ))
    1367       24315 :                 error = xlog_clear_stale_blocks(log, tail_lsn);
    1368             : 
    1369           4 : done:
    1370       24319 :         kmem_free(buffer);
    1371             : 
    1372       24319 :         if (error)
    1373           0 :                 xfs_warn(log->l_mp, "failed to locate log tail");
    1374             :         return error;
    1375             : }
    1376             : 
    1377             : /*
    1378             :  * Is the log zeroed at all?
    1379             :  *
    1380             :  * The last binary search should be changed to perform an X block read
    1381             :  * once X becomes small enough.  You can then search linearly through
    1382             :  * the X blocks.  This will cut down on the number of reads we need to do.
    1383             :  *
    1384             :  * If the log is partially zeroed, this routine will pass back the blkno
    1385             :  * of the first block with cycle number 0.  It won't have a complete LR
    1386             :  * preceding it.
    1387             :  *
    1388             :  * Return:
    1389             :  *      0  => the log is completely written to
    1390             :  *      1 => use *blk_no as the first block of the log
    1391             :  *      <0 => error has occurred
    1392             :  */
    1393             : STATIC int
    1394       24323 : xlog_find_zeroed(
    1395             :         struct xlog     *log,
    1396             :         xfs_daddr_t     *blk_no)
    1397             : {
    1398       24323 :         char            *buffer;
    1399       24323 :         char            *offset;
    1400       24323 :         uint            first_cycle, last_cycle;
    1401       24323 :         xfs_daddr_t     new_blk, last_blk, start_blk;
    1402       24323 :         xfs_daddr_t     num_scan_bblks;
    1403       24323 :         int             error, log_bbnum = log->l_logBBsize;
    1404             : 
    1405       24323 :         *blk_no = 0;
    1406             : 
    1407             :         /* check totally zeroed log */
    1408       24323 :         buffer = xlog_alloc_buffer(log, 1);
    1409       24323 :         if (!buffer)
    1410             :                 return -ENOMEM;
    1411       24323 :         error = xlog_bread(log, 0, 1, buffer, &offset);
    1412       24323 :         if (error)
    1413           0 :                 goto out_free_buffer;
    1414             : 
    1415       24323 :         first_cycle = xlog_get_cycle(offset);
    1416       24323 :         if (first_cycle == 0) {         /* completely zeroed log */
    1417           0 :                 *blk_no = 0;
    1418           0 :                 kmem_free(buffer);
    1419           0 :                 return 1;
    1420             :         }
    1421             : 
    1422             :         /* check partially zeroed log */
    1423       24323 :         error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset);
    1424       24323 :         if (error)
    1425           0 :                 goto out_free_buffer;
    1426             : 
    1427       24323 :         last_cycle = xlog_get_cycle(offset);
    1428       24323 :         if (last_cycle != 0) {          /* log completely written to */
    1429       15946 :                 kmem_free(buffer);
    1430       15946 :                 return 0;
    1431             :         }
    1432             : 
    1433             :         /* we have a partially zeroed log */
    1434        8377 :         last_blk = log_bbnum-1;
    1435        8377 :         error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0);
    1436        8377 :         if (error)
    1437           0 :                 goto out_free_buffer;
    1438             : 
    1439             :         /*
    1440             :          * Validate the answer.  Because there is no way to guarantee that
    1441             :          * the entire log is made up of log records which are the same size,
    1442             :          * we scan over the defined maximum blocks.  At this point, the maximum
    1443             :          * is not chosen to mean anything special.   XXXmiken
    1444             :          */
    1445        8377 :         num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
    1446        8377 :         ASSERT(num_scan_bblks <= INT_MAX);
    1447             : 
    1448        8377 :         if (last_blk < num_scan_bblks)
    1449             :                 num_scan_bblks = last_blk;
    1450        8377 :         start_blk = last_blk - num_scan_bblks;
    1451             : 
    1452             :         /*
    1453             :          * We search for any instances of cycle number 0 that occur before
    1454             :          * our current estimate of the head.  What we're trying to detect is
    1455             :          *        1 ... | 0 | 1 | 0...
    1456             :          *                       ^ binary search ends here
    1457             :          */
    1458        8377 :         if ((error = xlog_find_verify_cycle(log, start_blk,
    1459             :                                          (int)num_scan_bblks, 0, &new_blk)))
    1460           0 :                 goto out_free_buffer;
    1461        8377 :         if (new_blk != -1)
    1462           2 :                 last_blk = new_blk;
    1463             : 
    1464             :         /*
    1465             :          * Potentially backup over partial log record write.  We don't need
    1466             :          * to search the end of the log because we know it is zero.
    1467             :          */
    1468        8377 :         error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
    1469        8377 :         if (error == 1)
    1470             :                 error = -EIO;
    1471        8377 :         if (error)
    1472           0 :                 goto out_free_buffer;
    1473             : 
    1474        8377 :         *blk_no = last_blk;
    1475        8377 : out_free_buffer:
    1476        8377 :         kmem_free(buffer);
    1477        8377 :         if (error)
    1478           0 :                 return error;
    1479             :         return 1;
    1480             : }
    1481             : 
    1482             : /*
    1483             :  * These are simple subroutines used by xlog_clear_stale_blocks() below
    1484             :  * to initialize a buffer full of empty log record headers and write
    1485             :  * them into the log.
    1486             :  */
    1487             : STATIC void
    1488    99571040 : xlog_add_record(
    1489             :         struct xlog             *log,
    1490             :         char                    *buf,
    1491             :         int                     cycle,
    1492             :         int                     block,
    1493             :         int                     tail_cycle,
    1494             :         int                     tail_block)
    1495             : {
    1496    99571040 :         xlog_rec_header_t       *recp = (xlog_rec_header_t *)buf;
    1497             : 
    1498    99571040 :         memset(buf, 0, BBSIZE);
    1499    99571040 :         recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
    1500    99571040 :         recp->h_cycle = cpu_to_be32(cycle);
    1501    99571040 :         recp->h_version = cpu_to_be32(
    1502             :                         xfs_has_logv2(log->l_mp) ? 2 : 1);
    1503    99571040 :         recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
    1504    99571040 :         recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
    1505    99571040 :         recp->h_fmt = cpu_to_be32(XLOG_FMT);
    1506   199142080 :         memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
    1507    99571040 : }
    1508             : 
    1509             : STATIC int
    1510       24845 : xlog_write_log_records(
    1511             :         struct xlog     *log,
    1512             :         int             cycle,
    1513             :         int             start_block,
    1514             :         int             blocks,
    1515             :         int             tail_cycle,
    1516             :         int             tail_block)
    1517             : {
    1518       24845 :         char            *offset;
    1519       24845 :         char            *buffer;
    1520       24845 :         int             balign, ealign;
    1521       24845 :         int             sectbb = log->l_sectBBsize;
    1522       24845 :         int             end_block = start_block + blocks;
    1523       24845 :         int             bufblks;
    1524       24845 :         int             error = 0;
    1525       24845 :         int             i, j = 0;
    1526             : 
    1527             :         /*
    1528             :          * Greedily allocate a buffer big enough to handle the full
    1529             :          * range of basic blocks to be written.  If that fails, try
    1530             :          * a smaller size.  We need to be able to write at least a
    1531             :          * log sector, or we're out of luck.
    1532             :          */
    1533       24845 :         bufblks = 1 << ffs(blocks);
    1534       24851 :         while (bufblks > log->l_logBBsize)
    1535           6 :                 bufblks >>= 1;
    1536       24845 :         while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
    1537           0 :                 bufblks >>= 1;
    1538           0 :                 if (bufblks < sectbb)
    1539             :                         return -ENOMEM;
    1540             :         }
    1541             : 
    1542             :         /* We may need to do a read at the start to fill in part of
    1543             :          * the buffer in the starting sector not covered by the first
    1544             :          * write below.
    1545             :          */
    1546       24845 :         balign = round_down(start_block, sectbb);
    1547       24845 :         if (balign != start_block) {
    1548           0 :                 error = xlog_bread_noalign(log, start_block, 1, buffer);
    1549           0 :                 if (error)
    1550           0 :                         goto out_free_buffer;
    1551             : 
    1552           0 :                 j = start_block - balign;
    1553             :         }
    1554             : 
    1555      140651 :         for (i = start_block; i < end_block; i += bufblks) {
    1556      115806 :                 int             bcount, endcount;
    1557             : 
    1558      115806 :                 bcount = min(bufblks, end_block - start_block);
    1559      115806 :                 endcount = bcount - j;
    1560             : 
    1561             :                 /* We may need to do a read at the end to fill in part of
    1562             :                  * the buffer in the final sector not covered by the write.
    1563             :                  * If this is the same sector as the above read, skip it.
    1564             :                  */
    1565      115806 :                 ealign = round_down(end_block, sectbb);
    1566      115806 :                 if (j == 0 && (start_block + endcount > ealign)) {
    1567           0 :                         error = xlog_bread_noalign(log, ealign, sectbb,
    1568           0 :                                         buffer + BBTOB(ealign - start_block));
    1569           0 :                         if (error)
    1570             :                                 break;
    1571             : 
    1572             :                 }
    1573             : 
    1574      115806 :                 offset = buffer + xlog_align(log, start_block);
    1575    99686846 :                 for (; j < endcount; j++) {
    1576    99571040 :                         xlog_add_record(log, offset, cycle, i+j,
    1577             :                                         tail_cycle, tail_block);
    1578    99571040 :                         offset += BBSIZE;
    1579             :                 }
    1580      115806 :                 error = xlog_bwrite(log, start_block, endcount, buffer);
    1581      115806 :                 if (error)
    1582             :                         break;
    1583      115806 :                 start_block += endcount;
    1584      115806 :                 j = 0;
    1585             :         }
    1586             : 
    1587       24845 : out_free_buffer:
    1588       24845 :         kmem_free(buffer);
    1589       24845 :         return error;
    1590             : }
    1591             : 
    1592             : /*
    1593             :  * This routine is called to blow away any incomplete log writes out
    1594             :  * in front of the log head.  We do this so that we won't become confused
    1595             :  * if we come up, write only a little bit more, and then crash again.
    1596             :  * If we leave the partial log records out there, this situation could
    1597             :  * cause us to think those partial writes are valid blocks since they
    1598             :  * have the current cycle number.  We get rid of them by overwriting them
    1599             :  * with empty log records with the old cycle number rather than the
    1600             :  * current one.
    1601             :  *
    1602             :  * The tail lsn is passed in rather than taken from
    1603             :  * the log so that we will not write over the unmount record after a
    1604             :  * clean unmount in a 512 block log.  Doing so would leave the log without
    1605             :  * any valid log records in it until a new one was written.  If we crashed
    1606             :  * during that time we would not be able to recover.
    1607             :  */
    1608             : STATIC int
    1609       24315 : xlog_clear_stale_blocks(
    1610             :         struct xlog     *log,
    1611             :         xfs_lsn_t       tail_lsn)
    1612             : {
    1613       24315 :         int             tail_cycle, head_cycle;
    1614       24315 :         int             tail_block, head_block;
    1615       24315 :         int             tail_distance, max_distance;
    1616       24315 :         int             distance;
    1617       24315 :         int             error;
    1618             : 
    1619       24315 :         tail_cycle = CYCLE_LSN(tail_lsn);
    1620       24315 :         tail_block = BLOCK_LSN(tail_lsn);
    1621       24315 :         head_cycle = log->l_curr_cycle;
    1622       24315 :         head_block = log->l_curr_block;
    1623             : 
    1624             :         /*
    1625             :          * Figure out the distance between the new head of the log
    1626             :          * and the tail.  We want to write over any blocks beyond the
    1627             :          * head that we may have written just before the crash, but
    1628             :          * we don't want to overwrite the tail of the log.
    1629             :          */
    1630       24315 :         if (head_cycle == tail_cycle) {
    1631             :                 /*
    1632             :                  * The tail is behind the head in the physical log,
    1633             :                  * so the distance from the head to the tail is the
    1634             :                  * distance from the head to the end of the log plus
    1635             :                  * the distance from the beginning of the log to the
    1636             :                  * tail.
    1637             :                  */
    1638       23721 :                 if (XFS_IS_CORRUPT(log->l_mp,
    1639             :                                    head_block < tail_block ||
    1640             :                                    head_block >= log->l_logBBsize))
    1641           0 :                         return -EFSCORRUPTED;
    1642       23721 :                 tail_distance = tail_block + (log->l_logBBsize - head_block);
    1643             :         } else {
    1644             :                 /*
    1645             :                  * The head is behind the tail in the physical log,
    1646             :                  * so the distance from the head to the tail is just
    1647             :                  * the tail block minus the head block.
