LCOV - code coverage report
Current view: top level - fs/xfs - xfs_mru_cache.c (source / functions) Hit Total Coverage
Test: fstests of 6.5.0-rc4-xfsa @ Mon Jul 31 20:08:27 PDT 2023 Lines: 131 160 81.9 %
Date: 2023-07-31 20:08:27 Functions: 13 14 92.9 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0
       2             : /*
       3             :  * Copyright (c) 2006-2007 Silicon Graphics, Inc.
       4             :  * All Rights Reserved.
       5             :  */
       6             : #include "xfs.h"
       7             : #include "xfs_mru_cache.h"
       8             : 
       9             : /*
      10             :  * The MRU Cache data structure consists of a data store, an array of lists and
      11             :  * a lock to protect its internal state.  At initialisation time, the client
      12             :  * supplies an element lifetime in milliseconds and a group count, as well as a
      13             :  * function pointer to call when deleting elements.  A data structure for
      14             :  * queueing up work in the form of timed callbacks is also included.
      15             :  *
      16             :  * The group count controls how many lists are created, and thereby how finely
      17             :  * the elements are grouped in time.  When reaping occurs, all the elements in
      18             :  * all the lists whose time has expired are deleted.
      19             :  *
      20             :  * To give an example of how this works in practice, consider a client that
      21             :  * initialises an MRU Cache with a lifetime of ten seconds and a group count of
      22             :  * five.  Five internal lists will be created, each representing a two second
      23             :  * period in time.  When the first element is added, time zero for the data
      24             :  * structure is initialised to the current time.
      25             :  *
      26             :  * All the elements added in the first two seconds are appended to the first
      27             :  * list.  Elements added in the third second go into the second list, and so on.
      28             :  * If an element is accessed at any point, it is removed from its list and
      29             :  * inserted at the head of the current most-recently-used list.
      30             :  *
      31             :  * The reaper function will have nothing to do until at least twelve seconds
      32             :  * have elapsed since the first element was added.  The reason for this is that
      33             :  * if it were called at t=11s, there could be elements in the first list that
      34             :  * have only been inactive for nine seconds, so it still does nothing.  If it is
      35             :  * called anywhere between t=12 and t=14 seconds, it will delete all the
      36             :  * elements that remain in the first list.  It's therefore possible for elements
      37             :  * to remain in the data store even after they've been inactive for up to
      38             :  * (t + t/g) seconds, where t is the inactive element lifetime and g is the
      39             :  * number of groups.
      40             :  *
      41             :  * The above example assumes that the reaper function gets called at least once
      42             :  * every (t/g) seconds.  If it is called less frequently, unused elements will
      43             :  * accumulate in the reap list until the reaper function is eventually called.
      44             :  * The current implementation uses work queue callbacks to carefully time the
      45             :  * reaper function calls, so this should happen rarely, if at all.
      46             :  *
      47             :  * From a design perspective, the primary reason for the choice of a list array
      48             :  * representing discrete time intervals is that it's only practical to reap
      49             :  * expired elements in groups of some appreciable size.  This automatically
      50             :  * introduces a granularity to element lifetimes, so there's no point storing an
      51             :  * individual timeout with each element that specifies a more precise reap time.
      52             :  * The bonus is a saving of sizeof(long) bytes of memory per element stored.
      53             :  *
      54             :  * The elements could have been stored in just one list, but an array of
      55             :  * counters or pointers would need to be maintained to allow them to be divided
      56             :  * up into discrete time groups.  More critically, the process of touching or
      57             :  * removing an element would involve walking large portions of the entire list,
      58             :  * which would have a detrimental effect on performance.  The additional memory
      59             :  * requirement for the array of list heads is minimal.
      60             :  *
      61             :  * When an element is touched or deleted, it needs to be removed from its
      62             :  * current list.  Doubly linked lists are used to make the list maintenance
      63             :  * portion of these operations O(1).  Since reaper timing can be imprecise,
      64             :  * inserts and lookups can occur when there are no free lists available.  When
      65             :  * this happens, all the elements on the LRU list need to be migrated to the end
      66             :  * of the reap list.  To keep the list maintenance portion of these operations
      67             :  * O(1) also, list tails need to be accessible without walking the entire list.
      68             :  * This is the reason why doubly linked list heads are used.
