Line data Source code
1 : // SPDX-License-Identifier: GPL-2.0
2 :
3 : /*
4 : * fs/ext4/fast_commit.c
5 : *
6 : * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7 : *
8 : * Ext4 fast commits routines.
9 : */
10 : #include "ext4.h"
11 : #include "ext4_jbd2.h"
12 : #include "ext4_extents.h"
13 : #include "mballoc.h"
14 :
15 : /*
16 : * Ext4 Fast Commits
17 : * -----------------
18 : *
19 : * Ext4 fast commits implement fine grained journalling for Ext4.
20 : *
21 : * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22 : * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23 : * TLV during the recovery phase. For the scenarios for which we currently
24 : * don't have replay code, fast commit falls back to full commits.
25 : * Fast commits record delta in one of the following three categories.
26 : *
27 : * (A) Directory entry updates:
28 : *
29 : * - EXT4_FC_TAG_UNLINK - records directory entry unlink
30 : * - EXT4_FC_TAG_LINK - records directory entry link
31 : * - EXT4_FC_TAG_CREAT - records inode and directory entry creation
32 : *
33 : * (B) File specific data range updates:
34 : *
35 : * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode
36 : * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode
37 : *
38 : * (C) Inode metadata (mtime / ctime etc):
39 : *
40 : * - EXT4_FC_TAG_INODE - record the inode that should be replayed
41 : * during recovery. Note that iblocks field is
42 : * not replayed and instead derived during
43 : * replay.
44 : * Commit Operation
45 : * ----------------
46 : * With fast commits, we maintain all the directory entry operations in the
47 : * order in which they are issued in an in-memory queue. This queue is flushed
48 : * to disk during the commit operation. We also maintain a list of inodes
49 : * that need to be committed during a fast commit in another in memory queue of
50 : * inodes. During the commit operation, we commit in the following order:
51 : *
52 : * [1] Lock inodes for any further data updates by setting COMMITTING state
53 : * [2] Submit data buffers of all the inodes
54 : * [3] Wait for [2] to complete
55 : * [4] Commit all the directory entry updates in the fast commit space
56 : * [5] Commit all the changed inode structures
57 : * [6] Write tail tag (this tag ensures the atomicity, please read the following
58 : * section for more details).
59 : * [7] Wait for [4], [5] and [6] to complete.
60 : *
61 : * All the inode updates must call ext4_fc_start_update() before starting an
62 : * update. If such an ongoing update is present, fast commit waits for it to
63 : * complete. The completion of such an update is marked by
64 : * ext4_fc_stop_update().
65 : *
66 : * Fast Commit Ineligibility
67 : * -------------------------
68 : *
69 : * Not all operations are supported by fast commits today (e.g extended
70 : * attributes). Fast commit ineligibility is marked by calling
71 : * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
72 : * to full commit.
73 : *
74 : * Atomicity of commits
75 : * --------------------
76 : * In order to guarantee atomicity during the commit operation, fast commit
77 : * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
78 : * tag contains CRC of the contents and TID of the transaction after which
79 : * this fast commit should be applied. Recovery code replays fast commit
80 : * logs only if there's at least 1 valid tail present. For every fast commit
81 : * operation, there is 1 tail. This means, we may end up with multiple tails
82 : * in the fast commit space. Here's an example:
83 : *
84 : * - Create a new file A and remove existing file B
85 : * - fsync()
86 : * - Append contents to file A
87 : * - Truncate file A
88 : * - fsync()
89 : *
90 : * The fast commit space at the end of above operations would look like this:
91 : * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
92 : * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->|
93 : *
94 : * Replay code should thus check for all the valid tails in the FC area.
95 : *
96 : * Fast Commit Replay Idempotence
97 : * ------------------------------
98 : *
99 : * Fast commits tags are idempotent in nature provided the recovery code follows
100 : * certain rules. The guiding principle that the commit path follows while
101 : * committing is that it stores the result of a particular operation instead of
102 : * storing the procedure.
103 : *
104 : * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
105 : * was associated with inode 10. During fast commit, instead of storing this
106 : * operation as a procedure "rename a to b", we store the resulting file system
107 : * state as a "series" of outcomes:
108 : *
109 : * - Link dirent b to inode 10
110 : * - Unlink dirent a
111 : * - Inode <10> with valid refcount
112 : *
113 : * Now when recovery code runs, it needs "enforce" this state on the file
114 : * system. This is what guarantees idempotence of fast commit replay.
115 : *
116 : * Let's take an example of a procedure that is not idempotent and see how fast
117 : * commits make it idempotent. Consider following sequence of operations:
118 : *
119 : * rm A; mv B A; read A
120 : * (x) (y) (z)
121 : *
122 : * (x), (y) and (z) are the points at which we can crash. If we store this
123 : * sequence of operations as is then the replay is not idempotent. Let's say
124 : * while in replay, we crash at (z). During the second replay, file A (which was
125 : * actually created as a result of "mv B A" operation) would get deleted. Thus,
126 : * file named A would be absent when we try to read A. So, this sequence of
127 : * operations is not idempotent. However, as mentioned above, instead of storing
128 : * the procedure fast commits store the outcome of each procedure. Thus the fast
129 : * commit log for above procedure would be as follows:
130 : *
131 : * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
132 : * inode 11 before the replay)
133 : *
134 : * [Unlink A] [Link A to inode 11] [Unlink B] [Inode 11]
135 : * (w) (x) (y) (z)
136 : *
137 : * If we crash at (z), we will have file A linked to inode 11. During the second
138 : * replay, we will remove file A (inode 11). But we will create it back and make
139 : * it point to inode 11. We won't find B, so we'll just skip that step. At this
140 : * point, the refcount for inode 11 is not reliable, but that gets fixed by the
141 : * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
142 : * similarly. Thus, by converting a non-idempotent procedure into a series of
143 : * idempotent outcomes, fast commits ensured idempotence during the replay.
144 : *
145 : * TODOs
146 : * -----
147 : *
148 : * 0) Fast commit replay path hardening: Fast commit replay code should use
149 : * journal handles to make sure all the updates it does during the replay
150 : * path are atomic. With that if we crash during fast commit replay, after
151 : * trying to do recovery again, we will find a file system where fast commit
152 : * area is invalid (because new full commit would be found). In order to deal
153 : * with that, fast commit replay code should ensure that the "FC_REPLAY"
154 : * superblock state is persisted before starting the replay, so that after
155 : * the crash, fast commit recovery code can look at that flag and perform
156 : * fast commit recovery even if that area is invalidated by later full
157 : * commits.
158 : *
159 : * 1) Fast commit's commit path locks the entire file system during fast
160 : * commit. This has significant performance penalty. Instead of that, we
161 : * should use ext4_fc_start/stop_update functions to start inode level
162 : * updates from ext4_journal_start/stop. Once we do that we can drop file
163 : * system locking during commit path.
164 : *
165 : * 2) Handle more ineligible cases.
166 : */
167 :
168 : #include <trace/events/ext4.h>
169 : static struct kmem_cache *ext4_fc_dentry_cachep;
170 :
171 0 : static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
172 : {
173 0 : BUFFER_TRACE(bh, "");
174 0 : if (uptodate) {
175 0 : ext4_debug("%s: Block %lld up-to-date",
176 : __func__, bh->b_blocknr);
177 0 : set_buffer_uptodate(bh);
178 : } else {
179 0 : ext4_debug("%s: Block %lld not up-to-date",
180 : __func__, bh->b_blocknr);
181 0 : clear_buffer_uptodate(bh);
182 : }
183 :
184 0 : unlock_buffer(bh);
185 0 : }
186 :
187 : static inline void ext4_fc_reset_inode(struct inode *inode)
188 : {
189 6016724 : struct ext4_inode_info *ei = EXT4_I(inode);
190 :
191 6016724 : ei->i_fc_lblk_start = 0;
192 6016724 : ei->i_fc_lblk_len = 0;
193 0 : }
194 :
195 6016724 : void ext4_fc_init_inode(struct inode *inode)
196 : {
197 6016724 : struct ext4_inode_info *ei = EXT4_I(inode);
198 :
199 6016724 : ext4_fc_reset_inode(inode);
200 6016724 : ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
201 6033024 : INIT_LIST_HEAD(&ei->i_fc_list);
202 6033024 : INIT_LIST_HEAD(&ei->i_fc_dilist);
203 6033024 : init_waitqueue_head(&ei->i_fc_wait);
204 6028932 : atomic_set(&ei->i_fc_updates, 0);
205 6028932 : }
206 :
207 : /* This function must be called with sbi->s_fc_lock held. */
208 0 : static void ext4_fc_wait_committing_inode(struct inode *inode)
209 : __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
210 : {
211 0 : wait_queue_head_t *wq;
212 0 : struct ext4_inode_info *ei = EXT4_I(inode);
213 :
214 : #if (BITS_PER_LONG < 64)
215 : DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
216 : EXT4_STATE_FC_COMMITTING);
217 : wq = bit_waitqueue(&ei->i_state_flags,
218 : EXT4_STATE_FC_COMMITTING);
219 : #else
220 0 : DEFINE_WAIT_BIT(wait, &ei->i_flags,
221 : EXT4_STATE_FC_COMMITTING);
222 0 : wq = bit_waitqueue(&ei->i_flags,
223 : EXT4_STATE_FC_COMMITTING);
224 : #endif
225 0 : lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
226 0 : prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
227 0 : spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
228 0 : schedule();
229 0 : finish_wait(wq, &wait.wq_entry);
230 0 : }
231 :
232 : static bool ext4_fc_disabled(struct super_block *sb)
233 : {
234 166208158 : return (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
235 0 : (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY));
236 : }
237 :
238 : /*
239 : * Inform Ext4's fast about start of an inode update
240 : *
241 : * This function is called by the high level call VFS callbacks before
242 : * performing any inode update. This function blocks if there's an ongoing
243 : * fast commit on the inode in question.