    1648             :                  */
    1649         594 :                 if (XFS_IS_CORRUPT(log->l_mp,
    1650             :                                    head_block >= tail_block ||
    1651             :                                    head_cycle != tail_cycle + 1))
    1652           0 :                         return -EFSCORRUPTED;
    1653         594 :                 tail_distance = tail_block - head_block;
    1654             :         }
    1655             : 
    1656             :         /*
    1657             :          * If the head is right up against the tail, we can't clear
    1658             :          * anything.
    1659             :          */
    1660       24315 :         if (tail_distance <= 0) {
    1661           0 :                 ASSERT(tail_distance == 0);
    1662           0 :                 return 0;
    1663             :         }
    1664             : 
    1665       24315 :         max_distance = XLOG_TOTAL_REC_SHIFT(log);
    1666             :         /*
    1667             :          * Take the smaller of the maximum amount of outstanding I/O
    1668             :          * we could have and the distance to the tail to clear out.
    1669             :          * We take the smaller so that we don't overwrite the tail and
    1670             :          * we don't waste all day writing from the head to the tail
    1671             :          * for no reason.
    1672             :          */
    1673       24315 :         max_distance = min(max_distance, tail_distance);
    1674             : 
    1675       24315 :         if ((head_block + max_distance) <= log->l_logBBsize) {
    1676             :                 /*
    1677             :                  * We can stomp all the blocks we need to without
    1678             :                  * wrapping around the end of the log.  Just do it
    1679             :                  * in a single write.  Use the cycle number of the
    1680             :                  * current cycle minus one so that the log will look like:
    1681             :                  *     n ... | n - 1 ...
    1682             :                  */
    1683       23785 :                 error = xlog_write_log_records(log, (head_cycle - 1),
    1684             :                                 head_block, max_distance, tail_cycle,
    1685             :                                 tail_block);
    1686       23785 :                 if (error)
    1687           0 :                         return error;
    1688             :         } else {
    1689             :                 /*
    1690             :                  * We need to wrap around the end of the physical log in
    1691             :                  * order to clear all the blocks.  Do it in two separate
    1692             :                  * I/Os.  The first write should be from the head to the
    1693             :                  * end of the physical log, and it should use the current
    1694             :                  * cycle number minus one just like above.
    1695             :                  */
    1696         530 :                 distance = log->l_logBBsize - head_block;
    1697         530 :                 error = xlog_write_log_records(log, (head_cycle - 1),
    1698             :                                 head_block, distance, tail_cycle,
    1699             :                                 tail_block);
    1700             : 
    1701         530 :                 if (error)
    1702             :                         return error;
    1703             : 
    1704             :                 /*
    1705             :                  * Now write the blocks at the start of the physical log.
    1706             :                  * This writes the remainder of the blocks we want to clear.
    1707             :                  * It uses the current cycle number since we're now on the
    1708             :                  * same cycle as the head so that we get:
    1709             :                  *    n ... n ... | n - 1 ...
    1710             :                  *    ^^^^^ blocks we're writing
    1711             :                  */
    1712         530 :                 distance = max_distance - (log->l_logBBsize - head_block);
    1713         530 :                 error = xlog_write_log_records(log, head_cycle, 0, distance,
    1714             :                                 tail_cycle, tail_block);
    1715         530 :                 if (error)
    1716           0 :                         return error;
    1717             :         }
    1718             : 
    1719             :         return 0;
    1720             : }
    1721             : 
    1722             : /*
    1723             :  * Release the recovered intent item in the AIL that matches the given intent
    1724             :  * type and intent id.
    1725             :  */
    1726             : void
    1727      141458 : xlog_recover_release_intent(
    1728             :         struct xlog             *log,
    1729             :         unsigned short          intent_type,
    1730             :         uint64_t                intent_id)
    1731             : {
    1732      141458 :         struct xfs_ail_cursor   cur;
    1733      141458 :         struct xfs_log_item     *lip;
    1734      141458 :         struct xfs_ail          *ailp = log->l_ailp;
    1735             : 
    1736      141458 :         spin_lock(&ailp->ail_lock);
    1737      165362 :         for (lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); lip != NULL;
    1738       23904 :              lip = xfs_trans_ail_cursor_next(ailp, &cur)) {
    1739      165099 :                 if (lip->li_type != intent_type)
    1740       18636 :                         continue;
    1741      146463 :                 if (!lip->li_ops->iop_match(lip, intent_id))
    1742        5268 :                         continue;
    1743             : 
    1744      141195 :                 spin_unlock(&ailp->ail_lock);
    1745      141195 :                 lip->li_ops->iop_release(lip);
    1746      141195 :                 spin_lock(&ailp->ail_lock);
    1747             :                 break;
    1748             :         }
    1749             : 
    1750      141458 :         xfs_trans_ail_cursor_done(&cur);
    1751      141458 :         spin_unlock(&ailp->ail_lock);
    1752      141458 : }
    1753             : 
    1754             : int
    1755         392 : xlog_recover_iget(
    1756             :         struct xfs_mount        *mp,
    1757             :         xfs_ino_t               ino,
    1758             :         struct xfs_inode        **ipp)
    1759             : {
    1760         392 :         int                     error;
    1761             : 
    1762         392 :         error = xfs_iget(mp, NULL, ino, 0, 0, ipp);
    1763         392 :         if (error)
    1764             :                 return error;
    1765             : 
    1766         392 :         error = xfs_qm_dqattach(*ipp);
    1767         392 :         if (error) {
    1768           0 :                 xfs_irele(*ipp);
    1769           0 :                 return error;
    1770             :         }
    1771             : 
    1772         392 :         if (VFS_I(*ipp)->i_nlink == 0)
    1773          27 :                 xfs_iflags_set(*ipp, XFS_IRECOVERY);
    1774             : 
    1775             :         return 0;
    1776             : }
    1777             : 
    1778             : /******************************************************************************
    1779             :  *
    1780             :  *              Log recover routines
    1781             :  *
    1782             :  ******************************************************************************
    1783             :  */
    1784             : static const struct xlog_recover_item_ops *xlog_recover_item_ops[] = {
    1785             :         &xlog_buf_item_ops,
    1786             :         &xlog_inode_item_ops,
    1787             :         &xlog_dquot_item_ops,
    1788             :         &xlog_quotaoff_item_ops,
    1789             :         &xlog_icreate_item_ops,
    1790             :         &xlog_efi_item_ops,
    1791             :         &xlog_efd_item_ops,
    1792             :         &xlog_rui_item_ops,
    1793             :         &xlog_rud_item_ops,
    1794             :         &xlog_cui_item_ops,
    1795             :         &xlog_cud_item_ops,
    1796             :         &xlog_bui_item_ops,
    1797             :         &xlog_bud_item_ops,
    1798             :         &xlog_attri_item_ops,
    1799             :         &xlog_attrd_item_ops,
    1800             :         &xlog_sxi_item_ops,
    1801             :         &xlog_sxd_item_ops,
    1802             : };
    1803             : 
    1804             : static const struct xlog_recover_item_ops *
    1805    51255370 : xlog_find_item_ops(
    1806             :         struct xlog_recover_item                *item)
    1807             : {
    1808    51255370 :         unsigned int                            i;
    1809             : 
    1810    90278674 :         for (i = 0; i < ARRAY_SIZE(xlog_recover_item_ops); i++)
    1811    90278674 :                 if (ITEM_TYPE(item) == xlog_recover_item_ops[i]->item_type)
    1812    51255370 :                         return xlog_recover_item_ops[i];
    1813             : 
    1814             :         return NULL;
    1815             : }
    1816             : 
    1817             : /*
    1818             :  * Sort the log items in the transaction.
    1819             :  *
    1820             :  * The ordering constraints are defined by the inode allocation and unlink
    1821             :  * behaviour. The rules are:
    1822             :  *
    1823             :  *      1. Every item is only logged once in a given transaction. Hence it
    1824             :  *         represents the last logged state of the item. Hence ordering is
    1825             :  *         dependent on the order in which operations need to be performed so
    1826             :  *         required initial conditions are always met.
    1827             :  *
    1828             :  *      2. Cancelled buffers are recorded in pass 1 in a separate table and
    1829             :  *         there's nothing to replay from them so we can simply cull them
    1830             :  *         from the transaction. However, we can't do that until after we've
    1831             :  *         replayed all the other items because they may be dependent on the
    1832             :  *         cancelled buffer and replaying the cancelled buffer can remove it
    1833             :  *         form the cancelled buffer table. Hence they have tobe done last.
    1834             :  *
    1835             :  *      3. Inode allocation buffers must be replayed before inode items that
    1836             :  *         read the buffer and replay changes into it. For filesystems using the
    1837             :  *         ICREATE transactions, this means XFS_LI_ICREATE objects need to get
    1838             :  *         treated the same as inode allocation buffers as they create and
    1839             :  *         initialise the buffers directly.
    1840             :  *
    1841             :  *      4. Inode unlink buffers must be replayed after inode items are replayed.
    1842             :  *         This ensures that inodes are completely flushed to the inode buffer
    1843             :  *         in a "free" state before we remove the unlinked inode list pointer.
    1844             :  *
    1845             :  * Hence the ordering needs to be inode allocation buffers first, inode items
    1846             :  * second, inode unlink buffers third and cancelled buffers last.
    1847             :  *
    1848             :  * But there's a problem with that - we can't tell an inode allocation buffer
    1849             :  * apart from a regular buffer, so we can't separate them. We can, however,
    1850             :  * tell an inode unlink buffer from the others, and so we can separate them out
    1851             :  * from all the other buffers and move them to last.
    1852             :  *
    1853             :  * Hence, 4 lists, in order from head to tail:
    1854             :  *      - buffer_list for all buffers except cancelled/inode unlink buffers
    1855             :  *      - item_list for all non-buffer items
    1856             :  *      - inode_buffer_list for inode unlink buffers
    1857             :  *      - cancel_list for the cancelled buffers
    1858             :  *
    1859             :  * Note that we add objects to the tail of the lists so that first-to-last
    1860             :  * ordering is preserved within the lists. Adding objects to the head of the
    1861             :  * list means when we traverse from the head we walk them in last-to-first
    1862             :  * order. For cancelled buffers and inode unlink buffers this doesn't matter,
    1863             :  * but for all other items there may be specific ordering that we need to
    1864             :  * preserve.
    1865             :  */
    1866             : STATIC int
    1867      769812 : xlog_recover_reorder_trans(
    1868             :         struct xlog             *log,
    1869             :         struct xlog_recover     *trans,
    1870             :         int                     pass)
    1871             : {
    1872      769812 :         struct xlog_recover_item *item, *n;
    1873      769812 :         int                     error = 0;
    1874      769812 :         LIST_HEAD(sort_list);
    1875      769812 :         LIST_HEAD(cancel_list);
    1876      769812 :         LIST_HEAD(buffer_list);
    1877      769812 :         LIST_HEAD(inode_buffer_list);
    1878      769812 :         LIST_HEAD(item_list);
    1879             : 
    1880      769812 :         list_splice_init(&trans->r_itemq, &sort_list);
    1881    52025182 :         list_for_each_entry_safe(item, n, &sort_list, ri_list) {
    1882    51255370 :                 enum xlog_recover_reorder       fate = XLOG_REORDER_ITEM_LIST;
    1883             : 
    1884    51255370 :                 item->ri_ops = xlog_find_item_ops(item);
    1885    51255370 :                 if (!item->ri_ops) {
    1886           0 :                         xfs_warn(log->l_mp,
    1887             :                                 "%s: unrecognized type of log operation (%d)",
    1888             :                                 __func__, ITEM_TYPE(item));
    1889           0 :                         ASSERT(0);
    1890             :                         /*
    1891             :                          * return the remaining items back to the transaction
    1892             :                          * item list so they can be freed in caller.