      69             :  */
      70             : 
      71             : /*
      72             :  * An MRU Cache is a dynamic data structure that stores its elements in a way
      73             :  * that allows efficient lookups, but also groups them into discrete time
      74             :  * intervals based on insertion time.  This allows elements to be efficiently
      75             :  * and automatically reaped after a fixed period of inactivity.
      76             :  *
      77             :  * When a client data pointer is stored in the MRU Cache it needs to be added to
      78             :  * both the data store and to one of the lists.  It must also be possible to
      79             :  * access each of these entries via the other, i.e. to:
      80             :  *
      81             :  *    a) Walk a list, removing the corresponding data store entry for each item.
      82             :  *    b) Look up a data store entry, then access its list entry directly.
      83             :  *
      84             :  * To achieve both of these goals, each entry must contain both a list entry and
      85             :  * a key, in addition to the user's data pointer.  Note that it's not a good
      86             :  * idea to have the client embed one of these structures at the top of their own
      87             :  * data structure, because inserting the same item more than once would most
      88             :  * likely result in a loop in one of the lists.  That's a sure-fire recipe for
      89             :  * an infinite loop in the code.
      90             :  */
      91             : struct xfs_mru_cache {
      92             :         struct radix_tree_root  store;     /* Core storage data structure.  */
      93             :         struct list_head        *lists;    /* Array of lists, one per grp.  */
      94             :         struct list_head        reap_list; /* Elements overdue for reaping. */
      95             :         spinlock_t              lock;      /* Lock to protect this struct.  */
      96             :         unsigned int            grp_count; /* Number of discrete groups.    */
      97             :         unsigned int            grp_time;  /* Time period spanned by grps.  */
      98             :         unsigned int            lru_grp;   /* Group containing time zero.   */
      99             :         unsigned long           time_zero; /* Time first element was added. */
     100             :         xfs_mru_cache_free_func_t free_func; /* Function pointer for freeing. */
     101             :         struct delayed_work     work;      /* Workqueue data for reaping.   */
     102             :         unsigned int            queued;    /* work has been queued */
     103             :         void                    *data;
     104             : };
     105             : 
     106             : static struct workqueue_struct  *xfs_mru_reap_wq;
     107             : 
     108             : /*
     109             :  * When inserting, destroying or reaping, it's first necessary to update the
     110             :  * lists relative to a particular time.  In the case of destroying, that time
     111             :  * will be well in the future to ensure that all items are moved to the reap
     112             :  * list.  In all other cases though, the time will be the current time.
     113             :  *
     114             :  * This function enters a loop, moving the contents of the LRU list to the reap
     115             :  * list again and again until either a) the lists are all empty, or b) time zero
     116             :  * has been advanced sufficiently to be within the immediate element lifetime.
     117             :  *
     118             :  * Case a) above is detected by counting how many groups are migrated and
     119             :  * stopping when they've all been moved.  Case b) is detected by monitoring the
     120             :  * time_zero field, which is updated as each group is migrated.
     121             :  *
     122             :  * The return value is the earliest time that more migration could be needed, or
     123             :  * zero if there's no need to schedule more work because the lists are empty.
     124             :  */
     125             : STATIC unsigned long
     126       36441 : _xfs_mru_cache_migrate(
     127             :         struct xfs_mru_cache    *mru,
     128             :         unsigned long           now)
     129             : {
     130       36441 :         unsigned int            grp;
     131       36441 :         unsigned int            migrated = 0;
     132       36441 :         struct list_head        *lru_list;
     133             : 
     134             :         /* Nothing to do if the data store is empty. */
     135       36441 :         if (!mru->time_zero)
     136             :                 return 0;
     137             : 
     138             :         /* While time zero is older than the time spanned by all the lists. */
     139       12122 :         while (mru->time_zero <= now - mru->grp_count * mru->grp_time) {
     140             : 
     141             :                 /*
     142             :                  * If the LRU list isn't empty, migrate its elements to the tail
     143             :                  * of the reap list.
     144             :                  */
     145          30 :                 lru_list = mru->lists + mru->lru_grp;
     146          30 :                 if (!list_empty(lru_list))
     147           0 :                         list_splice_init(lru_list, mru->reap_list.prev);
     148             : 
     149             :                 /*
     150             :                  * Advance the LRU group number, freeing the old LRU list to
     151             :                  * become the new MRU list; advance time zero accordingly.