244 : */
245 0 : void ext4_fc_start_update(struct inode *inode)
246 : {
247 0 : struct ext4_inode_info *ei = EXT4_I(inode);
248 :
249 0 : if (ext4_fc_disabled(inode->i_sb))
250 : return;
251 :
252 0 : restart:
253 0 : spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
254 0 : if (list_empty(&ei->i_fc_list))
255 0 : goto out;
256 :
257 0 : if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
258 0 : ext4_fc_wait_committing_inode(inode);
259 0 : goto restart;
260 : }
261 0 : out:
262 0 : atomic_inc(&ei->i_fc_updates);
263 0 : spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
264 : }
265 :
266 : /*
267 : * Stop inode update and wake up waiting fast commits if any.
268 : */
269 0 : void ext4_fc_stop_update(struct inode *inode)
270 : {
271 0 : struct ext4_inode_info *ei = EXT4_I(inode);
272 :
273 0 : if (ext4_fc_disabled(inode->i_sb))
274 : return;
275 :
276 0 : if (atomic_dec_and_test(&ei->i_fc_updates))
277 0 : wake_up_all(&ei->i_fc_wait);
278 : }
279 :
280 : /*
281 : * Remove inode from fast commit list. If the inode is being committed
282 : * we wait until inode commit is done.
283 : */
284 3248680 : void ext4_fc_del(struct inode *inode)
285 : {
286 3248680 : struct ext4_inode_info *ei = EXT4_I(inode);
287 3248680 : struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
288 3248680 : struct ext4_fc_dentry_update *fc_dentry;
289 :
290 3248680 : if (ext4_fc_disabled(inode->i_sb))
291 : return;
292 :
293 0 : restart:
294 0 : spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
295 0 : if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) {
296 0 : spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
297 0 : return;
298 : }
299 :
300 0 : if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
301 0 : ext4_fc_wait_committing_inode(inode);
302 0 : goto restart;
303 : }
304 :
305 0 : if (!list_empty(&ei->i_fc_list))
306 0 : list_del_init(&ei->i_fc_list);
307 :
308 : /*
309 : * Since this inode is getting removed, let's also remove all FC
310 : * dentry create references, since it is not needed to log it anyways.
311 : */
312 0 : if (list_empty(&ei->i_fc_dilist)) {
313 0 : spin_unlock(&sbi->s_fc_lock);
314 0 : return;
315 : }
316 :
317 0 : fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist);
318 0 : WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT);
319 0 : list_del_init(&fc_dentry->fcd_list);
320 0 : list_del_init(&fc_dentry->fcd_dilist);
321 :
322 0 : WARN_ON(!list_empty(&ei->i_fc_dilist));
323 0 : spin_unlock(&sbi->s_fc_lock);
324 :
325 0 : if (fc_dentry->fcd_name.name &&
326 0 : fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
327 0 : kfree(fc_dentry->fcd_name.name);
328 0 : kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
329 :
330 0 : return;
331 : }
332 :
333 : /*
334 : * Mark file system as fast commit ineligible, and record latest
335 : * ineligible transaction tid. This means until the recorded
336 : * transaction, commit operation would result in a full jbd2 commit.
337 : */
338 1191727 : void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
339 : {
340 1191727 : struct ext4_sb_info *sbi = EXT4_SB(sb);
341 1191727 : tid_t tid;
342 :
343 1191727 : if (ext4_fc_disabled(sb))
344 : return;
345 :
346 0 : ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
347 0 : if (handle && !IS_ERR(handle))
348 0 : tid = handle->h_transaction->t_tid;
349 : else {
350 0 : read_lock(&sbi->s_journal->j_state_lock);
351 0 : tid = sbi->s_journal->j_running_transaction ?
352 0 : sbi->s_journal->j_running_transaction->t_tid : 0;
353 0 : read_unlock(&sbi->s_journal->j_state_lock);
354 : }
355 0 : spin_lock(&sbi->s_fc_lock);
356 0 : if (sbi->s_fc_ineligible_tid < tid)
357 0 : sbi->s_fc_ineligible_tid = tid;
358 0 : spin_unlock(&sbi->s_fc_lock);
359 0 : WARN_ON(reason >= EXT4_FC_REASON_MAX);
360 0 : sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
361 : }
362 :
363 : /*
364 : * Generic fast commit tracking function. If this is the first time this we are
365 : * called after a full commit, we initialize fast commit fields and then call
366 : * __fc_track_fn() with update = 0. If we have already been called after a full
367 : * commit, we pass update = 1. Based on that, the track function can determine
368 : * if it needs to track a field for the first time or if it needs to just
369 : * update the previously tracked value.
370 : *
371 : * If enqueue is set, this function enqueues the inode in fast commit list.
372 : */
373 0 : static int ext4_fc_track_template(
374 : handle_t *handle, struct inode *inode,
375 : int (*__fc_track_fn)(struct inode *, void *, bool),
376 : void *args, int enqueue)
377 : {
378 0 : bool update = false;
379 0 : struct ext4_inode_info *ei = EXT4_I(inode);
380 0 : struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
381 0 : tid_t tid = 0;
382 0 : int ret;
383 :
384 0 : tid = handle->h_transaction->t_tid;
385 0 : mutex_lock(&ei->i_fc_lock);
386 0 : if (tid == ei->i_sync_tid) {
387 : update = true;
388 : } else {
389 0 : ext4_fc_reset_inode(inode);
390 0 : ei->i_sync_tid = tid;
391 : }
392 0 : ret = __fc_track_fn(inode, args, update);
393 0 : mutex_unlock(&ei->i_fc_lock);
394 :
395 0 : if (!enqueue)
396 : return ret;
397 :
398 0 : spin_lock(&sbi->s_fc_lock);
399 0 : if (list_empty(&EXT4_I(inode)->i_fc_list))
400 0 : list_add_tail(&EXT4_I(inode)->i_fc_list,
401 0 : (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
402 : sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
403 : &sbi->s_fc_q[FC_Q_STAGING] :
404 : &sbi->s_fc_q[FC_Q_MAIN]);
405 0 : spin_unlock(&sbi->s_fc_lock);
406 :
407 0 : return ret;
408 : }
409 :
410 : struct __track_dentry_update_args {
411 : struct dentry *dentry;
412 : int op;
413 : };
414 :
415 : /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
416 0 : static int __track_dentry_update(struct inode *inode, void *arg, bool update)
417 : {
418 0 : struct ext4_fc_dentry_update *node;
419 0 : struct ext4_inode_info *ei = EXT4_I(inode);
420 0 : struct __track_dentry_update_args *dentry_update =
421 : (struct __track_dentry_update_args *)arg;
422 0 : struct dentry *dentry = dentry_update->dentry;
423 0 : struct inode *dir = dentry->d_parent->d_inode;
424 0 : struct super_block *sb = inode->i_sb;
425 0 : struct ext4_sb_info *sbi = EXT4_SB(sb);
426 :
427 0 : mutex_unlock(&ei->i_fc_lock);
428 :
429 0 : if (IS_ENCRYPTED(dir)) {
430 0 : ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME,
431 : NULL);
432 0 : mutex_lock(&ei->i_fc_lock);
433 0 : return -EOPNOTSUPP;
434 : }
435 :
436 0 : node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
437 0 : if (!node) {
438 0 : ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL);
439 0 : mutex_lock(&ei->i_fc_lock);
440 0 : return -ENOMEM;
441 : }
442 :
443 0 : node->fcd_op = dentry_update->op;
444 0 : node->fcd_parent = dir->i_ino;
445 0 : node->fcd_ino = inode->i_ino;
446 0 : if (dentry->d_name.len > DNAME_INLINE_LEN) {
447 0 : node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
448 0 : if (!node->fcd_name.name) {
449 0 : kmem_cache_free(ext4_fc_dentry_cachep, node);
450 0 : ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL);
451 0 : mutex_lock(&ei->i_fc_lock);
452 0 : return -ENOMEM;
453 : }
454 0 : memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
455 : dentry->d_name.len);
456 : } else {
457 0 : memcpy(node->fcd_iname, dentry->d_name.name,
458 : dentry->d_name.len);
459 0 : node->fcd_name.name = node->fcd_iname;
460 : }
461 0 : node->fcd_name.len = dentry->d_name.len;
462 0 : INIT_LIST_HEAD(&node->fcd_dilist);
463 0 : spin_lock(&sbi->s_fc_lock);
464 0 : if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
465 : sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
466 0 : list_add_tail(&node->fcd_list,
467 : &sbi->s_fc_dentry_q[FC_Q_STAGING]);
468 : else
469 0 : list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
470 :
471 : /*
472 : * This helps us keep a track of all fc_dentry updates which is part of
473 : * this ext4 inode. So in case the inode is getting unlinked, before
474 : * even we get a chance to fsync, we could remove all fc_dentry
475 : * references while evicting the inode in ext4_fc_del().