    1893             :                          */
    1894           0 :                         if (!list_empty(&sort_list))
    1895           0 :                                 list_splice_init(&sort_list, &trans->r_itemq);
    1896             :                         error = -EFSCORRUPTED;
    1897             :                         break;
    1898             :                 }
    1899             : 
    1900    51255370 :                 if (item->ri_ops->reorder)
    1901    27286966 :                         fate = item->ri_ops->reorder(item);
    1902             : 
    1903    27286966 :                 switch (fate) {
    1904    26489326 :                 case XLOG_REORDER_BUFFER_LIST:
    1905    26489326 :                         list_move_tail(&item->ri_list, &buffer_list);
    1906    26489326 :                         break;
    1907      779884 :                 case XLOG_REORDER_CANCEL_LIST:
    1908      779884 :                         trace_xfs_log_recover_item_reorder_head(log,
    1909             :                                         trans, item, pass);
    1910      779884 :                         list_move(&item->ri_list, &cancel_list);
    1911      779884 :                         break;
    1912       17756 :                 case XLOG_REORDER_INODE_BUFFER_LIST:
    1913       17756 :                         list_move(&item->ri_list, &inode_buffer_list);
    1914       17756 :                         break;
    1915    23968404 :                 case XLOG_REORDER_ITEM_LIST:
    1916    23968404 :                         trace_xfs_log_recover_item_reorder_tail(log,
    1917             :                                                         trans, item, pass);
    1918    23968404 :                         list_move_tail(&item->ri_list, &item_list);
    1919    23968404 :                         break;
    1920             :                 }
    1921             :         }
    1922             : 
    1923      769812 :         ASSERT(list_empty(&sort_list));
    1924      769812 :         if (!list_empty(&buffer_list))
    1925      730950 :                 list_splice(&buffer_list, &trans->r_itemq);
    1926      769812 :         if (!list_empty(&item_list))
    1927      766142 :                 list_splice_tail(&item_list, &trans->r_itemq);
    1928      769812 :         if (!list_empty(&inode_buffer_list))
    1929        5484 :                 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
    1930      769812 :         if (!list_empty(&cancel_list))
    1931      140868 :                 list_splice_tail(&cancel_list, &trans->r_itemq);
    1932      769812 :         return error;
    1933             : }
    1934             : 
    1935             : void
    1936    25333842 : xlog_buf_readahead(
    1937             :         struct xlog             *log,
    1938             :         xfs_daddr_t             blkno,
    1939             :         uint                    len,
    1940             :         const struct xfs_buf_ops *ops)
    1941             : {
    1942    25333842 :         if (!xlog_is_buffer_cancelled(log, blkno, len))
    1943    24259331 :                 xfs_buf_readahead(log->l_mp->m_ddev_targp, blkno, len, ops);
    1944    25333842 : }
    1945             : 
    1946             : STATIC int
    1947      490676 : xlog_recover_items_pass2(
    1948             :         struct xlog                     *log,
    1949             :         struct xlog_recover             *trans,
    1950             :         struct list_head                *buffer_list,
    1951             :         struct list_head                *item_list)
    1952             : {
    1953      490676 :         struct xlog_recover_item        *item;
    1954      490676 :         int                             error = 0;
    1955             : 
    1956    26118361 :         list_for_each_entry(item, item_list, ri_list) {
    1957    25627685 :                 trace_xfs_log_recover_item_recover(log, trans, item,
    1958             :                                 XLOG_RECOVER_PASS2);
    1959             : 
    1960    25627685 :                 if (item->ri_ops->commit_pass2)
    1961    25627685 :                         error = item->ri_ops->commit_pass2(log, buffer_list,
    1962             :                                         item, trans->r_lsn);
    1963    25627685 :                 if (error)
    1964           0 :                         return error;
    1965             :         }
    1966             : 
    1967             :         return error;
    1968             : }
    1969             : 
    1970             : /*
    1971             :  * Perform the transaction.
    1972             :  *
    1973             :  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
    1974             :  * EFIs and EFDs get queued up by adding entries into the AIL for them.
    1975             :  */
    1976             : STATIC int
    1977      769812 : xlog_recover_commit_trans(
    1978             :         struct xlog             *log,
    1979             :         struct xlog_recover     *trans,
    1980             :         int                     pass,
    1981             :         struct list_head        *buffer_list)
    1982             : {
    1983      769812 :         int                             error = 0;
    1984      769812 :         int                             items_queued = 0;
    1985      769812 :         struct xlog_recover_item        *item;
    1986      769812 :         struct xlog_recover_item        *next;
    1987      769812 :         LIST_HEAD                       (ra_list);
    1988      769812 :         LIST_HEAD                       (done_list);
    1989             : 
    1990             :         #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
    1991             : 
    1992      769812 :         hlist_del_init(&trans->r_list);
    1993             : 
    1994      769812 :         error = xlog_recover_reorder_trans(log, trans, pass);
    1995      769812 :         if (error)
    1996             :                 return error;
    1997             : 
    1998    52025182 :         list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
    1999    51255370 :                 trace_xfs_log_recover_item_recover(log, trans, item, pass);
    2000             : 
    2001    51255370 :                 switch (pass) {
    2002    25627685 :                 case XLOG_RECOVER_PASS1:
    2003    25627685 :                         if (item->ri_ops->commit_pass1)
    2004    13635892 :                                 error = item->ri_ops->commit_pass1(log, item);
    2005             :                         break;
    2006    25627685 :                 case XLOG_RECOVER_PASS2:
    2007    25627685 :                         if (item->ri_ops->ra_pass2)
    2008    25333842 :                                 item->ri_ops->ra_pass2(log, item);
    2009    25627685 :                         list_move_tail(&item->ri_list, &ra_list);
    2010    25627685 :                         items_queued++;
    2011    25627685 :                         if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
    2012      107329 :                                 error = xlog_recover_items_pass2(log, trans,
    2013             :                                                 buffer_list, &ra_list);
    2014      107329 :                                 list_splice_tail_init(&ra_list, &done_list);
    2015             :                                 items_queued = 0;
    2016             :                         }
    2017             : 
    2018             :                         break;
    2019           0 :                 default:
    2020           0 :                         ASSERT(0);
    2021             :                 }
    2022             : 
    2023    51255370 :                 if (error)
    2024           0 :                         goto out;
    2025             :         }
    2026             : 
    2027      769812 : out:
    2028      769812 :         if (!list_empty(&ra_list)) {
    2029      383347 :                 if (!error)
    2030      383347 :                         error = xlog_recover_items_pass2(log, trans,
    2031             :                                         buffer_list, &ra_list);
    2032      383347 :                 list_splice_tail_init(&ra_list, &done_list);
    2033             :         }
    2034             : 
    2035      769812 :         if (!list_empty(&done_list))
    2036      384906 :                 list_splice_init(&done_list, &trans->r_itemq);
    2037             : 
    2038             :         return error;
    2039             : }
    2040             : 
    2041             : STATIC void
    2042    51377984 : xlog_recover_add_item(
    2043             :         struct list_head        *head)
    2044             : {
    2045    51377984 :         struct xlog_recover_item *item;
    2046             : 
    2047    51377984 :         item = kmem_zalloc(sizeof(struct xlog_recover_item), 0);
    2048    51377984 :         INIT_LIST_HEAD(&item->ri_list);
    2049    51377984 :         list_add_tail(&item->ri_list, head);
    2050    51377984 : }
    2051             : 
    2052             : STATIC int
    2053     1839056 : xlog_recover_add_to_cont_trans(
    2054             :         struct xlog             *log,
    2055             :         struct xlog_recover     *trans,
    2056             :         char                    *dp,
    2057             :         int                     len)
    2058             : {
    2059     1839056 :         struct xlog_recover_item *item;
    2060     1839056 :         char                    *ptr, *old_ptr;
    2061     1839056 :         int                     old_len;
    2062             : 
    2063             :         /*
    2064             :          * If the transaction is empty, the header was split across this and the
    2065             :          * previous record. Copy the rest of the header.
    2066             :          */
    2067     1839056 :         if (list_empty(&trans->r_itemq)) {
    2068           2 :                 ASSERT(len <= sizeof(struct xfs_trans_header));
    2069           2 :                 if (len > sizeof(struct xfs_trans_header)) {
    2070           0 :                         xfs_warn(log->l_mp, "%s: bad header length", __func__);
    2071           0 :                         return -EFSCORRUPTED;
    2072             :                 }
    2073             : 
    2074           2 :                 xlog_recover_add_item(&trans->r_itemq);
    2075           2 :                 ptr = (char *)&trans->r_theader +
    2076           2 :                                 sizeof(struct xfs_trans_header) - len;
    2077           4 :                 memcpy(ptr, dp, len);
    2078           2 :                 return 0;
    2079             :         }
    2080             : 
    2081             :         /* take the tail entry */
    2082     1839054 :         item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
    2083             :                           ri_list);
    2084             : 
    2085     1839054 :         old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
    2086     1839054 :         old_len = item->ri_buf[item->ri_cnt-1].i_len;
    2087             : 
    2088     1839054 :         ptr = kvrealloc(old_ptr, old_len, len + old_len, GFP_KERNEL);
    2089     1839054 :         if (!ptr)
    2090             :                 return -ENOMEM;
    2091     3678108 :         memcpy(&ptr[old_len], dp, len);
    2092     1839054 :         item->ri_buf[item->ri_cnt-1].i_len += len;
    2093     1839054 :         item->ri_buf[item->ri_cnt-1].i_addr = ptr;
    2094     1839054 :         trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
    2095     1839054 :         return 0;
    2096             : }
    2097             : 
    2098             : /*
    2099             :  * The next region to add is the start of a new region.  It could be
    2100             :  * a whole region or it could be the first part of a new region.  Because
    2101             :  * of this, the assumption here is that the type and size fields of all
    2102             :  * format structures fit into the first 32 bits of the structure.
    2103             :  *
    2104             :  * This works because all regions must be 32 bit aligned.  Therefore, we
    2105             :  * either have both fields or we have neither field.  In the case we have
    2106             :  * neither field, the data part of the region is zero length.  We only have
    2107             :  * a log_op_header and can throw away the header since a new one will appear
    2108             :  * later.  If we have at least 4 bytes, then we can determine how many regions
    2109             :  * will appear in the current log item.
    2110             :  */
    2111             : STATIC int
    2112   129500750 : xlog_recover_add_to_trans(
    2113             :         struct xlog             *log,
    2114             :         struct xlog_recover     *trans,
    2115             :         char                    *dp,
    2116             :         int                     len)
    2117             : {
    2118   129500750 :         struct xfs_inode_log_format     *in_f;                  /* any will do */
    2119   129500750 :         struct xlog_recover_item *item;
    2120   129500750 :         char                    *ptr;
    2121             : 
    2122   129500750 :         if (!len)
    2123             :                 return 0;
    2124   129500750 :         if (list_empty(&trans->r_itemq)) {
    2125             :                 /* we need to catch log corruptions here */
    2126      771060 :                 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
    2127           0 :                         xfs_warn(log->l_mp, "%s: bad header magic number",
    2128             :                                 __func__);
    2129           0 :                         ASSERT(0);
    2130           0 :                         return -EFSCORRUPTED;
    2131             :                 }
    2132             : 
    2133      771060 :                 if (len > sizeof(struct xfs_trans_header)) {
    2134           0 :                         xfs_warn(log->l_mp, "%s: bad header length", __func__);
    2135           0 :                         ASSERT(0);
    2136           0 :                         return -EFSCORRUPTED;
    2137             :                 }
    2138             : 
    2139             :                 /*
    2140             :                  * The transaction header can be arbitrarily split across op
    2141             :                  * records. If we don't have the whole thing here, copy what we
    2142             :                  * do have and handle the rest in the next record.