     152             :                  */
     153          30 :                 mru->lru_grp = (mru->lru_grp + 1) % mru->grp_count;
     154          30 :                 mru->time_zero += mru->grp_time;
     155             : 
     156             :                 /*
     157             :                  * If reaping is so far behind that all the elements on all the
     158             :                  * lists have been migrated to the reap list, it's now empty.
     159             :                  */
     160          30 :                 if (++migrated == mru->grp_count) {
     161           0 :                         mru->lru_grp = 0;
     162           0 :                         mru->time_zero = 0;
     163           0 :                         return 0;
     164             :                 }
     165             :         }
     166             : 
     167             :         /* Find the first non-empty list from the LRU end. */
     168       18538 :         for (grp = 0; grp < mru->grp_count; grp++) {
     169             : 
     170             :                 /* Check the grp'th list from the LRU end. */
     171       17952 :                 lru_list = mru->lists + ((mru->lru_grp + grp) % mru->grp_count);
     172       17952 :                 if (!list_empty(lru_list))
     173       11506 :                         return mru->time_zero +
     174       11506 :                                (mru->grp_count + grp) * mru->grp_time;
     175             :         }
     176             : 
     177             :         /* All the lists must be empty. */
     178         586 :         mru->lru_grp = 0;
     179         586 :         mru->time_zero = 0;
     180         586 :         return 0;
     181             : }
     182             : 
     183             : /*
     184             :  * When inserting or doing a lookup, an element needs to be inserted into the
     185             :  * MRU list.  The lists must be migrated first to ensure that they're
     186             :  * up-to-date, otherwise the new element could be given a shorter lifetime in
     187             :  * the cache than it should.
     188             :  */
     189             : STATIC void
     190       12092 : _xfs_mru_cache_list_insert(
     191             :         struct xfs_mru_cache    *mru,
     192             :         struct xfs_mru_cache_elem *elem)
     193             : {
     194       12092 :         unsigned int            grp = 0;
     195       12092 :         unsigned long           now = jiffies;
     196             : 
     197             :         /*
     198             :          * If the data store is empty, initialise time zero, leave grp set to
     199             :          * zero and start the work queue timer if necessary.  Otherwise, set grp
     200             :          * to the number of group times that have elapsed since time zero.
     201             :          */
     202       12092 :         if (!_xfs_mru_cache_migrate(mru, now)) {
     203         586 :                 mru->time_zero = now;
     204         586 :                 if (!mru->queued) {
     205          30 :                         mru->queued = 1;
     206          30 :                         queue_delayed_work(xfs_mru_reap_wq, &mru->work,
     207          30 :                                            mru->grp_count * mru->grp_time);
     208             :                 }
     209             :         } else {
     210       11506 :                 grp = (now - mru->time_zero) / mru->grp_time;
     211       11506 :                 grp = (mru->lru_grp + grp) % mru->grp_count;
     212             :         }
     213             : 
     214             :         /* Insert the element at the tail of the corresponding list. */
     215       12092 :         list_add_tail(&elem->list_node, mru->lists + grp);
     216       12092 : }
     217             : 
     218             : /*
     219             :  * When destroying or reaping, all the elements that were migrated to the reap
     220             :  * list need to be deleted.  For each element this involves removing it from the
     221             :  * data store, removing it from the reap list, calling the client's free
     222             :  * function and deleting the element from the element cache.
     223             :  *
     224             :  * We get called holding the mru->lock, which we drop and then reacquire.
     225             :  * Sparse need special help with this to tell it we know what we are doing.
     226             :  */
     227             : STATIC void
     228       24349 : _xfs_mru_cache_clear_reap_list(
     229             :         struct xfs_mru_cache    *mru)
     230             :                 __releases(mru->lock) __acquires(mru->lock)
     231             : {
     232       24349 :         struct xfs_mru_cache_elem *elem, *next;
     233       24349 :         struct list_head        tmp;
     234             : 
     235       24349 :         INIT_LIST_HEAD(&tmp);
     236       24349 :         list_for_each_entry_safe(elem, next, &mru->reap_list, list_node) {
     237             : 
     238             :                 /* Remove the element from the data store. */
     239           0 :                 radix_tree_delete(&mru->store, elem->key);
     240             : 
     241             :                 /*
     242             :                  * remove to temp list so it can be freed without
     243             :                  * needing to hold the lock
     244             :                  */
     245           0 :                 list_move(&elem->list_node, &tmp);
     246             :         }
     247       24349 :         spin_unlock(&mru->lock);
     248             : 
     249       24349 :         list_for_each_entry_safe(elem, next, &tmp, list_node) {
     250           0 :                 list_del_init(&elem->list_node);
     251           0 :                 mru->free_func(mru->data, elem);
     252             :         }
     253             : 
     254       24349 :         spin_lock(&mru->lock);
     255       24349 : }
     256             : 
     257             : /*
     258             :  * We fire the reap timer every group expiry interval so
     259             :  * we always have a reaper ready to run. This makes shutdown
     260             :  * and flushing of the reaper easy to do. Hence we need to
     261             :  * keep when the next reap must occur so we can determine
     262             :  * at each interval whether there is anything we need to do.