476 : * Also with this, we don't need to loop over all the inodes in
477 : * sbi->s_fc_q to get the corresponding inode in
478 : * ext4_fc_commit_dentry_updates().
479 : */
480 0 : if (dentry_update->op == EXT4_FC_TAG_CREAT) {
481 0 : WARN_ON(!list_empty(&ei->i_fc_dilist));
482 0 : list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist);
483 : }
484 0 : spin_unlock(&sbi->s_fc_lock);
485 0 : mutex_lock(&ei->i_fc_lock);
486 :
487 0 : return 0;
488 : }
489 :
490 0 : void __ext4_fc_track_unlink(handle_t *handle,
491 : struct inode *inode, struct dentry *dentry)
492 : {
493 0 : struct __track_dentry_update_args args;
494 0 : int ret;
495 :
496 0 : args.dentry = dentry;
497 0 : args.op = EXT4_FC_TAG_UNLINK;
498 :
499 0 : ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
500 : (void *)&args, 0);
501 0 : trace_ext4_fc_track_unlink(handle, inode, dentry, ret);
502 0 : }
503 :
504 1568711 : void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
505 : {
506 1568711 : struct inode *inode = d_inode(dentry);
507 :
508 1568711 : if (ext4_fc_disabled(inode->i_sb))
509 : return;
510 :
511 0 : if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
512 : return;
513 :
514 0 : __ext4_fc_track_unlink(handle, inode, dentry);
515 : }
516 :
517 0 : void __ext4_fc_track_link(handle_t *handle,
518 : struct inode *inode, struct dentry *dentry)
519 : {
520 0 : struct __track_dentry_update_args args;
521 0 : int ret;
522 :
523 0 : args.dentry = dentry;
524 0 : args.op = EXT4_FC_TAG_LINK;
525 :
526 0 : ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
527 : (void *)&args, 0);
528 0 : trace_ext4_fc_track_link(handle, inode, dentry, ret);
529 0 : }
530 :
531 76611 : void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
532 : {
533 76611 : struct inode *inode = d_inode(dentry);
534 :
535 76611 : if (ext4_fc_disabled(inode->i_sb))
536 : return;
537 :
538 0 : if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
539 : return;
540 :
541 0 : __ext4_fc_track_link(handle, inode, dentry);
542 : }
543 :
544 0 : void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
545 : struct dentry *dentry)
546 : {
547 0 : struct __track_dentry_update_args args;
548 0 : int ret;
549 :
550 0 : args.dentry = dentry;
551 0 : args.op = EXT4_FC_TAG_CREAT;
552 :
553 0 : ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
554 : (void *)&args, 0);
555 0 : trace_ext4_fc_track_create(handle, inode, dentry, ret);
556 0 : }
557 :
558 2169347 : void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
559 : {
560 2169347 : struct inode *inode = d_inode(dentry);
561 :
562 2169347 : if (ext4_fc_disabled(inode->i_sb))
563 : return;
564 :
565 0 : if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
566 : return;
567 :
568 0 : __ext4_fc_track_create(handle, inode, dentry);
569 : }
570 :
571 : /* __track_fn for inode tracking */
572 0 : static int __track_inode(struct inode *inode, void *arg, bool update)
573 : {
574 0 : if (update)
575 : return -EEXIST;
576 :
577 0 : EXT4_I(inode)->i_fc_lblk_len = 0;
578 :
579 0 : return 0;
580 : }
581 :
582 78545956 : void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
583 : {
584 78545956 : int ret;
585 :
586 78545956 : if (S_ISDIR(inode->i_mode))
587 : return;
588 :
589 68091899 : if (ext4_fc_disabled(inode->i_sb))
590 : return;
591 :
592 0 : if (ext4_should_journal_data(inode)) {
593 0 : ext4_fc_mark_ineligible(inode->i_sb,
594 : EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
595 0 : return;
596 : }
597 :
598 0 : if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
599 : return;
600 :
601 0 : ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
602 0 : trace_ext4_fc_track_inode(handle, inode, ret);
603 : }
604 :
605 : struct __track_range_args {
606 : ext4_lblk_t start, end;
607 : };
608 :
609 : /* __track_fn for tracking data updates */
610 0 : static int __track_range(struct inode *inode, void *arg, bool update)
611 : {
612 0 : struct ext4_inode_info *ei = EXT4_I(inode);
613 0 : ext4_lblk_t oldstart;
614 0 : struct __track_range_args *__arg =
615 : (struct __track_range_args *)arg;
616 :
617 0 : if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
618 : ext4_debug("Special inode %ld being modified\n", inode->i_ino);
619 : return -ECANCELED;
620 : }
621 :
622 0 : oldstart = ei->i_fc_lblk_start;
623 :
624 0 : if (update && ei->i_fc_lblk_len > 0) {
625 0 : ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
626 0 : ei->i_fc_lblk_len =
627 0 : max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
628 0 : ei->i_fc_lblk_start + 1;
629 : } else {
630 0 : ei->i_fc_lblk_start = __arg->start;
631 0 : ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
632 : }
633 :
634 : return 0;
635 : }
636 :
637 7138102 : void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
638 : ext4_lblk_t end)
639 : {
640 7138102 : struct __track_range_args args;
641 7138102 : int ret;
642 :
643 7138102 : if (S_ISDIR(inode->i_mode))
644 7138102 : return;
645 :
646 6757104 : if (ext4_fc_disabled(inode->i_sb))
647 : return;
648 :
649 0 : if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
650 : return;
651 :
652 0 : args.start = start;
653 0 : args.end = end;
654 :
655 0 : ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1);
656 :
657 0 : trace_ext4_fc_track_range(handle, inode, start, end, ret);
658 : }
659 :
660 0 : static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
661 : {
662 0 : blk_opf_t write_flags = REQ_SYNC;
663 0 : struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
664 :
665 : /* Add REQ_FUA | REQ_PREFLUSH only its tail */
666 0 : if (test_opt(sb, BARRIER) && is_tail)
667 0 : write_flags |= REQ_FUA | REQ_PREFLUSH;
668 0 : lock_buffer(bh);
669 0 : set_buffer_dirty(bh);
670 0 : set_buffer_uptodate(bh);
671 0 : bh->b_end_io = ext4_end_buffer_io_sync;
672 0 : submit_bh(REQ_OP_WRITE | write_flags, bh);
673 0 : EXT4_SB(sb)->s_fc_bh = NULL;
674 0 : }
675 :
676 : /* Ext4 commit path routines */
677 :
678 : /*
679 : * Allocate len bytes on a fast commit buffer.
680 : *
681 : * During the commit time this function is used to manage fast commit
682 : * block space. We don't split a fast commit log onto different
683 : * blocks. So this function makes sure that if there's not enough space
684 : * on the current block, the remaining space in the current block is
685 : * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
686 : * new block is from jbd2 and CRC is updated to reflect the padding
687 : * we added.
688 : */
689 0 : static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
690 : {
691 0 : struct ext4_fc_tl tl;
692 0 : struct ext4_sb_info *sbi = EXT4_SB(sb);
693 0 : struct buffer_head *bh;
694 0 : int bsize = sbi->s_journal->j_blocksize;
695 0 : int ret, off = sbi->s_fc_bytes % bsize;
696 0 : int remaining;
697 0 : u8 *dst;
698 :
699 : /*
700 : * If 'len' is too long to fit in any block alongside a PAD tlv, then we
701 : * cannot fulfill the request.