    2143             :                  */
    2144      771060 :                 if (len == sizeof(struct xfs_trans_header))
    2145      771058 :                         xlog_recover_add_item(&trans->r_itemq);
    2146     1542120 :                 memcpy(&trans->r_theader, dp, len);
    2147      771060 :                 return 0;
    2148             :         }
    2149             : 
    2150   128729690 :         ptr = kmem_alloc(len, 0);
    2151   257459380 :         memcpy(ptr, dp, len);
    2152   128729690 :         in_f = (struct xfs_inode_log_format *)ptr;
    2153             : 
    2154             :         /* take the tail entry */
    2155   128729690 :         item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
    2156             :                           ri_list);
    2157   128729690 :         if (item->ri_total != 0 &&
    2158   127958630 :              item->ri_total == item->ri_cnt) {
    2159             :                 /* tail item is in use, get a new one */
    2160    50606924 :                 xlog_recover_add_item(&trans->r_itemq);
    2161    50606924 :                 item = list_entry(trans->r_itemq.prev,
    2162             :                                         struct xlog_recover_item, ri_list);
    2163             :         }
    2164             : 
    2165   128729690 :         if (item->ri_total == 0) {           /* first region to be added */
    2166    51377984 :                 if (in_f->ilf_size == 0 ||
    2167             :                     in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
    2168           0 :                         xfs_warn(log->l_mp,
    2169             :                 "bad number of regions (%d) in inode log format",
    2170             :                                   in_f->ilf_size);
    2171           0 :                         ASSERT(0);
    2172           0 :                         kmem_free(ptr);
    2173           0 :                         return -EFSCORRUPTED;
    2174             :                 }
    2175             : 
    2176    51377984 :                 item->ri_total = in_f->ilf_size;
    2177    51377984 :                 item->ri_buf =
    2178    51377984 :                         kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
    2179             :                                     0);
    2180             :         }
    2181             : 
    2182   128729690 :         if (item->ri_total <= item->ri_cnt) {
    2183           0 :                 xfs_warn(log->l_mp,
    2184             :         "log item region count (%d) overflowed size (%d)",
    2185             :                                 item->ri_cnt, item->ri_total);
    2186           0 :                 ASSERT(0);
    2187           0 :                 kmem_free(ptr);
    2188           0 :                 return -EFSCORRUPTED;
    2189             :         }
    2190             : 
    2191             :         /* Description region is ri_buf[0] */
    2192   128729690 :         item->ri_buf[item->ri_cnt].i_addr = ptr;
    2193   128729690 :         item->ri_buf[item->ri_cnt].i_len  = len;
    2194   128729690 :         item->ri_cnt++;
    2195   128729690 :         trace_xfs_log_recover_item_add(log, trans, item, 0);
    2196   128729690 :         return 0;
    2197             : }
    2198             : 
    2199             : /*
    2200             :  * Free up any resources allocated by the transaction
    2201             :  *
    2202             :  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
    2203             :  */
    2204             : STATIC void
    2205      771060 : xlog_recover_free_trans(
    2206             :         struct xlog_recover     *trans)
    2207             : {
    2208      771060 :         struct xlog_recover_item *item, *n;
    2209      771060 :         int                     i;
    2210             : 
    2211      771060 :         hlist_del_init(&trans->r_list);
    2212             : 
    2213    52149044 :         list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
    2214             :                 /* Free the regions in the item. */
    2215    51377984 :                 list_del(&item->ri_list);
    2216   180107674 :                 for (i = 0; i < item->ri_cnt; i++)
    2217   128729690 :                         kmem_free(item->ri_buf[i].i_addr);
    2218             :                 /* Free the item itself */
    2219    51377984 :                 kmem_free(item->ri_buf);
    2220    51377984 :                 kmem_free(item);
    2221             :         }
    2222             :         /* Free the transaction recover structure */
    2223      771060 :         kmem_free(trans);
    2224      771060 : }
    2225             : 
    2226             : /*
    2227             :  * On error or completion, trans is freed.
    2228             :  */
    2229             : STATIC int
    2230   132109618 : xlog_recovery_process_trans(
    2231             :         struct xlog             *log,
    2232             :         struct xlog_recover     *trans,
    2233             :         char                    *dp,
    2234             :         unsigned int            len,
    2235             :         unsigned int            flags,
    2236             :         int                     pass,
    2237             :         struct list_head        *buffer_list)
    2238             : {
    2239   132109618 :         int                     error = 0;
    2240   132109618 :         bool                    freeit = false;
    2241             : 
    2242             :         /* mask off ophdr transaction container flags */
    2243   132109618 :         flags &= ~XLOG_END_TRANS;
    2244   132109618 :         if (flags & XLOG_WAS_CONT_TRANS)
    2245     1839056 :                 flags &= ~XLOG_CONTINUE_TRANS;
    2246             : 
    2247             :         /*
    2248             :          * Callees must not free the trans structure. We'll decide if we need to
    2249             :          * free it or not based on the operation being done and it's result.
    2250             :          */
    2251   132109618 :         switch (flags) {
    2252             :         /* expected flag values */
    2253   129500750 :         case 0:
    2254             :         case XLOG_CONTINUE_TRANS:
    2255   129500750 :                 error = xlog_recover_add_to_trans(log, trans, dp, len);
    2256   129500750 :                 break;
    2257     1839056 :         case XLOG_WAS_CONT_TRANS:
    2258     1839056 :                 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
    2259     1839056 :                 break;
    2260      769812 :         case XLOG_COMMIT_TRANS:
    2261      769812 :                 error = xlog_recover_commit_trans(log, trans, pass,
    2262             :                                                   buffer_list);
    2263             :                 /* success or fail, we are now done with this transaction. */
    2264      769812 :                 freeit = true;
    2265      769812 :                 break;
    2266             : 
    2267             :         /* unexpected flag values */
    2268           0 :         case XLOG_UNMOUNT_TRANS:
    2269             :                 /* just skip trans */
    2270           0 :                 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
    2271           0 :                 freeit = true;
    2272           0 :                 break;
    2273           0 :         case XLOG_START_TRANS:
    2274             :         default:
    2275           0 :                 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
    2276           0 :                 ASSERT(0);
    2277           0 :                 error = -EFSCORRUPTED;
    2278           0 :                 break;
    2279             :         }
    2280   132109618 :         if (error || freeit)
    2281      769812 :                 xlog_recover_free_trans(trans);
    2282   132109618 :         return error;
    2283             : }
    2284             : 
    2285             : /*
    2286             :  * Lookup the transaction recovery structure associated with the ID in the
    2287             :  * current ophdr. If the transaction doesn't exist and the start flag is set in
    2288             :  * the ophdr, then allocate a new transaction for future ID matches to find.
    2289             :  * Either way, return what we found during the lookup - an existing transaction
    2290             :  * or nothing.
    2291             :  */
    2292             : STATIC struct xlog_recover *
    2293   132988156 : xlog_recover_ophdr_to_trans(
    2294             :         struct hlist_head       rhash[],
    2295             :         struct xlog_rec_header  *rhead,
    2296             :         struct xlog_op_header   *ohead)
    2297             : {
    2298   132988156 :         struct xlog_recover     *trans;
    2299   132988156 :         xlog_tid_t              tid;
    2300   132988156 :         struct hlist_head       *rhp;
    2301             : 
    2302   132988156 :         tid = be32_to_cpu(ohead->oh_tid);
    2303   132988156 :         rhp = &rhash[XLOG_RHASH(tid)];
    2304   265976314 :         hlist_for_each_entry(trans, rhp, r_list) {
    2305   132109620 :                 if (trans->r_log_tid == tid)
    2306   132109618 :                         return trans;
    2307             :         }
    2308             : 
    2309             :         /*
    2310             :          * skip over non-start transaction headers - we could be
    2311             :          * processing slack space before the next transaction starts
    2312             :          */
    2313      878538 :         if (!(ohead->oh_flags & XLOG_START_TRANS))
    2314             :                 return NULL;
    2315             : 
    2316      771060 :         ASSERT(be32_to_cpu(ohead->oh_len) == 0);
    2317             : 
    2318             :         /*
    2319             :          * This is a new transaction so allocate a new recovery container to
    2320             :          * hold the recovery ops that will follow.
    2321             :          */
    2322      771060 :         trans = kmem_zalloc(sizeof(struct xlog_recover), 0);
    2323      771060 :         trans->r_log_tid = tid;
    2324      771060 :         trans->r_lsn = be64_to_cpu(rhead->h_lsn);
    2325      771060 :         INIT_LIST_HEAD(&trans->r_itemq);
    2326      771060 :         INIT_HLIST_NODE(&trans->r_list);
    2327      771060 :         hlist_add_head(&trans->r_list, rhp);
    2328             : 
    2329             :         /*
    2330             :          * Nothing more to do for this ophdr. Items to be added to this new
    2331             :          * transaction will be in subsequent ophdr containers.
    2332             :          */
    2333      771060 :         return NULL;
    2334             : }
    2335             : 
    2336             : STATIC int
    2337   132988156 : xlog_recover_process_ophdr(
    2338             :         struct xlog             *log,
    2339             :         struct hlist_head       rhash[],
    2340             :         struct xlog_rec_header  *rhead,
    2341             :         struct xlog_op_header   *ohead,
    2342             :         char                    *dp,
    2343             :         char                    *end,
    2344             :         int                     pass,
    2345             :         struct list_head        *buffer_list)
    2346             : {
    2347   132988156 :         struct xlog_recover     *trans;
    2348   132988156 :         unsigned int            len;
    2349   132988156 :         int                     error;
    2350             : 
    2351             :         /* Do we understand who wrote this op? */
    2352   132988156 :         if (ohead->oh_clientid != XFS_TRANSACTION &&
    2353             :             ohead->oh_clientid != XFS_LOG) {
    2354           0 :                 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
    2355             :                         __func__, ohead->oh_clientid);
    2356           0 :                 ASSERT(0);
    2357           0 :                 return -EFSCORRUPTED;
    2358             :         }
    2359             : 
    2360             :         /*
    2361             :          * Check the ophdr contains all the data it is supposed to contain.
    2362             :          */
    2363   132988156 :         len = be32_to_cpu(ohead->oh_len);
    2364   132988156 :         if (dp + len > end) {
    2365           0 :                 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
    2366           0 :                 WARN_ON(1);
    2367           0 :                 return -EFSCORRUPTED;
    2368             :         }
    2369             : 
    2370   132988156 :         trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
    2371   132988156 :         if (!trans) {
    2372             :                 /* nothing to do, so skip over this ophdr */
    2373             :                 return 0;
    2374             :         }
    2375             : 
    2376             :         /*
    2377             :          * The recovered buffer queue is drained only once we know that all
    2378             :          * recovery items for the current LSN have been processed. This is
    2379             :          * required because:
    2380             :          *
    2381             :          * - Buffer write submission updates the metadata LSN of the buffer.
    2382             :          * - Log recovery skips items with a metadata LSN >= the current LSN of
    2383             :          *   the recovery item.
    2384             :          * - Separate recovery items against the same metadata buffer can share
    2385             :          *   a current LSN. I.e., consider that the LSN of a recovery item is
    2386             :          *   defined as the starting LSN of the first record in which its
    2387             :          *   transaction appears, that a record can hold multiple transactions,
    2388             :          *   and/or that a transaction can span multiple records.
    2389             :          *
    2390             :          * In other words, we are allowed to submit a buffer from log recovery
    2391             :          * once per current LSN. Otherwise, we may incorrectly skip recovery
    2392             :          * items and cause corruption.
    2393             :          *
    2394             :          * We don't know up front whether buffers are updated multiple times per
    2395             :          * LSN. Therefore, track the current LSN of each commit log record as it
    2396             :          * is processed and drain the queue when it changes. Use commit records
    2397             :          * because they are ordered correctly by the logging code.
    2398             :          */
    2399   132109618 :         if (log->l_recovery_lsn != trans->r_lsn &&
    2400   132018364 :             ohead->oh_flags & XLOG_COMMIT_TRANS) {
    2401      766980 :                 error = xfs_buf_delwri_submit(buffer_list);
    2402      766980 :                 if (error)
    2403             :                         return error;
    2404      766980 :                 log->l_recovery_lsn = trans->r_lsn;
    2405             :         }
    2406             : 
    2407   132109618 :         return xlog_recovery_process_trans(log, trans, dp, len,
    2408   132109618 :                                            ohead->oh_flags, pass, buffer_list);
    2409             : }
    2410             : 
    2411             : /*
    2412             :  * There are two valid states of the r_state field.  0 indicates that the
    2413             :  * transaction structure is in a normal state.  We have either seen the
    2414             :  * start of the transaction or the last operation we added was not a partial
    2415             :  * operation.  If the last operation we added to the transaction was a
    2416             :  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
    2417             :  *
    2418             :  * NOTE: skip LRs with 0 data length.