     263             :  */
     264             : STATIC void
     265           0 : _xfs_mru_cache_reap(
     266             :         struct work_struct      *work)
     267             : {
     268           0 :         struct xfs_mru_cache    *mru =
     269           0 :                 container_of(work, struct xfs_mru_cache, work.work);
     270           0 :         unsigned long           now, next;
     271             : 
     272           0 :         ASSERT(mru && mru->lists);
     273           0 :         if (!mru || !mru->lists)
     274             :                 return;
     275             : 
     276           0 :         spin_lock(&mru->lock);
     277           0 :         next = _xfs_mru_cache_migrate(mru, jiffies);
     278           0 :         _xfs_mru_cache_clear_reap_list(mru);
     279             : 
     280           0 :         mru->queued = next;
     281           0 :         if ((mru->queued > 0)) {
     282           0 :                 now = jiffies;
     283           0 :                 if (next <= now)
     284             :                         next = 0;
     285             :                 else
     286           0 :                         next -= now;
     287           0 :                 queue_delayed_work(xfs_mru_reap_wq, &mru->work, next);
     288             :         }
     289             : 
     290           0 :         spin_unlock(&mru->lock);
     291             : }
     292             : 
     293             : int
     294          12 : xfs_mru_cache_init(void)
     295             : {
     296          12 :         xfs_mru_reap_wq = alloc_workqueue("xfs_mru_cache",
     297             :                         XFS_WQFLAGS(WQ_MEM_RECLAIM | WQ_FREEZABLE), 1);
     298          12 :         if (!xfs_mru_reap_wq)
     299           0 :                 return -ENOMEM;
     300             :         return 0;
     301             : }
     302             : 
     303             : void
     304          12 : xfs_mru_cache_uninit(void)
     305             : {
     306          12 :         destroy_workqueue(xfs_mru_reap_wq);
     307          12 : }
     308             : 
     309             : /*
     310             :  * To initialise a struct xfs_mru_cache pointer, call xfs_mru_cache_create()
     311             :  * with the address of the pointer, a lifetime value in milliseconds, a group
     312             :  * count and a free function to use when deleting elements.  This function
     313             :  * returns 0 if the initialisation was successful.
     314             :  */
     315             : int
     316       24343 : xfs_mru_cache_create(
     317             :         struct xfs_mru_cache    **mrup,
     318             :         void                    *data,
     319             :         unsigned int            lifetime_ms,
     320             :         unsigned int            grp_count,
     321             :         xfs_mru_cache_free_func_t free_func)
     322             : {
     323       24343 :         struct xfs_mru_cache    *mru = NULL;
     324       24343 :         int                     err = 0, grp;
     325       24343 :         unsigned int            grp_time;
     326             : 
     327       24343 :         if (mrup)
     328       24343 :                 *mrup = NULL;
     329             : 
     330       24343 :         if (!mrup || !grp_count || !lifetime_ms || !free_func)
     331             :                 return -EINVAL;
     332             : 
     333       48686 :         if (!(grp_time = msecs_to_jiffies(lifetime_ms) / grp_count))
     334             :                 return -EINVAL;
     335             : 
     336       24343 :         if (!(mru = kmem_zalloc(sizeof(*mru), 0)))
     337             :                 return -ENOMEM;
     338             : 
     339             :         /* An extra list is needed to avoid reaping up to a grp_time early. */
     340       24343 :         mru->grp_count = grp_count + 1;
     341       24343 :         mru->lists = kmem_zalloc(mru->grp_count * sizeof(*mru->lists), 0);
     342             : 
     343       24343 :         if (!mru->lists) {
     344           0 :                 err = -ENOMEM;
     345           0 :                 goto exit;
     346             :         }
     347             : 
     348      292116 :         for (grp = 0; grp < mru->grp_count; grp++)
     349      267773 :                 INIT_LIST_HEAD(mru->lists + grp);
     350             : 
     351             :         /*
     352             :          * We use GFP_KERNEL radix tree preload and do inserts under a
     353             :          * spinlock so GFP_ATOMIC is appropriate for the radix tree itself.