702 : */
703 0 : if (len > bsize - EXT4_FC_TAG_BASE_LEN)
704 : return NULL;
705 :
706 0 : if (!sbi->s_fc_bh) {
707 0 : ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
708 0 : if (ret)
709 : return NULL;
710 0 : sbi->s_fc_bh = bh;
711 : }
712 0 : dst = sbi->s_fc_bh->b_data + off;
713 :
714 : /*
715 : * Allocate the bytes in the current block if we can do so while still
716 : * leaving enough space for a PAD tlv.
717 : */
718 0 : remaining = bsize - EXT4_FC_TAG_BASE_LEN - off;
719 0 : if (len <= remaining) {
720 0 : sbi->s_fc_bytes += len;
721 0 : return dst;
722 : }
723 :
724 : /*
725 : * Else, terminate the current block with a PAD tlv, then allocate a new
726 : * block and allocate the bytes at the start of that new block.
727 : */
728 :
729 0 : tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
730 0 : tl.fc_len = cpu_to_le16(remaining);
731 0 : memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
732 0 : memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining);
733 0 : *crc = ext4_chksum(sbi, *crc, sbi->s_fc_bh->b_data, bsize);
734 :
735 0 : ext4_fc_submit_bh(sb, false);
736 :
737 0 : ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
738 0 : if (ret)
739 : return NULL;
740 0 : sbi->s_fc_bh = bh;
741 0 : sbi->s_fc_bytes += bsize - off + len;
742 0 : return sbi->s_fc_bh->b_data;
743 : }
744 :
745 : /*
746 : * Complete a fast commit by writing tail tag.
747 : *
748 : * Writing tail tag marks the end of a fast commit. In order to guarantee
749 : * atomicity, after writing tail tag, even if there's space remaining
750 : * in the block, next commit shouldn't use it. That's why tail tag
751 : * has the length as that of the remaining space on the block.
752 : */
753 0 : static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
754 : {
755 0 : struct ext4_sb_info *sbi = EXT4_SB(sb);
756 0 : struct ext4_fc_tl tl;
757 0 : struct ext4_fc_tail tail;
758 0 : int off, bsize = sbi->s_journal->j_blocksize;
759 0 : u8 *dst;
760 :
761 : /*
762 : * ext4_fc_reserve_space takes care of allocating an extra block if
763 : * there's no enough space on this block for accommodating this tail.
764 : */
765 0 : dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc);
766 0 : if (!dst)
767 : return -ENOSPC;
768 :
769 0 : off = sbi->s_fc_bytes % bsize;
770 :
771 0 : tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
772 0 : tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail));
773 0 : sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
774 :
775 0 : memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
776 0 : dst += EXT4_FC_TAG_BASE_LEN;
777 0 : tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
778 0 : memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid));
779 0 : dst += sizeof(tail.fc_tid);
780 0 : crc = ext4_chksum(sbi, crc, sbi->s_fc_bh->b_data,
781 0 : dst - (u8 *)sbi->s_fc_bh->b_data);
782 0 : tail.fc_crc = cpu_to_le32(crc);
783 0 : memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc));
784 0 : dst += sizeof(tail.fc_crc);
785 0 : memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
786 :
787 0 : ext4_fc_submit_bh(sb, true);
788 :
789 0 : return 0;
790 : }
791 :
792 : /*
793 : * Adds tag, length, value and updates CRC. Returns true if tlv was added.
794 : * Returns false if there's not enough space.
795 : */
796 0 : static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
797 : u32 *crc)
798 : {
799 0 : struct ext4_fc_tl tl;
800 0 : u8 *dst;
801 :
802 0 : dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc);
803 0 : if (!dst)
804 : return false;
805 :
806 0 : tl.fc_tag = cpu_to_le16(tag);
807 0 : tl.fc_len = cpu_to_le16(len);
808 :
809 0 : memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
810 0 : memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len);
811 :
812 0 : return true;
813 : }
814 :
815 : /* Same as above, but adds dentry tlv. */
816 0 : static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
817 : struct ext4_fc_dentry_update *fc_dentry)
818 : {
819 0 : struct ext4_fc_dentry_info fcd;
820 0 : struct ext4_fc_tl tl;
821 0 : int dlen = fc_dentry->fcd_name.len;
822 0 : u8 *dst = ext4_fc_reserve_space(sb,
823 0 : EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc);
824 :
825 0 : if (!dst)
826 : return false;
827 :
828 0 : fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
829 0 : fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
830 0 : tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
831 0 : tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
832 0 : memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
833 0 : dst += EXT4_FC_TAG_BASE_LEN;
834 0 : memcpy(dst, &fcd, sizeof(fcd));
835 0 : dst += sizeof(fcd);
836 0 : memcpy(dst, fc_dentry->fcd_name.name, dlen);
837 :
838 0 : return true;
839 : }
840 :
841 : /*
842 : * Writes inode in the fast commit space under TLV with tag @tag.
843 : * Returns 0 on success, error on failure.
844 : */
845 0 : static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
846 : {
847 0 : struct ext4_inode_info *ei = EXT4_I(inode);
848 0 : int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
849 0 : int ret;
850 0 : struct ext4_iloc iloc;
851 0 : struct ext4_fc_inode fc_inode;
852 0 : struct ext4_fc_tl tl;
853 0 : u8 *dst;
854 :
855 0 : ret = ext4_get_inode_loc(inode, &iloc);
856 0 : if (ret)
857 : return ret;
858 :
859 0 : if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
860 0 : inode_len = EXT4_INODE_SIZE(inode->i_sb);
861 0 : else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
862 0 : inode_len += ei->i_extra_isize;
863 :
864 0 : fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
865 0 : tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
866 0 : tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
867 :
868 0 : ret = -ECANCELED;
869 0 : dst = ext4_fc_reserve_space(inode->i_sb,
870 0 : EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc);
871 0 : if (!dst)
872 0 : goto err;
873 :
874 0 : memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
875 0 : dst += EXT4_FC_TAG_BASE_LEN;
876 0 : memcpy(dst, &fc_inode, sizeof(fc_inode));
877 0 : dst += sizeof(fc_inode);
878 0 : memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len);
879 0 : ret = 0;
880 0 : err:
881 0 : brelse(iloc.bh);
882 : return ret;
883 : }
884 :
885 : /*
886 : * Writes updated data ranges for the inode in question. Updates CRC.
887 : * Returns 0 on success, error otherwise.