    2419             :  */
    2420             : STATIC int
    2421     2654324 : xlog_recover_process_data(
    2422             :         struct xlog             *log,
    2423             :         struct hlist_head       rhash[],
    2424             :         struct xlog_rec_header  *rhead,
    2425             :         char                    *dp,
    2426             :         int                     pass,
    2427             :         struct list_head        *buffer_list)
    2428             : {
    2429     2654324 :         struct xlog_op_header   *ohead;
    2430     2654324 :         char                    *end;
    2431     2654324 :         int                     num_logops;
    2432     2654324 :         int                     error;
    2433             : 
    2434     2654324 :         end = dp + be32_to_cpu(rhead->h_len);
    2435     2654324 :         num_logops = be32_to_cpu(rhead->h_num_logops);
    2436             : 
    2437             :         /* check the log format matches our own - else we can't recover */
    2438     2654324 :         if (xlog_header_check_recover(log->l_mp, rhead))
    2439             :                 return -EIO;
    2440             : 
    2441     2654324 :         trace_xfs_log_recover_record(log, rhead, pass);
    2442   135642480 :         while ((dp < end) && num_logops) {
    2443             : 
    2444   132988156 :                 ohead = (struct xlog_op_header *)dp;
    2445   132988156 :                 dp += sizeof(*ohead);
    2446   132988156 :                 ASSERT(dp <= end);
    2447             : 
    2448             :                 /* errors will abort recovery */
    2449   132988156 :                 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
    2450             :                                                    dp, end, pass, buffer_list);
    2451   132988156 :                 if (error)
    2452           0 :                         return error;
    2453             : 
    2454   132988156 :                 dp += be32_to_cpu(ohead->oh_len);
    2455   132988156 :                 num_logops--;
    2456             :         }
    2457             :         return 0;
    2458             : }
    2459             : 
    2460             : /* Take all the collected deferred ops and finish them in order. */
    2461             : static int
    2462       11367 : xlog_finish_defer_ops(
    2463             :         struct xfs_mount        *mp,
    2464             :         struct list_head        *capture_list)
    2465             : {
    2466       11367 :         struct xfs_defer_capture *dfc, *next;
    2467       11367 :         struct xfs_trans        *tp;
    2468       11367 :         int                     error = 0;
    2469             : 
    2470       12006 :         list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
    2471         639 :                 struct xfs_trans_res    resv;
    2472         639 :                 struct xfs_defer_resources dres;
    2473             : 
    2474             :                 /*
    2475             :                  * Create a new transaction reservation from the captured
    2476             :                  * information.  Set logcount to 1 to force the new transaction
    2477             :                  * to regrant every roll so that we can make forward progress
    2478             :                  * in recovery no matter how full the log might be.
    2479             :                  */
    2480         639 :                 resv.tr_logres = dfc->dfc_logres;
    2481         639 :                 resv.tr_logcount = 1;
    2482         639 :                 resv.tr_logflags = XFS_TRANS_PERM_LOG_RES;
    2483             : 
    2484         639 :                 error = xfs_trans_alloc(mp, &resv, dfc->dfc_blkres,
    2485             :                                 dfc->dfc_rtxres, XFS_TRANS_RESERVE, &tp);
    2486         639 :                 if (error) {
    2487           0 :                         xlog_force_shutdown(mp->m_log, SHUTDOWN_LOG_IO_ERROR);
    2488           0 :                         return error;
    2489             :                 }
    2490             : 
    2491             :                 /*
    2492             :                  * Transfer to this new transaction all the dfops we captured
    2493             :                  * from recovering a single intent item.
    2494             :                  */
    2495         639 :                 list_del_init(&dfc->dfc_list);
    2496         639 :                 xfs_defer_ops_continue(dfc, tp, &dres);
    2497         639 :                 error = xfs_trans_commit(tp);
    2498         639 :                 xfs_defer_resources_rele(&dres);
    2499         639 :                 if (error)
    2500           0 :                         return error;
    2501             :         }
    2502             : 
    2503       11367 :         ASSERT(list_empty(capture_list));
    2504             :         return 0;
    2505             : }
    2506             : 
    2507             : /* Release all the captured defer ops and capture structures in this list. */
    2508             : static void
    2509           2 : xlog_abort_defer_ops(
    2510             :         struct xfs_mount                *mp,
    2511             :         struct list_head                *capture_list)
    2512             : {
    2513           2 :         struct xfs_defer_capture        *dfc;
    2514           2 :         struct xfs_defer_capture        *next;
    2515             : 
    2516           2 :         list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
    2517           0 :                 list_del_init(&dfc->dfc_list);
    2518           0 :                 xfs_defer_ops_capture_free(mp, dfc);
    2519             :         }
    2520           2 : }
    2521             : 
    2522             : /*
    2523             :  * When this is called, all of the log intent items which did not have
    2524             :  * corresponding log done items should be in the AIL.  What we do now is update
    2525             :  * the data structures associated with each one.
    2526             :  *
    2527             :  * Since we process the log intent items in normal transactions, they will be
    2528             :  * removed at some point after the commit.  This prevents us from just walking
    2529             :  * down the list processing each one.  We'll use a flag in the intent item to
    2530             :  * skip those that we've already processed and use the AIL iteration mechanism's
    2531             :  * generation count to try to speed this up at least a bit.
    2532             :  *
    2533             :  * When we start, we know that the intents are the only things in the AIL. As we
    2534             :  * process them, however, other items are added to the AIL. Hence we know we
    2535             :  * have started recovery on all the pending intents when we find an non-intent
    2536             :  * item in the AIL.
    2537             :  */
    2538             : STATIC int
    2539       11369 : xlog_recover_process_intents(
    2540             :         struct xlog             *log)
    2541             : {
    2542       11369 :         LIST_HEAD(capture_list);
    2543       11369 :         struct xfs_ail_cursor   cur;
    2544       11369 :         struct xfs_log_item     *lip;
    2545       11369 :         struct xfs_ail          *ailp;
    2546       11369 :         int                     error = 0;
    2547             : #if defined(DEBUG) || defined(XFS_WARN)
    2548       11369 :         xfs_lsn_t               last_lsn;
    2549             : #endif
    2550             : 
    2551       11369 :         ailp = log->l_ailp;
    2552       11369 :         spin_lock(&ailp->ail_lock);
    2553             : #if defined(DEBUG) || defined(XFS_WARN)
    2554       11369 :         last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
    2555             : #endif
    2556       11369 :         for (lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
    2557       14966 :              lip != NULL;
    2558        3597 :              lip = xfs_trans_ail_cursor_next(ailp, &cur)) {
    2559        3599 :                 const struct xfs_item_ops       *ops;
    2560             : 
    2561        3599 :                 if (!xlog_item_is_intent(lip))
    2562             :                         break;
    2563             : 
    2564             :                 /*
    2565             :                  * We should never see a redo item with a LSN higher than
    2566             :                  * the last transaction we found in the log at the start
    2567             :                  * of recovery.
    2568             :                  */
    2569        7198 :                 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
    2570             : 
    2571             :                 /*
    2572             :                  * NOTE: If your intent processing routine can create more
    2573             :                  * deferred ops, you /must/ attach them to the capture list in
    2574             :                  * the recover routine or else those subsequent intents will be
    2575             :                  * replayed in the wrong order!
    2576             :                  *
    2577             :                  * The recovery function can free the log item, so we must not
    2578             :                  * access lip after it returns.
    2579             :                  */
    2580        3599 :                 spin_unlock(&ailp->ail_lock);
    2581        3599 :                 ops = lip->li_ops;
    2582        3599 :                 error = ops->iop_recover(lip, &capture_list);
    2583        3599 :                 spin_lock(&ailp->ail_lock);
    2584        3599 :                 if (error) {
    2585           2 :                         trace_xlog_intent_recovery_failed(log->l_mp, error,
    2586           2 :                                         ops->iop_recover);
    2587           2 :                         break;
    2588             :                 }
    2589             :         }
    2590             : 
    2591       11369 :         xfs_trans_ail_cursor_done(&cur);
    2592       11369 :         spin_unlock(&ailp->ail_lock);
    2593       11369 :         if (error)
    2594           2 :                 goto err;
    2595             : 
    2596       11367 :         error = xlog_finish_defer_ops(log->l_mp, &capture_list);
    2597       11367 :         if (error)
    2598           0 :                 goto err;
    2599             : 
    2600             :         return 0;
    2601           2 : err:
    2602           2 :         xlog_abort_defer_ops(log->l_mp, &capture_list);
    2603           2 :         return error;
    2604             : }
    2605             : 
    2606             : /*
    2607             :  * A cancel occurs when the mount has failed and we're bailing out.  Release all
    2608             :  * pending log intent items that we haven't started recovery on so they don't
    2609             :  * pin the AIL.
    2610             :  */
    2611             : STATIC void
    2612           2 : xlog_recover_cancel_intents(
    2613             :         struct xlog             *log)
    2614             : {
    2615           2 :         struct xfs_log_item     *lip;
    2616           2 :         struct xfs_ail_cursor   cur;
    2617           2 :         struct xfs_ail          *ailp;
    2618             : 
    2619           2 :         ailp = log->l_ailp;
    2620           2 :         spin_lock(&ailp->ail_lock);
    2621           2 :         lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
    2622           2 :         while (lip != NULL) {
    2623           0 :                 if (!xlog_item_is_intent(lip))
    2624             :                         break;
    2625             : 
    2626           0 :                 spin_unlock(&ailp->ail_lock);
    2627           0 :                 lip->li_ops->iop_release(lip);
    2628           0 :                 spin_lock(&ailp->ail_lock);
    2629           0 :                 lip = xfs_trans_ail_cursor_next(ailp, &cur);
    2630             :         }
    2631             : 
    2632           2 :         xfs_trans_ail_cursor_done(&cur);
    2633           2 :         spin_unlock(&ailp->ail_lock);
    2634           2 : }
    2635             : 
    2636             : /*
    2637             :  * This routine performs a transaction to null out a bad inode pointer
    2638             :  * in an agi unlinked inode hash bucket.
    2639             :  */
    2640             : STATIC void
    2641           4 : xlog_recover_clear_agi_bucket(
    2642             :         struct xfs_perag        *pag,
    2643             :         int                     bucket)
    2644             : {
    2645           4 :         struct xfs_mount        *mp = pag->pag_mount;
    2646           4 :         struct xfs_trans        *tp;
    2647           4 :         struct xfs_agi          *agi;
    2648           4 :         struct xfs_buf          *agibp;
    2649           4 :         int                     offset;
    2650           4 :         int                     error;
    2651             : 
    2652           4 :         error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
    2653           4 :         if (error)
    2654           4 :                 goto out_error;
    2655             : 
    2656           0 :         error = xfs_read_agi(pag, tp, &agibp);
    2657           0 :         if (error)
    2658           0 :                 goto out_abort;
    2659             : 
    2660           0 :         agi = agibp->b_addr;
    2661           0 :         agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
    2662           0 :         offset = offsetof(xfs_agi_t, agi_unlinked) +
    2663             :                  (sizeof(xfs_agino_t) * bucket);
    2664           0 :         xfs_trans_log_buf(tp, agibp, offset,
    2665             :                           (offset + sizeof(xfs_agino_t) - 1));
    2666             : 
    2667           0 :         error = xfs_trans_commit(tp);
    2668           0 :         if (error)
    2669           0 :                 goto out_error;
    2670             :         return;
    2671             : 
    2672             : out_abort:
    2673           0 :         xfs_trans_cancel(tp);
    2674           4 : out_error:
    2675           4 :         xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__,
    2676             :                         pag->pag_agno);
    2677           4 :         return;
    2678             : }
    2679             : 
    2680             : static int
    2681     2908032 : xlog_recover_iunlink_bucket(
    2682             :         struct xfs_perag        *pag,
    2683             :         struct xfs_agi          *agi,
    2684             :         int                     bucket)
    2685             : {
    2686     2908032 :         struct xfs_mount        *mp = pag->pag_mount;
    2687     2908032 :         struct xfs_inode        *prev_ip = NULL;
    2688     2908032 :         struct xfs_inode        *ip;
    2689     2908032 :         xfs_agino_t             prev_agino, agino;
    2690     2908032 :         int                     error = 0;
    2691             : 
    2692     2908032 :         agino = be32_to_cpu(agi->agi_unlinked[bucket]);
    2693     3074776 :         while (agino != NULLAGINO) {
    2694      166744 :                 error = xfs_iget(mp, NULL,
    2695      166744 :                                 XFS_AGINO_TO_INO(mp, pag->pag_agno, agino),
    2696             :                                 0, 0, &ip);
    2697      166744 :                 if (error)
    2698             :                         break;
    2699             : 
    2700      166744 :                 ASSERT(VFS_I(ip)->i_nlink == 0);
    2701      166744 :                 ASSERT(VFS_I(ip)->i_mode != 0);
    2702      166744 :                 xfs_iflags_clear(ip, XFS_IRECOVERY);
    2703      166744 :                 agino = ip->i_next_unlinked;
    2704             : 
    2705      166744 :                 if (prev_ip) {
    2706      161114 :                         ip->i_prev_unlinked = prev_agino;
    2707      161114 :                         xfs_irele(prev_ip);
    2708             : 
    2709             :                         /*
    2710             :                          * Ensure the inode is removed from the unlinked list
    2711             :                          * before we continue so that it won't race with
    2712             :                          * building the in-memory list here. This could be
    2713             :                          * serialised with the agibp lock, but that just
    2714             :                          * serialises via lockstepping and it's much simpler
    2715             :                          * just to flush the inodegc queue and wait for it to
    2716             :                          * complete.