     354             :          */
     355       24343 :         INIT_RADIX_TREE(&mru->store, GFP_ATOMIC);
     356       24343 :         INIT_LIST_HEAD(&mru->reap_list);
     357       24343 :         spin_lock_init(&mru->lock);
     358       24343 :         INIT_DELAYED_WORK(&mru->work, _xfs_mru_cache_reap);
     359             : 
     360       24343 :         mru->grp_time  = grp_time;
     361       24343 :         mru->free_func = free_func;
     362       24343 :         mru->data = data;
     363       24343 :         *mrup = mru;
     364             : 
     365       24343 : exit:
     366       24343 :         if (err && mru && mru->lists)
     367           0 :                 kmem_free(mru->lists);
     368       24343 :         if (err && mru)
     369           0 :                 kmem_free(mru);
     370             : 
     371             :         return err;
     372             : }
     373             : 
     374             : /*
     375             :  * Call xfs_mru_cache_flush() to flush out all cached entries, calling their
     376             :  * free functions as they're deleted.  When this function returns, the caller is
     377             :  * guaranteed that all the free functions for all the elements have finished
     378             :  * executing and the reaper is not running.
     379             :  */
     380             : static void
     381       24349 : xfs_mru_cache_flush(
     382             :         struct xfs_mru_cache    *mru)
     383             : {
     384       24349 :         if (!mru || !mru->lists)
     385             :                 return;
     386             : 
     387       24349 :         spin_lock(&mru->lock);
     388       24349 :         if (mru->queued) {
     389          30 :                 spin_unlock(&mru->lock);
     390          30 :                 cancel_delayed_work_sync(&mru->work);
     391          30 :                 spin_lock(&mru->lock);
     392             :         }
     393             : 
     394       24349 :         _xfs_mru_cache_migrate(mru, jiffies + mru->grp_count * mru->grp_time);
     395       24349 :         _xfs_mru_cache_clear_reap_list(mru);
     396             : 
     397       24349 :         spin_unlock(&mru->lock);
     398             : }
     399             : 
     400             : void
     401       24349 : xfs_mru_cache_destroy(
     402             :         struct xfs_mru_cache    *mru)
     403             : {
     404       24349 :         if (!mru || !mru->lists)
     405             :                 return;
     406             : 
     407       24349 :         xfs_mru_cache_flush(mru);
     408             : 
     409       24349 :         kmem_free(mru->lists);
     410       24349 :         kmem_free(mru);
     411             : }
     412             : 
     413             : /*
     414             :  * To insert an element, call xfs_mru_cache_insert() with the data store, the
     415             :  * element's key and the client data pointer.  This function returns 0 on
     416             :  * success or ENOMEM if memory for the data element couldn't be allocated.
     417             :  */
     418             : int
     419        1670 : xfs_mru_cache_insert(
     420             :         struct xfs_mru_cache    *mru,
     421             :         unsigned long           key,
     422             :         struct xfs_mru_cache_elem *elem)
     423             : {
     424        1670 :         int                     error;
     425             : 
     426        1670 :         ASSERT(mru && mru->lists);
     427        1670 :         if (!mru || !mru->lists)
     428             :                 return -EINVAL;
     429             : 
     430        1670 :         if (radix_tree_preload(GFP_NOFS))
     431             :                 return -ENOMEM;
     432             : 
     433        1670 :         INIT_LIST_HEAD(&elem->list_node);
     434        1670 :         elem->key = key;
     435             : 
     436        1670 :         spin_lock(&mru->lock);
     437        1670 :         error = radix_tree_insert(&mru->store, key, elem);
     438        1670 :         radix_tree_preload_end();
     439        1670 :         if (!error)
     440        1670 :                 _xfs_mru_cache_list_insert(mru, elem);
     441        1670 :         spin_unlock(&mru->lock);
     442             : 
     443        1670 :         return error;
     444             : }
     445             : 
     446             : /*
     447             :  * To remove an element without calling the free function, call
     448             :  * xfs_mru_cache_remove() with the data store and the element's key.  On success
     449             :  * the client data pointer for the removed element is returned, otherwise this
     450             :  * function will return a NULL pointer.