888 : */
889 0 : static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
890 : {
891 0 : ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
892 0 : struct ext4_inode_info *ei = EXT4_I(inode);
893 0 : struct ext4_map_blocks map;
894 0 : struct ext4_fc_add_range fc_ext;
895 0 : struct ext4_fc_del_range lrange;
896 0 : struct ext4_extent *ex;
897 0 : int ret;
898 :
899 0 : mutex_lock(&ei->i_fc_lock);
900 0 : if (ei->i_fc_lblk_len == 0) {
901 0 : mutex_unlock(&ei->i_fc_lock);
902 0 : return 0;
903 : }
904 0 : old_blk_size = ei->i_fc_lblk_start;
905 0 : new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
906 0 : ei->i_fc_lblk_len = 0;
907 0 : mutex_unlock(&ei->i_fc_lock);
908 :
909 0 : cur_lblk_off = old_blk_size;
910 0 : ext4_debug("will try writing %d to %d for inode %ld\n",
911 : cur_lblk_off, new_blk_size, inode->i_ino);
912 :
913 0 : while (cur_lblk_off <= new_blk_size) {
914 0 : map.m_lblk = cur_lblk_off;
915 0 : map.m_len = new_blk_size - cur_lblk_off + 1;
916 0 : ret = ext4_map_blocks(NULL, inode, &map, 0);
917 0 : if (ret < 0)
918 : return -ECANCELED;
919 :
920 0 : if (map.m_len == 0) {
921 0 : cur_lblk_off++;
922 0 : continue;
923 : }
924 :
925 0 : if (ret == 0) {
926 0 : lrange.fc_ino = cpu_to_le32(inode->i_ino);
927 0 : lrange.fc_lblk = cpu_to_le32(map.m_lblk);
928 0 : lrange.fc_len = cpu_to_le32(map.m_len);
929 0 : if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
930 : sizeof(lrange), (u8 *)&lrange, crc))
931 : return -ENOSPC;
932 : } else {
933 0 : unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
934 : EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
935 :
936 : /* Limit the number of blocks in one extent */
937 0 : map.m_len = min(max, map.m_len);
938 :
939 0 : fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
940 0 : ex = (struct ext4_extent *)&fc_ext.fc_ex;
941 0 : ex->ee_block = cpu_to_le32(map.m_lblk);
942 0 : ex->ee_len = cpu_to_le16(map.m_len);
943 0 : ext4_ext_store_pblock(ex, map.m_pblk);
944 0 : if (map.m_flags & EXT4_MAP_UNWRITTEN)
945 0 : ext4_ext_mark_unwritten(ex);
946 : else
947 0 : ext4_ext_mark_initialized(ex);
948 0 : if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
949 : sizeof(fc_ext), (u8 *)&fc_ext, crc))
950 : return -ENOSPC;
951 : }
952 :
953 0 : cur_lblk_off += map.m_len;
954 : }
955 :
956 : return 0;
957 : }
958 :
959 :
960 : /* Submit data for all the fast commit inodes */
961 0 : static int ext4_fc_submit_inode_data_all(journal_t *journal)
962 : {
963 0 : struct super_block *sb = journal->j_private;
964 0 : struct ext4_sb_info *sbi = EXT4_SB(sb);
965 0 : struct ext4_inode_info *ei;
966 0 : int ret = 0;
967 :
968 0 : spin_lock(&sbi->s_fc_lock);
969 0 : list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
970 0 : ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
971 0 : while (atomic_read(&ei->i_fc_updates)) {
972 0 : DEFINE_WAIT(wait);
973 :
974 0 : prepare_to_wait(&ei->i_fc_wait, &wait,
975 : TASK_UNINTERRUPTIBLE);
976 0 : if (atomic_read(&ei->i_fc_updates)) {
977 0 : spin_unlock(&sbi->s_fc_lock);
978 0 : schedule();
979 0 : spin_lock(&sbi->s_fc_lock);
980 : }
981 0 : finish_wait(&ei->i_fc_wait, &wait);
982 : }
983 0 : spin_unlock(&sbi->s_fc_lock);
984 0 : ret = jbd2_submit_inode_data(journal, ei->jinode);
985 0 : if (ret)
986 0 : return ret;
987 0 : spin_lock(&sbi->s_fc_lock);
988 : }
989 0 : spin_unlock(&sbi->s_fc_lock);
990 :
991 0 : return ret;
992 : }
993 :
994 : /* Wait for completion of data for all the fast commit inodes */
995 0 : static int ext4_fc_wait_inode_data_all(journal_t *journal)
996 : {
997 0 : struct super_block *sb = journal->j_private;
998 0 : struct ext4_sb_info *sbi = EXT4_SB(sb);
999 0 : struct ext4_inode_info *pos, *n;
1000 0 : int ret = 0;
1001 :
1002 0 : spin_lock(&sbi->s_fc_lock);
1003 0 : list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1004 0 : if (!ext4_test_inode_state(&pos->vfs_inode,
1005 : EXT4_STATE_FC_COMMITTING))
1006 0 : continue;
1007 0 : spin_unlock(&sbi->s_fc_lock);
1008 :
1009 0 : ret = jbd2_wait_inode_data(journal, pos->jinode);
1010 0 : if (ret)
1011 0 : return ret;
1012 0 : spin_lock(&sbi->s_fc_lock);
1013 : }
1014 0 : spin_unlock(&sbi->s_fc_lock);
1015 :
1016 0 : return 0;
1017 : }
1018 :
1019 : /* Commit all the directory entry updates */
1020 0 : static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
1021 : __acquires(&sbi->s_fc_lock)
1022 : __releases(&sbi->s_fc_lock)
1023 : {
1024 0 : struct super_block *sb = journal->j_private;
1025 0 : struct ext4_sb_info *sbi = EXT4_SB(sb);
1026 0 : struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
1027 0 : struct inode *inode;
1028 0 : struct ext4_inode_info *ei;
1029 0 : int ret;
1030 :
1031 0 : if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
1032 : return 0;
1033 0 : list_for_each_entry_safe(fc_dentry, fc_dentry_n,
1034 : &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
1035 0 : if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
1036 0 : spin_unlock(&sbi->s_fc_lock);
1037 0 : if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1038 0 : ret = -ENOSPC;
1039 0 : goto lock_and_exit;
1040 : }
1041 0 : spin_lock(&sbi->s_fc_lock);
1042 0 : continue;
1043 : }
1044 : /*
1045 : * With fcd_dilist we need not loop in sbi->s_fc_q to get the
1046 : * corresponding inode pointer
1047 : */
1048 0 : WARN_ON(list_empty(&fc_dentry->fcd_dilist));
1049 0 : ei = list_first_entry(&fc_dentry->fcd_dilist,
1050 : struct ext4_inode_info, i_fc_dilist);
1051 0 : inode = &ei->vfs_inode;
1052 0 : WARN_ON(inode->i_ino != fc_dentry->fcd_ino);
1053 :
1054 0 : spin_unlock(&sbi->s_fc_lock);
1055 :
1056 : /*
1057 : * We first write the inode and then the create dirent. This
1058 : * allows the recovery code to create an unnamed inode first
1059 : * and then link it to a directory entry. This allows us
1060 : * to use namei.c routines almost as is and simplifies
1061 : * the recovery code.
1062 : */
1063 0 : ret = ext4_fc_write_inode(inode, crc);
1064 0 : if (ret)
1065 0 : goto lock_and_exit;
1066 :
1067 0 : ret = ext4_fc_write_inode_data(inode, crc);
1068 0 : if (ret)
1069 0 : goto lock_and_exit;
1070 :
1071 0 : if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1072 0 : ret = -ENOSPC;
1073 0 : goto lock_and_exit;
1074 : }
1075 :
1076 0 : spin_lock(&sbi->s_fc_lock);
1077 : }
1078 : return 0;
1079 0 : lock_and_exit:
1080 0 : spin_lock(&sbi->s_fc_lock);
1081 0 : return ret;
1082 : }
1083 :
1084 0 : static int ext4_fc_perform_commit(journal_t *journal)
1085 : {
1086 0 : struct super_block *sb = journal->j_private;
1087 0 : struct ext4_sb_info *sbi = EXT4_SB(sb);
1088 0 : struct ext4_inode_info *iter;
1089 0 : struct ext4_fc_head head;
1090 0 : struct inode *inode;
1091 0 : struct blk_plug plug;
1092 0 : int ret = 0;
1093 0 : u32 crc = 0;
1094 :
1095 0 : ret = ext4_fc_submit_inode_data_all(journal);
1096 0 : if (ret)
1097 : return ret;
1098 :
1099 0 : ret = ext4_fc_wait_inode_data_all(journal);
1100 0 : if (ret)
1101 : return ret;
1102 :
1103 : /*
1104 : * If file system device is different from journal device, issue a cache
1105 : * flush before we start writing fast commit blocks.
1106 : */
1107 0 : if (journal->j_fs_dev != journal->j_dev)
1108 0 : blkdev_issue_flush(journal->j_fs_dev);
1109 :
1110 0 : blk_start_plug(&plug);
1111 0 : if (sbi->s_fc_bytes == 0) {
1112 : /*
1113 : * Add a head tag only if this is the first fast commit
1114 : * in this TID.
1115 : */
1116 0 : head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1117 0 : head.fc_tid = cpu_to_le32(
1118 : sbi->s_journal->j_running_transaction->t_tid);
1119 0 : if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1120 : (u8 *)&head, &crc)) {
1121 0 : ret = -ENOSPC;
1122 0 : goto out;
1123 : }
1124 : }
1125 :
1126 0 : spin_lock(&sbi->s_fc_lock);
1127 0 : ret = ext4_fc_commit_dentry_updates(journal, &crc);
1128 0 : if (ret) {
1129 0 : spin_unlock(&sbi->s_fc_lock);
1130 0 : goto out;
1131 : }
1132 :
1133 0 : list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1134 0 : inode = &iter->vfs_inode;
1135 0 : if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1136 0 : continue;
1137 :
1138 0 : spin_unlock(&sbi->s_fc_lock);
1139 0 : ret = ext4_fc_write_inode_data(inode, &crc);
1140 0 : if (ret)
1141 0 : goto out;
1142 0 : ret = ext4_fc_write_inode(inode, &crc);
1143 0 : if (ret)
1144 0 : goto out;
1145 0 : spin_lock(&sbi->s_fc_lock);
1146 : }
1147 0 : spin_unlock(&sbi->s_fc_lock);
1148 :
1149 0 : ret = ext4_fc_write_tail(sb, crc);
1150 :
1151 0 : out:
1152 0 : blk_finish_plug(&plug);
1153 0 : return ret;
1154 : }
1155 :
1156 0 : static void ext4_fc_update_stats(struct super_block *sb, int status,
1157 : u64 commit_time, int nblks, tid_t commit_tid)
1158 : {
1159 0 : struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
1160 :
1161 0 : ext4_debug("Fast commit ended with status = %d for tid %u",
1162 : status, commit_tid);
1163 0 : if (status == EXT4_FC_STATUS_OK) {
1164 0 : stats->fc_num_commits++;
1165 0 : stats->fc_numblks += nblks;
1166 0 : if (likely(stats->s_fc_avg_commit_time))
1167 0 : stats->s_fc_avg_commit_time =
1168 0 : (commit_time +
1169 0 : stats->s_fc_avg_commit_time * 3) / 4;
1170 : else
1171 0 : stats->s_fc_avg_commit_time = commit_time;
1172 0 : } else if (status == EXT4_FC_STATUS_FAILED ||
1173 0 : status == EXT4_FC_STATUS_INELIGIBLE) {
1174 0 : if (status == EXT4_FC_STATUS_FAILED)
1175 0 : stats->fc_failed_commits++;
1176 0 : stats->fc_ineligible_commits++;
1177 : } else {
1178 0 : stats->fc_skipped_commits++;
1179 : }
1180 0 : trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid);
1181 0 : }
1182 :
1183 : /*
1184 : * The main commit entry point. Performs a fast commit for transaction
1185 : * commit_tid if needed. If it's not possible to perform a fast commit
1186 : * due to various reasons, we fall back to full commit. Returns 0
1187 : * on success, error otherwise.