    2717             :                          */
    2718      161114 :                         error = xfs_inodegc_flush(mp);
    2719      161114 :                         if (error)
    2720             :                                 break;
    2721             :                 }
    2722             : 
    2723      166744 :                 prev_agino = agino;
    2724      166744 :                 prev_ip = ip;
    2725             :         }
    2726             : 
    2727     2908032 :         if (prev_ip) {
    2728        5630 :                 int     error2;
    2729             : 
    2730        5630 :                 ip->i_prev_unlinked = prev_agino;
    2731        5630 :                 xfs_irele(prev_ip);
    2732             : 
    2733        5630 :                 error2 = xfs_inodegc_flush(mp);
    2734        5630 :                 if (error2 && !error)
    2735           4 :                         return error2;
    2736             :         }
    2737             :         return error;
    2738             : }
    2739             : 
    2740             : /*
    2741             :  * Recover AGI unlinked lists
    2742             :  *
    2743             :  * This is called during recovery to process any inodes which we unlinked but
    2744             :  * not freed when the system crashed.  These inodes will be on the lists in the
    2745             :  * AGI blocks. What we do here is scan all the AGIs and fully truncate and free
    2746             :  * any inodes found on the lists. Each inode is removed from the lists when it
    2747             :  * has been fully truncated and is freed. The freeing of the inode and its
    2748             :  * removal from the list must be atomic.
    2749             :  *
    2750             :  * If everything we touch in the agi processing loop is already in memory, this
    2751             :  * loop can hold the cpu for a long time. It runs without lock contention,
    2752             :  * memory allocation contention, the need wait for IO, etc, and so will run
    2753             :  * until we either run out of inodes to process, run low on memory or we run out
    2754             :  * of log space.
    2755             :  *
    2756             :  * This behaviour is bad for latency on single CPU and non-preemptible kernels,
    2757             :  * and can prevent other filesystem work (such as CIL pushes) from running. This
    2758             :  * can lead to deadlocks if the recovery process runs out of log reservation
    2759             :  * space. Hence we need to yield the CPU when there is other kernel work
    2760             :  * scheduled on this CPU to ensure other scheduled work can run without undue
    2761             :  * latency.
    2762             :  */
    2763             : static void
    2764       45450 : xlog_recover_iunlink_ag(
    2765             :         struct xfs_perag        *pag)
    2766             : {
    2767       45450 :         struct xfs_agi          *agi;
    2768       45450 :         struct xfs_buf          *agibp;
    2769       45450 :         int                     bucket;
    2770       45450 :         int                     error;
    2771             : 
    2772       45450 :         error = xfs_read_agi(pag, NULL, &agibp);
    2773       45450 :         if (error) {
    2774             :                 /*
    2775             :                  * AGI is b0rked. Don't process it.
    2776             :                  *
    2777             :                  * We should probably mark the filesystem as corrupt after we've
    2778             :                  * recovered all the ag's we can....
    2779             :                  */
    2780          12 :                 return;
    2781             :         }
    2782             : 
    2783             :         /*
    2784             :          * Unlock the buffer so that it can be acquired in the normal course of
    2785             :          * the transaction to truncate and free each inode.  Because we are not
    2786             :          * racing with anyone else here for the AGI buffer, we don't even need
    2787             :          * to hold it locked to read the initial unlinked bucket entries out of
    2788             :          * the buffer. We keep buffer reference though, so that it stays pinned
    2789             :          * in memory while we need the buffer.
    2790             :          */
    2791       45438 :         agi = agibp->b_addr;
    2792       45438 :         xfs_buf_unlock(agibp);
    2793             : 
    2794     2998908 :         for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
    2795     2908032 :                 error = xlog_recover_iunlink_bucket(pag, agi, bucket);
    2796     2908032 :                 if (error) {
    2797             :                         /*
    2798             :                          * Bucket is unrecoverable, so only a repair scan can
    2799             :                          * free the remaining unlinked inodes. Just empty the
    2800             :                          * bucket and remaining inodes on it unreferenced and
    2801             :                          * unfreeable.
    2802             :                          */
    2803           4 :                         xlog_recover_clear_agi_bucket(pag, bucket);
    2804             :                 }
    2805             :         }
    2806             : 
    2807       45438 :         xfs_buf_rele(agibp);
    2808             : }
    2809             : 
    2810             : static void
    2811       11367 : xlog_recover_process_iunlinks(
    2812             :         struct xlog     *log)
    2813             : {
    2814       11367 :         struct xfs_perag        *pag;
    2815       11367 :         xfs_agnumber_t          agno;
    2816             : 
    2817       56817 :         for_each_perag(log->l_mp, agno, pag)
    2818       45450 :                 xlog_recover_iunlink_ag(pag);
    2819       11367 : }
    2820             : 
    2821             : STATIC void
    2822     2654324 : xlog_unpack_data(
    2823             :         struct xlog_rec_header  *rhead,
    2824             :         char                    *dp,
    2825             :         struct xlog             *log)
    2826             : {
    2827     2654324 :         int                     i, j, k;
    2828             : 
    2829   146655420 :         for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
    2830   144001096 :                   i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
    2831   144001096 :                 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
    2832   144001096 :                 dp += BBSIZE;
    2833             :         }
    2834             : 
    2835     2654324 :         if (xfs_has_logv2(log->l_mp)) {
    2836             :                 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
    2837     2959452 :                 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
    2838      305128 :                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
    2839      305128 :                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
    2840      305128 :                         *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
    2841      305128 :                         dp += BBSIZE;
    2842             :                 }
    2843             :         }
    2844     2654324 : }
    2845             : 
    2846             : /*
    2847             :  * CRC check, unpack and process a log record.
    2848             :  */
    2849             : STATIC int
    2850     4053215 : xlog_recover_process(
    2851             :         struct xlog             *log,
    2852             :         struct hlist_head       rhash[],
    2853             :         struct xlog_rec_header  *rhead,
    2854             :         char                    *dp,
    2855             :         int                     pass,
    2856             :         struct list_head        *buffer_list)
    2857             : {
    2858     4053215 :         __le32                  old_crc = rhead->h_crc;
    2859     4053215 :         __le32                  crc;
    2860             : 
    2861     4053215 :         crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
    2862             : 
    2863             :         /*
    2864             :          * Nothing else to do if this is a CRC verification pass. Just return
    2865             :          * if this a record with a non-zero crc. Unfortunately, mkfs always
    2866             :          * sets old_crc to 0 so we must consider this valid even on v5 supers.
    2867             :          * Otherwise, return EFSBADCRC on failure so the callers up the stack
    2868             :          * know precisely what failed.
    2869             :          */
    2870     4053215 :         if (pass == XLOG_RECOVER_CRCPASS) {
    2871     1398891 :                 if (old_crc && crc != old_crc)
    2872             :                         return -EFSBADCRC;
    2873     1398880 :                 return 0;
    2874             :         }
    2875             : 
    2876             :         /*
    2877             :          * We're in the normal recovery path. Issue a warning if and only if the
    2878             :          * CRC in the header is non-zero. This is an advisory warning and the
    2879             :          * zero CRC check prevents warnings from being emitted when upgrading
    2880             :          * the kernel from one that does not add CRCs by default.
    2881             :          */
    2882     2654324 :         if (crc != old_crc) {
    2883           0 :                 if (old_crc || xfs_has_crc(log->l_mp)) {
    2884           0 :                         xfs_alert(log->l_mp,
    2885             :                 "log record CRC mismatch: found 0x%x, expected 0x%x.",
    2886             :                                         le32_to_cpu(old_crc),
    2887             :                                         le32_to_cpu(crc));
    2888           0 :                         xfs_hex_dump(dp, 32);
    2889             :                 }
    2890             : 
    2891             :                 /*
    2892             :                  * If the filesystem is CRC enabled, this mismatch becomes a
    2893             :                  * fatal log corruption failure.
    2894             :                  */
    2895           0 :                 if (xfs_has_crc(log->l_mp)) {
    2896           0 :                         XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
    2897           0 :                         return -EFSCORRUPTED;
    2898             :                 }
    2899             :         }
    2900             : 
    2901     2654324 :         xlog_unpack_data(rhead, dp, log);
    2902             : 
    2903     2654324 :         return xlog_recover_process_data(log, rhash, rhead, dp, pass,
    2904             :                                          buffer_list);
    2905             : }
    2906             : 
    2907             : STATIC int
    2908     4098695 : xlog_valid_rec_header(
    2909             :         struct xlog             *log,
    2910             :         struct xlog_rec_header  *rhead,
    2911             :         xfs_daddr_t             blkno,
    2912             :         int                     bufsize)
    2913             : {
    2914     4098695 :         int                     hlen;
    2915             : 
    2916     4098695 :         if (XFS_IS_CORRUPT(log->l_mp,
    2917             :                            rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)))
    2918           0 :                 return -EFSCORRUPTED;
    2919     4098695 :         if (XFS_IS_CORRUPT(log->l_mp,
    2920             :                            (!rhead->h_version ||
    2921             :                            (be32_to_cpu(rhead->h_version) &
    2922             :                             (~XLOG_VERSION_OKBITS))))) {
    2923           0 :                 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
    2924             :                         __func__, be32_to_cpu(rhead->h_version));
    2925           0 :                 return -EFSCORRUPTED;
    2926             :         }
    2927             : 
    2928             :         /*
    2929             :          * LR body must have data (or it wouldn't have been written)
    2930             :          * and h_len must not be greater than LR buffer size.
    2931             :          */
    2932     4098695 :         hlen = be32_to_cpu(rhead->h_len);
    2933     4098695 :         if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > bufsize))
    2934           0 :                 return -EFSCORRUPTED;
    2935             : 
    2936     4098695 :         if (XFS_IS_CORRUPT(log->l_mp,
    2937             :                            blkno > log->l_logBBsize || blkno > INT_MAX))
    2938           0 :                 return -EFSCORRUPTED;
    2939             :         return 0;
    2940             : }
    2941             : 
    2942             : /*
    2943             :  * Read the log from tail to head and process the log records found.
    2944             :  * Handle the two cases where the tail and head are in the same cycle
    2945             :  * and where the active portion of the log wraps around the end of
    2946             :  * the physical log separately.  The pass parameter is passed through
    2947             :  * to the routines called to process the data and is not looked at
    2948             :  * here.
    2949             :  */
    2950             : STATIC int
    2951       45480 : xlog_do_recovery_pass(
    2952             :         struct xlog             *log,
    2953             :         xfs_daddr_t             head_blk,
    2954             :         xfs_daddr_t             tail_blk,
    2955             :         int                     pass,
    2956             :         xfs_daddr_t             *first_bad)     /* out: first bad log rec */
    2957             : {
    2958       45480 :         xlog_rec_header_t       *rhead;
    2959       45480 :         xfs_daddr_t             blk_no, rblk_no;
    2960       45480 :         xfs_daddr_t             rhead_blk;
    2961       45480 :         char                    *offset;
    2962       45480 :         char                    *hbp, *dbp;
    2963       45480 :         int                     error = 0, h_size, h_len;
    2964       45480 :         int                     error2 = 0;
    2965       45480 :         int                     bblks, split_bblks;
    2966       45480 :         int                     hblks, split_hblks, wrapped_hblks;
    2967       45480 :         int                     i;
    2968       45480 :         struct hlist_head       rhash[XLOG_RHASH_SIZE];
    2969       45480 :         LIST_HEAD               (buffer_list);
    2970             : 
    2971       45480 :         ASSERT(head_blk != tail_blk);
    2972             :         blk_no = rhead_blk = tail_blk;
    2973             : 
    2974      773160 :         for (i = 0; i < XLOG_RHASH_SIZE; i++)
    2975      727680 :                 INIT_HLIST_HEAD(&rhash[i]);
    2976             : 
    2977             :         /*
    2978             :          * Read the header of the tail block and get the iclog buffer size from
    2979             :          * h_size.  Use this to tell how many sectors make up the log header.
    2980             :          */
    2981       45480 :         if (xfs_has_logv2(log->l_mp)) {
    2982             :                 /*
    2983             :                  * When using variable length iclogs, read first sector of
    2984             :                  * iclog header and extract the header size from it.  Get a
    2985             :                  * new hbp that is the correct size.