     451             :  */
     452             : struct xfs_mru_cache_elem *
     453        2472 : xfs_mru_cache_remove(
     454             :         struct xfs_mru_cache    *mru,
     455             :         unsigned long           key)
     456             : {
     457        2472 :         struct xfs_mru_cache_elem *elem;
     458             : 
     459        2472 :         ASSERT(mru && mru->lists);
     460        2472 :         if (!mru || !mru->lists)
     461             :                 return NULL;
     462             : 
     463        2472 :         spin_lock(&mru->lock);
     464        2472 :         elem = radix_tree_delete(&mru->store, key);
     465        2472 :         if (elem)
     466        1670 :                 list_del(&elem->list_node);
     467        2472 :         spin_unlock(&mru->lock);
     468             : 
     469        2472 :         return elem;
     470             : }
     471             : 
     472             : /*
     473             :  * To remove and element and call the free function, call xfs_mru_cache_delete()
     474             :  * with the data store and the element's key.
     475             :  */
     476             : void
     477         802 : xfs_mru_cache_delete(
     478             :         struct xfs_mru_cache    *mru,
     479             :         unsigned long           key)
     480             : {
     481         802 :         struct xfs_mru_cache_elem *elem;
     482             : 
     483         802 :         elem = xfs_mru_cache_remove(mru, key);
     484         802 :         if (elem)
     485         802 :                 mru->free_func(mru->data, elem);
     486         802 : }
     487             : 
     488             : /*
     489             :  * To look up an element using its key, call xfs_mru_cache_lookup() with the
     490             :  * data store and the element's key.  If found, the element will be moved to the
     491             :  * head of the MRU list to indicate that it's been touched.
     492             :  *
     493             :  * The internal data structures are protected by a spinlock that is STILL HELD
     494             :  * when this function returns.  Call xfs_mru_cache_done() to release it.  Note
     495             :  * that it is not safe to call any function that might sleep in the interim.
     496             :  *
     497             :  * The implementation could have used reference counting to avoid this
     498             :  * restriction, but since most clients simply want to get, set or test a member
     499             :  * of the returned data structure, the extra per-element memory isn't warranted.
     500             :  *
     501             :  * If the element isn't found, this function returns NULL and the spinlock is
     502             :  * released.  xfs_mru_cache_done() should NOT be called when this occurs.
     503             :  *
     504             :  * Because sparse isn't smart enough to know about conditional lock return
     505             :  * status, we need to help it get it right by annotating the path that does
     506             :  * not release the lock.
     507             :  */
     508             : struct xfs_mru_cache_elem *
     509       11221 : xfs_mru_cache_lookup(
     510             :         struct xfs_mru_cache    *mru,
     511             :         unsigned long           key)
     512             : {
     513       11221 :         struct xfs_mru_cache_elem *elem;
     514             : 
     515       11221 :         ASSERT(mru && mru->lists);
     516       11221 :         if (!mru || !mru->lists)
     517             :                 return NULL;
     518             : 
     519       11221 :         spin_lock(&mru->lock);
     520       11224 :         elem = radix_tree_lookup(&mru->store, key);
     521       11224 :         if (elem) {
     522       10422 :                 list_del(&elem->list_node);
     523       10422 :                 _xfs_mru_cache_list_insert(mru, elem);
     524       10422 :                 __release(mru_lock); /* help sparse not be stupid */
     525             :         } else
     526         802 :                 spin_unlock(&mru->lock);
     527             : 
     528             :         return elem;
     529             : }
     530             : 
     531             : /*
     532             :  * To release the internal data structure spinlock after having performed an
     533             :  * xfs_mru_cache_lookup() or an xfs_mru_cache_peek(), call xfs_mru_cache_done()
     534             :  * with the data store pointer.
     535             :  */
     536             : void
     537       10422 : xfs_mru_cache_done(
     538             :         struct xfs_mru_cache    *mru)
     539             :                 __releases(mru->lock)
     540             : {
     541       10422 :         spin_unlock(&mru->lock);
     542       10422 : }

Generated by: LCOV version 1.14