1188 : */
1189 237134 : int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1190 : {
1191 237134 : struct super_block *sb = journal->j_private;
1192 237134 : struct ext4_sb_info *sbi = EXT4_SB(sb);
1193 237134 : int nblks = 0, ret, bsize = journal->j_blocksize;
1194 237134 : int subtid = atomic_read(&sbi->s_fc_subtid);
1195 237134 : int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
1196 237134 : ktime_t start_time, commit_time;
1197 :
1198 237134 : if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
1199 237134 : return jbd2_complete_transaction(journal, commit_tid);
1200 :
1201 0 : trace_ext4_fc_commit_start(sb, commit_tid);
1202 :
1203 0 : start_time = ktime_get();
1204 :
1205 0 : restart_fc:
1206 0 : ret = jbd2_fc_begin_commit(journal, commit_tid);
1207 0 : if (ret == -EALREADY) {
1208 : /* There was an ongoing commit, check if we need to restart */
1209 0 : if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1210 0 : commit_tid > journal->j_commit_sequence)
1211 0 : goto restart_fc;
1212 0 : ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0,
1213 : commit_tid);
1214 0 : return 0;
1215 0 : } else if (ret) {
1216 : /*
1217 : * Commit couldn't start. Just update stats and perform a
1218 : * full commit.
1219 : */
1220 0 : ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0,
1221 : commit_tid);
1222 0 : return jbd2_complete_transaction(journal, commit_tid);
1223 : }
1224 :
1225 : /*
1226 : * After establishing journal barrier via jbd2_fc_begin_commit(), check
1227 : * if we are fast commit ineligible.
1228 : */
1229 0 : if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) {
1230 0 : status = EXT4_FC_STATUS_INELIGIBLE;
1231 0 : goto fallback;
1232 : }
1233 :
1234 0 : fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1235 0 : ret = ext4_fc_perform_commit(journal);
1236 0 : if (ret < 0) {
1237 0 : status = EXT4_FC_STATUS_FAILED;
1238 0 : goto fallback;
1239 : }
1240 0 : nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1241 0 : ret = jbd2_fc_wait_bufs(journal, nblks);
1242 0 : if (ret < 0) {
1243 0 : status = EXT4_FC_STATUS_FAILED;
1244 0 : goto fallback;
1245 : }
1246 0 : atomic_inc(&sbi->s_fc_subtid);
1247 0 : ret = jbd2_fc_end_commit(journal);
1248 : /*
1249 : * weight the commit time higher than the average time so we
1250 : * don't react too strongly to vast changes in the commit time
1251 : */
1252 0 : commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1253 0 : ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid);
1254 0 : return ret;
1255 :
1256 0 : fallback:
1257 0 : ret = jbd2_fc_end_commit_fallback(journal);
1258 0 : ext4_fc_update_stats(sb, status, 0, 0, commit_tid);
1259 0 : return ret;
1260 : }
1261 :
1262 : /*
1263 : * Fast commit cleanup routine. This is called after every fast commit and
1264 : * full commit. full is true if we are called after a full commit.
1265 : */
1266 0 : static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
1267 : {
1268 0 : struct super_block *sb = journal->j_private;
1269 0 : struct ext4_sb_info *sbi = EXT4_SB(sb);
1270 0 : struct ext4_inode_info *iter, *iter_n;
1271 0 : struct ext4_fc_dentry_update *fc_dentry;
1272 :
1273 0 : if (full && sbi->s_fc_bh)
1274 0 : sbi->s_fc_bh = NULL;
1275 :
1276 0 : trace_ext4_fc_cleanup(journal, full, tid);
1277 0 : jbd2_fc_release_bufs(journal);
1278 :
1279 0 : spin_lock(&sbi->s_fc_lock);
1280 0 : list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1281 : i_fc_list) {
1282 0 : list_del_init(&iter->i_fc_list);
1283 0 : ext4_clear_inode_state(&iter->vfs_inode,
1284 : EXT4_STATE_FC_COMMITTING);
1285 0 : if (iter->i_sync_tid <= tid)
1286 0 : ext4_fc_reset_inode(&iter->vfs_inode);
1287 : /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1288 0 : smp_mb();
1289 : #if (BITS_PER_LONG < 64)
1290 : wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1291 : #else
1292 0 : wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1293 : #endif
1294 : }
1295 :
1296 0 : while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1297 0 : fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1298 : struct ext4_fc_dentry_update,
1299 : fcd_list);
1300 0 : list_del_init(&fc_dentry->fcd_list);
1301 0 : list_del_init(&fc_dentry->fcd_dilist);
1302 0 : spin_unlock(&sbi->s_fc_lock);
1303 :
1304 0 : if (fc_dentry->fcd_name.name &&
1305 0 : fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1306 0 : kfree(fc_dentry->fcd_name.name);
1307 0 : kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1308 0 : spin_lock(&sbi->s_fc_lock);
1309 : }
1310 :
1311 0 : list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1312 : &sbi->s_fc_dentry_q[FC_Q_MAIN]);
1313 0 : list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1314 : &sbi->s_fc_q[FC_Q_MAIN]);
1315 :
1316 0 : if (tid >= sbi->s_fc_ineligible_tid) {
1317 0 : sbi->s_fc_ineligible_tid = 0;
1318 0 : ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1319 : }
1320 :
1321 0 : if (full)
1322 0 : sbi->s_fc_bytes = 0;
1323 0 : spin_unlock(&sbi->s_fc_lock);
1324 0 : trace_ext4_fc_stats(sb);
1325 0 : }
1326 :
1327 : /* Ext4 Replay Path Routines */
1328 :
1329 : /* Helper struct for dentry replay routines */
1330 : struct dentry_info_args {
1331 : int parent_ino, dname_len, ino, inode_len;
1332 : char *dname;
1333 : };
1334 :
1335 : /* Same as struct ext4_fc_tl, but uses native endianness fields */
1336 : struct ext4_fc_tl_mem {
1337 : u16 fc_tag;
1338 : u16 fc_len;
1339 : };
1340 :
1341 0 : static inline void tl_to_darg(struct dentry_info_args *darg,
1342 : struct ext4_fc_tl_mem *tl, u8 *val)
1343 : {
1344 0 : struct ext4_fc_dentry_info fcd;
1345 :
1346 0 : memcpy(&fcd, val, sizeof(fcd));
1347 :
1348 0 : darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1349 0 : darg->ino = le32_to_cpu(fcd.fc_ino);
1350 0 : darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1351 0 : darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info);
1352 0 : }
1353 :
1354 0 : static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val)
1355 : {
1356 0 : struct ext4_fc_tl tl_disk;
1357 :
1358 0 : memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN);
1359 0 : tl->fc_len = le16_to_cpu(tl_disk.fc_len);
1360 0 : tl->fc_tag = le16_to_cpu(tl_disk.fc_tag);
1361 0 : }
1362 :
1363 : /* Unlink replay function */
1364 0 : static int ext4_fc_replay_unlink(struct super_block *sb,
1365 : struct ext4_fc_tl_mem *tl, u8 *val)
1366 : {
1367 0 : struct inode *inode, *old_parent;
1368 0 : struct qstr entry;
1369 0 : struct dentry_info_args darg;
1370 0 : int ret = 0;
1371 :
1372 0 : tl_to_darg(&darg, tl, val);
1373 :
1374 0 : trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1375 : darg.parent_ino, darg.dname_len);
1376 :
1377 0 : entry.name = darg.dname;
1378 0 : entry.len = darg.dname_len;
1379 0 : inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1380 :
1381 0 : if (IS_ERR(inode)) {
1382 : ext4_debug("Inode %d not found", darg.ino);
1383 : return 0;
1384 : }
1385 :
1386 0 : old_parent = ext4_iget(sb, darg.parent_ino,
1387 : EXT4_IGET_NORMAL);
1388 0 : if (IS_ERR(old_parent)) {
1389 0 : ext4_debug("Dir with inode %d not found", darg.parent_ino);
1390 0 : iput(inode);
1391 0 : return 0;
1392 : }
1393 :
1394 0 : ret = __ext4_unlink(old_parent, &entry, inode, NULL);
1395 : /* -ENOENT ok coz it might not exist anymore. */
1396 0 : if (ret == -ENOENT)
1397 0 : ret = 0;
1398 0 : iput(old_parent);
1399 0 : iput(inode);
1400 0 : return ret;
1401 : }
1402 :
1403 0 : static int ext4_fc_replay_link_internal(struct super_block *sb,
1404 : struct dentry_info_args *darg,
1405 : struct inode *inode)
1406 : {
1407 0 : struct inode *dir = NULL;
1408 0 : struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1409 0 : struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1410 0 : int ret = 0;
1411 :
1412 0 : dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1413 0 : if (IS_ERR(dir)) {
1414 0 : ext4_debug("Dir with inode %d not found.", darg->parent_ino);
1415 0 : dir = NULL;
1416 0 : goto out;
1417 : }
1418 :
1419 0 : dentry_dir = d_obtain_alias(dir);
1420 0 : if (IS_ERR(dentry_dir)) {
1421 0 : ext4_debug("Failed to obtain dentry");
1422 0 : dentry_dir = NULL;
1423 0 : goto out;
1424 : }
1425 :
1426 0 : dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1427 0 : if (!dentry_inode) {
1428 0 : ext4_debug("Inode dentry not created.");
1429 0 : ret = -ENOMEM;
1430 0 : goto out;
1431 : }
1432 :
1433 0 : ret = __ext4_link(dir, inode, dentry_inode);
1434 : /*
1435 : * It's possible that link already existed since data blocks
1436 : * for the dir in question got persisted before we crashed OR
1437 : * we replayed this tag and crashed before the entire replay
1438 : * could complete.