    2986             :                  */
    2987       45480 :                 hbp = xlog_alloc_buffer(log, 1);
    2988       45480 :                 if (!hbp)
    2989             :                         return -ENOMEM;
    2990             : 
    2991       45480 :                 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
    2992       45480 :                 if (error)
    2993           0 :                         goto bread_err1;
    2994             : 
    2995       45480 :                 rhead = (xlog_rec_header_t *)offset;
    2996             : 
    2997             :                 /*
    2998             :                  * xfsprogs has a bug where record length is based on lsunit but
    2999             :                  * h_size (iclog size) is hardcoded to 32k. Now that we
    3000             :                  * unconditionally CRC verify the unmount record, this means the
    3001             :                  * log buffer can be too small for the record and cause an
    3002             :                  * overrun.
    3003             :                  *
    3004             :                  * Detect this condition here. Use lsunit for the buffer size as
    3005             :                  * long as this looks like the mkfs case. Otherwise, return an
    3006             :                  * error to avoid a buffer overrun.
    3007             :                  */
    3008       45480 :                 h_size = be32_to_cpu(rhead->h_size);
    3009       45480 :                 h_len = be32_to_cpu(rhead->h_len);
    3010       45480 :                 if (h_len > h_size && h_len <= log->l_mp->m_logbsize &&
    3011           0 :                     rhead->h_num_logops == cpu_to_be32(1)) {
    3012           0 :                         xfs_warn(log->l_mp,
    3013             :                 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
    3014             :                                  h_size, log->l_mp->m_logbsize);
    3015           0 :                         h_size = log->l_mp->m_logbsize;
    3016             :                 }
    3017             : 
    3018       45480 :                 error = xlog_valid_rec_header(log, rhead, tail_blk, h_size);
    3019       45480 :                 if (error)
    3020           0 :                         goto bread_err1;
    3021             : 
    3022       45480 :                 hblks = xlog_logrec_hblks(log, rhead);
    3023       45480 :                 if (hblks != 1) {
    3024         168 :                         kmem_free(hbp);
    3025         168 :                         hbp = xlog_alloc_buffer(log, hblks);
    3026             :                 }
    3027             :         } else {
    3028           0 :                 ASSERT(log->l_sectBBsize == 1);
    3029           0 :                 hblks = 1;
    3030           0 :                 hbp = xlog_alloc_buffer(log, 1);
    3031           0 :                 h_size = XLOG_BIG_RECORD_BSIZE;
    3032             :         }
    3033             : 
    3034       45480 :         if (!hbp)
    3035             :                 return -ENOMEM;
    3036       45480 :         dbp = xlog_alloc_buffer(log, BTOBB(h_size));
    3037       45480 :         if (!dbp) {
    3038           0 :                 kmem_free(hbp);
    3039           0 :                 return -ENOMEM;
    3040             :         }
    3041             : 
    3042       45480 :         memset(rhash, 0, sizeof(rhash));
    3043       45480 :         if (tail_blk > head_blk) {
    3044             :                 /*
    3045             :                  * Perform recovery around the end of the physical log.
    3046             :                  * When the head is not on the same cycle number as the tail,
    3047             :                  * we can't do a sequential recovery.
    3048             :                  */
    3049      264071 :                 while (blk_no < log->l_logBBsize) {
    3050             :                         /*
    3051             :                          * Check for header wrapping around physical end-of-log
    3052             :                          */
    3053      262391 :                         offset = hbp;
    3054      262391 :                         split_hblks = 0;
    3055      262391 :                         wrapped_hblks = 0;
    3056      262391 :                         if (blk_no + hblks <= log->l_logBBsize) {
    3057             :                                 /* Read header in one read */
    3058      262391 :                                 error = xlog_bread(log, blk_no, hblks, hbp,
    3059             :                                                    &offset);
    3060      262391 :                                 if (error)
    3061           0 :                                         goto bread_err2;
    3062             :                         } else {
    3063             :                                 /* This LR is split across physical log end */
    3064           0 :                                 if (blk_no != log->l_logBBsize) {
    3065             :                                         /* some data before physical log end */
    3066           0 :                                         ASSERT(blk_no <= INT_MAX);
    3067           0 :                                         split_hblks = log->l_logBBsize - (int)blk_no;
    3068           0 :                                         ASSERT(split_hblks > 0);
    3069           0 :                                         error = xlog_bread(log, blk_no,
    3070             :                                                            split_hblks, hbp,
    3071             :                                                            &offset);
    3072           0 :                                         if (error)
    3073           0 :                                                 goto bread_err2;
    3074             :                                 }
    3075             : 
    3076             :                                 /*
    3077             :                                  * Note: this black magic still works with
    3078             :                                  * large sector sizes (non-512) only because:
    3079             :                                  * - we increased the buffer size originally
    3080             :                                  *   by 1 sector giving us enough extra space
    3081             :                                  *   for the second read;
    3082             :                                  * - the log start is guaranteed to be sector
    3083             :                                  *   aligned;
    3084             :                                  * - we read the log end (LR header start)
    3085             :                                  *   _first_, then the log start (LR header end)
    3086             :                                  *   - order is important.
    3087             :                                  */
    3088           0 :                                 wrapped_hblks = hblks - split_hblks;
    3089           0 :                                 error = xlog_bread_noalign(log, 0,
    3090             :                                                 wrapped_hblks,
    3091           0 :                                                 offset + BBTOB(split_hblks));
    3092           0 :                                 if (error)
    3093           0 :                                         goto bread_err2;
    3094             :                         }
    3095      262391 :                         rhead = (xlog_rec_header_t *)offset;
    3096      262391 :                         error = xlog_valid_rec_header(log, rhead,
    3097             :                                         split_hblks ? blk_no : 0, h_size);
    3098      262391 :                         if (error)
    3099           0 :                                 goto bread_err2;
    3100             : 
    3101      262391 :                         bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
    3102      262391 :                         blk_no += hblks;
    3103             : 
    3104             :                         /*
    3105             :                          * Read the log record data in multiple reads if it
    3106             :                          * wraps around the end of the log. Note that if the
    3107             :                          * header already wrapped, blk_no could point past the
    3108             :                          * end of the log. The record data is contiguous in
    3109             :                          * that case.
    3110             :                          */
    3111      262391 :                         if (blk_no + bblks <= log->l_logBBsize ||
    3112             :                             blk_no >= log->l_logBBsize) {
    3113      260973 :                                 rblk_no = xlog_wrap_logbno(log, blk_no);
    3114      260973 :                                 error = xlog_bread(log, rblk_no, bblks, dbp,
    3115             :                                                    &offset);
    3116      260973 :                                 if (error)
    3117           0 :                                         goto bread_err2;
    3118             :                         } else {
    3119             :                                 /* This log record is split across the
    3120             :                                  * physical end of log */
    3121        1418 :                                 offset = dbp;
    3122        1418 :                                 split_bblks = 0;
    3123        1418 :                                 if (blk_no != log->l_logBBsize) {
    3124             :                                         /* some data is before the physical
    3125             :                                          * end of log */
    3126        1418 :                                         ASSERT(!wrapped_hblks);
    3127        1418 :                                         ASSERT(blk_no <= INT_MAX);
    3128        1418 :                                         split_bblks =
    3129        1418 :                                                 log->l_logBBsize - (int)blk_no;
    3130        1418 :                                         ASSERT(split_bblks > 0);
    3131        1418 :                                         error = xlog_bread(log, blk_no,
    3132             :                                                         split_bblks, dbp,
    3133             :                                                         &offset);
    3134        1418 :                                         if (error)
    3135           0 :                                                 goto bread_err2;
    3136             :                                 }
    3137             : 
    3138             :                                 /*
    3139             :                                  * Note: this black magic still works with
    3140             :                                  * large sector sizes (non-512) only because:
    3141             :                                  * - we increased the buffer size originally
    3142             :                                  *   by 1 sector giving us enough extra space
    3143             :                                  *   for the second read;
    3144             :                                  * - the log start is guaranteed to be sector
    3145             :                                  *   aligned;
    3146             :                                  * - we read the log end (LR header start)
    3147             :                                  *   _first_, then the log start (LR header end)
    3148             :                                  *   - order is important.
    3149             :                                  */
    3150        1418 :                                 error = xlog_bread_noalign(log, 0,
    3151             :                                                 bblks - split_bblks,
    3152        1418 :                                                 offset + BBTOB(split_bblks));
    3153        1418 :                                 if (error)
    3154           0 :                                         goto bread_err2;
    3155             :                         }
    3156             : 
    3157      262391 :                         error = xlog_recover_process(log, rhash, rhead, offset,
    3158             :                                                      pass, &buffer_list);
    3159      262391 :                         if (error)
    3160           0 :                                 goto bread_err2;
    3161             : 
    3162             :                         blk_no += bblks;
    3163             :                         rhead_blk = blk_no;
    3164             :                 }
    3165             : 
    3166        1680 :                 ASSERT(blk_no >= log->l_logBBsize);
    3167        1680 :                 blk_no -= log->l_logBBsize;
    3168        1680 :                 rhead_blk = blk_no;
    3169             :         }
    3170             : 
    3171             :         /* read first part of physical log */
    3172     3836293 :         while (blk_no < head_blk) {
    3173     3790824 :                 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
    3174     3790824 :                 if (error)
    3175           0 :                         goto bread_err2;
    3176             : 
    3177     3790824 :                 rhead = (xlog_rec_header_t *)offset;
    3178     3790824 :                 error = xlog_valid_rec_header(log, rhead, blk_no, h_size);
    3179     3790824 :                 if (error)
    3180           0 :                         goto bread_err2;
    3181             : 
    3182             :                 /* blocks in data section */
    3183     3790824 :                 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
    3184     3790824 :                 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
    3185             :                                    &offset);
    3186     3790824 :                 if (error)
    3187           0 :                         goto bread_err2;
    3188             : 
    3189     3790824 :                 error = xlog_recover_process(log, rhash, rhead, offset, pass,
    3190             :                                              &buffer_list);
    3191     3790824 :                 if (error)
    3192          11 :                         goto bread_err2;
    3193             : 
    3194     3790813 :                 blk_no += bblks + hblks;
    3195     3790813 :                 rhead_blk = blk_no;
    3196             :         }
    3197             : 
    3198       45469 :  bread_err2:
    3199       45480 :         kmem_free(dbp);
    3200       45480 :  bread_err1:
    3201       45480 :         kmem_free(hbp);
    3202             : 
    3203             :         /*
    3204             :          * Submit buffers that have been added from the last record processed,
    3205             :          * regardless of error status.
    3206             :          */
    3207       45480 :         if (!list_empty(&buffer_list))
    3208       10681 :                 error2 = xfs_buf_delwri_submit(&buffer_list);
    3209             : 
    3210       45480 :         if (error && first_bad)
    3211          11 :                 *first_bad = rhead_blk;
    3212             : 
    3213             :         /*
    3214             :          * Transactions are freed at commit time but transactions without commit
    3215             :          * records on disk are never committed. Free any that may be left in the
    3216             :          * hash table.
    3217             :          */
    3218      773160 :         for (i = 0; i < XLOG_RHASH_SIZE; i++) {
    3219      727680 :                 struct hlist_node       *tmp;
    3220      727680 :                 struct xlog_recover     *trans;
    3221             : 
    3222     1456608 :                 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
    3223        1248 :                         xlog_recover_free_trans(trans);
    3224             :         }
    3225             : 
    3226       45480 :         return error ? error : error2;
    3227             : }
    3228             : 
    3229             : /*
    3230             :  * Do the recovery of the log.  We actually do this in two phases.
    3231             :  * The two passes are necessary in order to implement the function
    3232             :  * of cancelling a record written into the log.  The first pass
    3233             :  * determines those things which have been cancelled, and the
    3234             :  * second pass replays log items normally except for those which
    3235             :  * have been cancelled.  The handling of the replay and cancellations
    3236             :  * takes place in the log item type specific routines.
    3237             :  *
    3238             :  * The table of items which have cancel records in the log is allocated
    3239             :  * and freed at this level, since only here do we know when all of
    3240             :  * the log recovery has been completed.
    3241             :  */
    3242             : STATIC int
    3243       11369 : xlog_do_log_recovery(
    3244             :         struct xlog     *log,
    3245             :         xfs_daddr_t     head_blk,
    3246             :         xfs_daddr_t     tail_blk)
    3247             : {
    3248       11369 :         int             error;
    3249             : 
    3250       11369 :         ASSERT(head_blk != tail_blk);
    3251             : 
    3252             :         /*
    3253             :          * First do a pass to find all of the cancelled buf log items.