1439 : */
1440 0 : if (ret && ret != -EEXIST) {
1441 0 : ext4_debug("Failed to link\n");
1442 0 : goto out;
1443 : }
1444 :
1445 : ret = 0;
1446 0 : out:
1447 0 : if (dentry_dir) {
1448 0 : d_drop(dentry_dir);
1449 0 : dput(dentry_dir);
1450 0 : } else if (dir) {
1451 0 : iput(dir);
1452 : }
1453 0 : if (dentry_inode) {
1454 0 : d_drop(dentry_inode);
1455 0 : dput(dentry_inode);
1456 : }
1457 :
1458 0 : return ret;
1459 : }
1460 :
1461 : /* Link replay function */
1462 0 : static int ext4_fc_replay_link(struct super_block *sb,
1463 : struct ext4_fc_tl_mem *tl, u8 *val)
1464 : {
1465 0 : struct inode *inode;
1466 0 : struct dentry_info_args darg;
1467 0 : int ret = 0;
1468 :
1469 0 : tl_to_darg(&darg, tl, val);
1470 0 : trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1471 : darg.parent_ino, darg.dname_len);
1472 :
1473 0 : inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1474 0 : if (IS_ERR(inode)) {
1475 : ext4_debug("Inode not found.");
1476 : return 0;
1477 : }
1478 :
1479 0 : ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1480 0 : iput(inode);
1481 0 : return ret;
1482 : }
1483 :
1484 : /*
1485 : * Record all the modified inodes during replay. We use this later to setup
1486 : * block bitmaps correctly.
1487 : */
1488 0 : static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1489 : {
1490 0 : struct ext4_fc_replay_state *state;
1491 0 : int i;
1492 :
1493 0 : state = &EXT4_SB(sb)->s_fc_replay_state;
1494 0 : for (i = 0; i < state->fc_modified_inodes_used; i++)
1495 0 : if (state->fc_modified_inodes[i] == ino)
1496 : return 0;
1497 0 : if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1498 0 : int *fc_modified_inodes;
1499 :
1500 0 : fc_modified_inodes = krealloc(state->fc_modified_inodes,
1501 0 : sizeof(int) * (state->fc_modified_inodes_size +
1502 : EXT4_FC_REPLAY_REALLOC_INCREMENT),
1503 : GFP_KERNEL);
1504 0 : if (!fc_modified_inodes)
1505 : return -ENOMEM;
1506 0 : state->fc_modified_inodes = fc_modified_inodes;
1507 0 : state->fc_modified_inodes_size +=
1508 : EXT4_FC_REPLAY_REALLOC_INCREMENT;
1509 : }
1510 0 : state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1511 0 : return 0;
1512 : }
1513 :
1514 : /*
1515 : * Inode replay function
1516 : */
1517 0 : static int ext4_fc_replay_inode(struct super_block *sb,
1518 : struct ext4_fc_tl_mem *tl, u8 *val)
1519 : {
1520 0 : struct ext4_fc_inode fc_inode;
1521 0 : struct ext4_inode *raw_inode;
1522 0 : struct ext4_inode *raw_fc_inode;
1523 0 : struct inode *inode = NULL;
1524 0 : struct ext4_iloc iloc;
1525 0 : int inode_len, ino, ret, tag = tl->fc_tag;
1526 0 : struct ext4_extent_header *eh;
1527 0 : size_t off_gen = offsetof(struct ext4_inode, i_generation);
1528 :
1529 0 : memcpy(&fc_inode, val, sizeof(fc_inode));
1530 :
1531 0 : ino = le32_to_cpu(fc_inode.fc_ino);
1532 0 : trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1533 :
1534 0 : inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1535 0 : if (!IS_ERR(inode)) {
1536 0 : ext4_ext_clear_bb(inode);
1537 0 : iput(inode);
1538 : }
1539 0 : inode = NULL;
1540 :
1541 0 : ret = ext4_fc_record_modified_inode(sb, ino);
1542 0 : if (ret)
1543 0 : goto out;
1544 :
1545 0 : raw_fc_inode = (struct ext4_inode *)
1546 : (val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1547 0 : ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1548 0 : if (ret)
1549 0 : goto out;
1550 :
1551 0 : inode_len = tl->fc_len - sizeof(struct ext4_fc_inode);
1552 0 : raw_inode = ext4_raw_inode(&iloc);
1553 :
1554 0 : memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1555 0 : memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen,
1556 : inode_len - off_gen);
1557 0 : if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1558 0 : eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1559 0 : if (eh->eh_magic != EXT4_EXT_MAGIC) {
1560 0 : memset(eh, 0, sizeof(*eh));
1561 0 : eh->eh_magic = EXT4_EXT_MAGIC;
1562 0 : eh->eh_max = cpu_to_le16(
1563 : (sizeof(raw_inode->i_block) -
1564 : sizeof(struct ext4_extent_header))
1565 : / sizeof(struct ext4_extent));
1566 : }
1567 0 : } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1568 0 : memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1569 : sizeof(raw_inode->i_block));
1570 : }
1571 :
1572 : /* Immediately update the inode on disk. */
1573 0 : ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1574 0 : if (ret)
1575 0 : goto out;
1576 0 : ret = sync_dirty_buffer(iloc.bh);
1577 0 : if (ret)
1578 0 : goto out;
1579 0 : ret = ext4_mark_inode_used(sb, ino);
1580 0 : if (ret)
1581 0 : goto out;
1582 :
1583 : /* Given that we just wrote the inode on disk, this SHOULD succeed. */
1584 0 : inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1585 0 : if (IS_ERR(inode)) {
1586 : ext4_debug("Inode not found.");
1587 : return -EFSCORRUPTED;
1588 : }
1589 :
1590 : /*
1591 : * Our allocator could have made different decisions than before
1592 : * crashing. This should be fixed but until then, we calculate
1593 : * the number of blocks the inode.
1594 : */
1595 0 : if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
1596 0 : ext4_ext_replay_set_iblocks(inode);
1597 :
1598 0 : inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1599 0 : ext4_reset_inode_seed(inode);
1600 :
1601 0 : ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1602 0 : ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1603 0 : sync_dirty_buffer(iloc.bh);
1604 0 : brelse(iloc.bh);
1605 0 : out:
1606 0 : iput(inode);
1607 0 : if (!ret)
1608 0 : blkdev_issue_flush(sb->s_bdev);
1609 :
1610 : return 0;
1611 : }
1612 :
1613 : /*
1614 : * Dentry create replay function.