    3254             :          * Store them in the buf_cancel_table for use in the second pass.
    3255             :          */
    3256       11369 :         error = xlog_alloc_buf_cancel_table(log);
    3257       11369 :         if (error)
    3258             :                 return error;
    3259             : 
    3260       11369 :         error = xlog_do_recovery_pass(log, head_blk, tail_blk,
    3261             :                                       XLOG_RECOVER_PASS1, NULL);
    3262       11369 :         if (error != 0)
    3263           0 :                 goto out_cancel;
    3264             : 
    3265             :         /*
    3266             :          * Then do a second pass to actually recover the items in the log.
    3267             :          * When it is complete free the table of buf cancel items.
    3268             :          */
    3269       11369 :         error = xlog_do_recovery_pass(log, head_blk, tail_blk,
    3270             :                                       XLOG_RECOVER_PASS2, NULL);
    3271       11369 :         if (!error)
    3272       11369 :                 xlog_check_buf_cancel_table(log);
    3273           0 : out_cancel:
    3274       11369 :         xlog_free_buf_cancel_table(log);
    3275       11369 :         return error;
    3276             : }
    3277             : 
    3278             : /*
    3279             :  * Do the actual recovery
    3280             :  */
    3281             : STATIC int
    3282       11369 : xlog_do_recover(
    3283             :         struct xlog             *log,
    3284             :         xfs_daddr_t             head_blk,
    3285             :         xfs_daddr_t             tail_blk)
    3286             : {
    3287       11369 :         struct xfs_mount        *mp = log->l_mp;
    3288       11369 :         struct xfs_buf          *bp = mp->m_sb_bp;
    3289       11369 :         struct xfs_sb           *sbp = &mp->m_sb;
    3290       11369 :         int                     error;
    3291             : 
    3292       11369 :         trace_xfs_log_recover(log, head_blk, tail_blk);
    3293             : 
    3294             :         /*
    3295             :          * First replay the images in the log.
    3296             :          */
    3297       11369 :         error = xlog_do_log_recovery(log, head_blk, tail_blk);
    3298       11369 :         if (error)
    3299             :                 return error;
    3300             : 
    3301       22738 :         if (xlog_is_shutdown(log))
    3302             :                 return -EIO;
    3303             : 
    3304             :         /*
    3305             :          * We now update the tail_lsn since much of the recovery has completed
    3306             :          * and there may be space available to use.  If there were no extent
    3307             :          * or iunlinks, we can free up the entire log and set the tail_lsn to
    3308             :          * be the last_sync_lsn.  This was set in xlog_find_tail to be the
    3309             :          * lsn of the last known good LR on disk.  If there are extent frees
    3310             :          * or iunlinks they will have some entries in the AIL; so we look at
    3311             :          * the AIL to determine how to set the tail_lsn.
    3312             :          */
    3313       11369 :         xlog_assign_tail_lsn(mp);
    3314             : 
    3315             :         /*
    3316             :          * Now that we've finished replaying all buffer and inode updates,
    3317             :          * re-read the superblock and reverify it.
    3318             :          */
    3319       11369 :         xfs_buf_lock(bp);
    3320       11369 :         xfs_buf_hold(bp);
    3321       11369 :         error = _xfs_buf_read(bp, XBF_READ);
    3322       11369 :         if (error) {
    3323           0 :                 if (!xlog_is_shutdown(log)) {
    3324           0 :                         xfs_buf_ioerror_alert(bp, __this_address);
    3325           0 :                         ASSERT(0);
    3326             :                 }
    3327           0 :                 xfs_buf_relse(bp);
    3328           0 :                 return error;
    3329             :         }
    3330             : 
    3331             :         /* Convert superblock from on-disk format */
    3332       11369 :         xfs_sb_from_disk(sbp, bp->b_addr);
    3333       11369 :         xfs_buf_relse(bp);
    3334             : 
    3335             :         /* re-initialise in-core superblock and geometry structures */
    3336       11369 :         mp->m_features |= xfs_sb_version_to_features(sbp);
    3337       11369 :         xfs_reinit_percpu_counters(mp);
    3338       11369 :         error = xfs_initialize_perag(mp, sbp->sb_agcount, sbp->sb_dblocks,
    3339             :                         &mp->m_maxagi);
    3340       11369 :         if (error) {
    3341           0 :                 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
    3342           0 :                 return error;
    3343             :         }
    3344       11369 :         error = xfs_initialize_rtgroups(mp, sbp->sb_rgcount);
    3345       11369 :         if (error) {
    3346           0 :                 xfs_warn(mp, "Failed post-recovery rtgroup init: %d", error);
    3347           0 :                 return error;
    3348             :         }
    3349       11369 :         mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
    3350             : 
    3351             :         /* Normal transactions can now occur */
    3352       11369 :         clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
    3353             :         return 0;
    3354             : }
    3355             : 
    3356             : /*
    3357             :  * Perform recovery and re-initialize some log variables in xlog_find_tail.
    3358             :  *
    3359             :  * Return error or zero.
    3360             :  */
    3361             : int
    3362       24323 : xlog_recover(
    3363             :         struct xlog     *log)
    3364             : {
    3365       24323 :         xfs_daddr_t     head_blk, tail_blk;
    3366       24323 :         int             error;
    3367             : 
    3368             :         /* find the tail of the log */
    3369       24323 :         error = xlog_find_tail(log, &head_blk, &tail_blk);
    3370       24323 :         if (error)
    3371             :                 return error;
    3372             : 
    3373             :         /*
    3374             :          * The superblock was read before the log was available and thus the LSN
    3375             :          * could not be verified. Check the superblock LSN against the current
    3376             :          * LSN now that it's known.
    3377             :          */
    3378       48596 :         if (xfs_has_crc(log->l_mp) &&
    3379       24277 :             !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
    3380             :                 return -EINVAL;
    3381             : 
    3382       24317 :         if (tail_blk != head_blk) {
    3383             :                 /* There used to be a comment here:
    3384             :                  *
    3385             :                  * disallow recovery on read-only mounts.  note -- mount
    3386             :                  * checks for ENOSPC and turns it into an intelligent
    3387             :                  * error message.
    3388             :                  * ...but this is no longer true.  Now, unless you specify
    3389             :                  * NORECOVERY (in which case this function would never be
    3390             :                  * called), we just go ahead and recover.  We do this all
    3391             :                  * under the vfs layer, so we can get away with it unless
    3392             :                  * the device itself is read-only, in which case we fail.
    3393             :                  */
    3394       11371 :                 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
    3395             :                         return error;
    3396             :                 }
    3397             : 
    3398             :                 /*
    3399             :                  * Version 5 superblock log feature mask validation. We know the
    3400             :                  * log is dirty so check if there are any unknown log features
    3401             :                  * in what we need to recover. If there are unknown features
    3402             :                  * (e.g. unsupported transactions, then simply reject the
    3403             :                  * attempt at recovery before touching anything.
    3404             :                  */
    3405       11369 :                 if (xfs_sb_is_v5(&log->l_mp->m_sb) &&
    3406             :                     xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
    3407             :                                         XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
    3408           0 :                         xfs_warn(log->l_mp,
    3409             : "Superblock has unknown incompatible log features (0x%x) enabled.",
    3410             :                                 (log->l_mp->m_sb.sb_features_log_incompat &
    3411             :                                         XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
    3412           0 :                         xfs_warn(log->l_mp,
    3413             : "The log can not be fully and/or safely recovered by this kernel.");
    3414           0 :                         xfs_warn(log->l_mp,
    3415             : "Please recover the log on a kernel that supports the unknown features.");
    3416           0 :                         return -EINVAL;
    3417             :                 }
    3418             : 
    3419             :                 /*
    3420             :                  * Delay log recovery if the debug hook is set. This is debug
    3421             :                  * instrumentation to coordinate simulation of I/O failures with
    3422             :                  * log recovery.
    3423             :                  */
    3424       11369 :                 if (xfs_globals.log_recovery_delay) {
    3425           4 :                         xfs_notice(log->l_mp,
    3426             :                                 "Delaying log recovery for %d seconds.",
    3427             :                                 xfs_globals.log_recovery_delay);
    3428           4 :                         msleep(xfs_globals.log_recovery_delay * 1000);
    3429             :                 }
    3430             : 
    3431       11369 :                 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
    3432             :                                 log->l_mp->m_logname ? log->l_mp->m_logname
    3433             :                                                      : "internal");
    3434             : 
    3435       11369 :                 error = xlog_do_recover(log, head_blk, tail_blk);
    3436       11369 :                 set_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
    3437             :         }
    3438             :         return error;
    3439             : }
    3440             : 
    3441             : /*
    3442             :  * In the first part of recovery we replay inodes and buffers and build up the
    3443             :  * list of intents which need to be processed. Here we process the intents and
    3444             :  * clean up the on disk unlinked inode lists. This is separated from the first
    3445             :  * part of recovery so that the root and real-time bitmap inodes can be read in
    3446             :  * from disk in between the two stages.  This is necessary so that we can free
    3447             :  * space in the real-time portion of the file system.
    3448             :  */
    3449             : int
    3450       11369 : xlog_recover_finish(
    3451             :         struct xlog     *log)
    3452             : {
    3453       11369 :         int     error;
    3454             : 
    3455       11369 :         error = xlog_recover_process_intents(log);
    3456       11369 :         if (error) {
    3457             :                 /*
    3458             :                  * Cancel all the unprocessed intent items now so that we don't
    3459             :                  * leave them pinned in the AIL.  This can cause the AIL to
    3460             :                  * livelock on the pinned item if anyone tries to push the AIL
    3461             :                  * (inode reclaim does this) before we get around to
    3462             :                  * xfs_log_mount_cancel.
    3463             :                  */
    3464           2 :                 xlog_recover_cancel_intents(log);
    3465           2 :                 xfs_alert(log->l_mp, "Failed to recover intents");
    3466           2 :                 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
    3467           2 :                 return error;
    3468             :         }
    3469             : 
    3470             :         /*
    3471             :          * Sync the log to get all the intents out of the AIL.  This isn't
    3472             :          * absolutely necessary, but it helps in case the unlink transactions
    3473             :          * would have problems pushing the intents out of the way.
    3474             :          */
    3475       11367 :         xfs_log_force(log->l_mp, XFS_LOG_SYNC);
    3476             : 
    3477             :         /*
    3478             :          * Now that we've recovered the log and all the intents, we can clear
    3479             :          * the log incompat feature bits in the superblock because there's no
    3480             :          * longer anything to protect.  We rely on the AIL push to write out the
    3481             :          * updated superblock after everything else.
    3482             :          */
    3483       11367 :         if (xfs_clear_incompat_log_features(log->l_mp,
    3484             :                                 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
    3485        9414 :                 error = xfs_sync_sb(log->l_mp, false);
    3486        9414 :                 if (error < 0) {
    3487           0 :                         xfs_alert(log->l_mp,
    3488             :         "Failed to clear log incompat features on recovery");
    3489           0 :                         return error;
    3490             :                 }
    3491             :         }
    3492             : 
    3493       11367 :         xlog_recover_process_iunlinks(log);
    3494             : 
    3495             :         /*
    3496             :          * Recover any CoW staging blocks that are still referenced by the
    3497             :          * ondisk refcount metadata.  During mount there cannot be any live
    3498             :          * staging extents as we have not permitted any user modifications.
    3499             :          * Therefore, it is safe to free them all right now, even on a
    3500             :          * read-only mount.
    3501             :          */
    3502       11367 :         error = xfs_reflink_recover_cow(log->l_mp);
    3503       11367 :         if (error) {
    3504           8 :                 xfs_alert(log->l_mp,
    3505             :         "Failed to recover leftover CoW staging extents, err %d.",
    3506             :                                 error);
    3507             :                 /*
    3508             :                  * If we get an error here, make sure the log is shut down
    3509             :                  * but return zero so that any log items committed since the
    3510             :                  * end of intents processing can be pushed through the CIL
    3511             :                  * and AIL.
    3512             :                  */
    3513           8 :                 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
    3514             :         }
    3515             : 
    3516             :         return 0;
    3517             : }
    3518             : 
    3519             : void
    3520          42 : xlog_recover_cancel(
    3521             :         struct xlog     *log)
    3522             : {
    3523          84 :         if (xlog_recovery_needed(log))
    3524           0 :                 xlog_recover_cancel_intents(log);
    3525          42 : }
    3526             : 

Generated by: LCOV version 1.14