1615 : *
1616 : * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1617 : * inode for which we are trying to create a dentry here, should already have
1618 : * been replayed before we start here.
1619 : */
1620 0 : static int ext4_fc_replay_create(struct super_block *sb,
1621 : struct ext4_fc_tl_mem *tl, u8 *val)
1622 : {
1623 0 : int ret = 0;
1624 0 : struct inode *inode = NULL;
1625 0 : struct inode *dir = NULL;
1626 0 : struct dentry_info_args darg;
1627 :
1628 0 : tl_to_darg(&darg, tl, val);
1629 :
1630 0 : trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1631 : darg.parent_ino, darg.dname_len);
1632 :
1633 : /* This takes care of update group descriptor and other metadata */
1634 0 : ret = ext4_mark_inode_used(sb, darg.ino);
1635 0 : if (ret)
1636 0 : goto out;
1637 :
1638 0 : inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1639 0 : if (IS_ERR(inode)) {
1640 0 : ext4_debug("inode %d not found.", darg.ino);
1641 0 : inode = NULL;
1642 0 : ret = -EINVAL;
1643 0 : goto out;
1644 : }
1645 :
1646 0 : if (S_ISDIR(inode->i_mode)) {
1647 : /*
1648 : * If we are creating a directory, we need to make sure that the
1649 : * dot and dot dot dirents are setup properly.
1650 : */
1651 0 : dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1652 0 : if (IS_ERR(dir)) {
1653 0 : ext4_debug("Dir %d not found.", darg.ino);
1654 0 : goto out;
1655 : }
1656 0 : ret = ext4_init_new_dir(NULL, dir, inode);
1657 0 : iput(dir);
1658 0 : if (ret) {
1659 0 : ret = 0;
1660 0 : goto out;
1661 : }
1662 : }
1663 0 : ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1664 0 : if (ret)
1665 0 : goto out;
1666 0 : set_nlink(inode, 1);
1667 0 : ext4_mark_inode_dirty(NULL, inode);
1668 0 : out:
1669 0 : iput(inode);
1670 0 : return ret;
1671 : }
1672 :
1673 : /*
1674 : * Record physical disk regions which are in use as per fast commit area,
1675 : * and used by inodes during replay phase. Our simple replay phase
1676 : * allocator excludes these regions from allocation.
1677 : */
1678 0 : int ext4_fc_record_regions(struct super_block *sb, int ino,
1679 : ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1680 : {
1681 0 : struct ext4_fc_replay_state *state;
1682 0 : struct ext4_fc_alloc_region *region;
1683 :
1684 0 : state = &EXT4_SB(sb)->s_fc_replay_state;
1685 : /*
1686 : * during replay phase, the fc_regions_valid may not same as
1687 : * fc_regions_used, update it when do new additions.
1688 : */
1689 0 : if (replay && state->fc_regions_used != state->fc_regions_valid)
1690 0 : state->fc_regions_used = state->fc_regions_valid;
1691 0 : if (state->fc_regions_used == state->fc_regions_size) {
1692 0 : struct ext4_fc_alloc_region *fc_regions;
1693 :
1694 0 : fc_regions = krealloc(state->fc_regions,
1695 : sizeof(struct ext4_fc_alloc_region) *
1696 0 : (state->fc_regions_size +
1697 : EXT4_FC_REPLAY_REALLOC_INCREMENT),
1698 : GFP_KERNEL);
1699 0 : if (!fc_regions)
1700 : return -ENOMEM;
1701 0 : state->fc_regions_size +=
1702 : EXT4_FC_REPLAY_REALLOC_INCREMENT;
1703 0 : state->fc_regions = fc_regions;
1704 : }
1705 0 : region = &state->fc_regions[state->fc_regions_used++];
1706 0 : region->ino = ino;
1707 0 : region->lblk = lblk;
1708 0 : region->pblk = pblk;
1709 0 : region->len = len;
1710 :
1711 0 : if (replay)
1712 0 : state->fc_regions_valid++;
1713 :
1714 : return 0;
1715 : }
1716 :
1717 : /* Replay add range tag */
1718 0 : static int ext4_fc_replay_add_range(struct super_block *sb,
1719 : struct ext4_fc_tl_mem *tl, u8 *val)
1720 : {
1721 0 : struct ext4_fc_add_range fc_add_ex;
1722 0 : struct ext4_extent newex, *ex;
1723 0 : struct inode *inode;
1724 0 : ext4_lblk_t start, cur;
1725 0 : int remaining, len;
1726 0 : ext4_fsblk_t start_pblk;
1727 0 : struct ext4_map_blocks map;
1728 0 : struct ext4_ext_path *path = NULL;
1729 0 : int ret;
1730 :
1731 0 : memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1732 0 : ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1733 :
1734 0 : trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1735 : le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1736 : ext4_ext_get_actual_len(ex));
1737 :
1738 0 : inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1739 0 : if (IS_ERR(inode)) {
1740 : ext4_debug("Inode not found.");
1741 : return 0;
1742 : }
1743 :
1744 0 : ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1745 0 : if (ret)
1746 0 : goto out;
1747 :
1748 0 : start = le32_to_cpu(ex->ee_block);
1749 0 : start_pblk = ext4_ext_pblock(ex);
1750 0 : len = ext4_ext_get_actual_len(ex);
1751 :
1752 : cur = start;
1753 : remaining = len;
1754 : ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1755 : start, start_pblk, len, ext4_ext_is_unwritten(ex),
1756 : inode->i_ino);
1757 :
1758 0 : while (remaining > 0) {
1759 0 : map.m_lblk = cur;
1760 0 : map.m_len = remaining;
1761 0 : map.m_pblk = 0;
1762 0 : ret = ext4_map_blocks(NULL, inode, &map, 0);
1763 :
1764 0 : if (ret < 0)
1765 0 : goto out;
1766 :
1767 0 : if (ret == 0) {
1768 : /* Range is not mapped */
1769 0 : path = ext4_find_extent(inode, cur, NULL, 0);
1770 0 : if (IS_ERR(path))
1771 0 : goto out;
1772 0 : memset(&newex, 0, sizeof(newex));
1773 0 : newex.ee_block = cpu_to_le32(cur);
1774 0 : ext4_ext_store_pblock(
1775 0 : &newex, start_pblk + cur - start);
1776 0 : newex.ee_len = cpu_to_le16(map.m_len);
1777 0 : if (ext4_ext_is_unwritten(ex))
1778 0 : ext4_ext_mark_unwritten(&newex);
1779 0 : down_write(&EXT4_I(inode)->i_data_sem);
1780 0 : ret = ext4_ext_insert_extent(
1781 : NULL, inode, &path, &newex, 0);
1782 0 : up_write((&EXT4_I(inode)->i_data_sem));
1783 0 : ext4_free_ext_path(path);
1784 0 : if (ret)
1785 0 : goto out;
1786 0 : goto next;
1787 : }
1788 :
1789 0 : if (start_pblk + cur - start != map.m_pblk) {
1790 : /*
1791 : * Logical to physical mapping changed. This can happen
1792 : * if this range was removed and then reallocated to
1793 : * map to new physical blocks during a fast commit.
1794 : */
1795 0 : ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1796 : ext4_ext_is_unwritten(ex),
1797 : start_pblk + cur - start);
1798 0 : if (ret)
1799 0 : goto out;
1800 : /*
1801 : * Mark the old blocks as free since they aren't used
1802 : * anymore. We maintain an array of all the modified
1803 : * inodes. In case these blocks are still used at either
1804 : * a different logical range in the same inode or in
1805 : * some different inode, we will mark them as allocated
1806 : * at the end of the FC replay using our array of
1807 : * modified inodes.
1808 : */
1809 0 : ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1810 0 : goto next;
1811 : }
1812 :
1813 : /* Range is mapped and needs a state change */
1814 0 : ext4_debug("Converting from %ld to %d %lld",
1815 : map.m_flags & EXT4_MAP_UNWRITTEN,
1816 : ext4_ext_is_unwritten(ex), map.m_pblk);
1817 0 : ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1818 : ext4_ext_is_unwritten(ex), map.m_pblk);
1819 0 : if (ret)
1820 0 : goto out;
1821 : /*
1822 : * We may have split the extent tree while toggling the state.
1823 : * Try to shrink the extent tree now.
1824 : */
1825 0 : ext4_ext_replay_shrink_inode(inode, start + len);
1826 0 : next:
1827 0 : cur += map.m_len;
1828 0 : remaining -= map.m_len;
1829 : }
1830 0 : ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1831 0 : sb->s_blocksize_bits);
1832 0 : out:
1833 0 : iput(inode);
1834 0 : return 0;
1835 : }
1836 :
1837 : /* Replay DEL_RANGE tag */
1838 : static int
1839 0 : ext4_fc_replay_del_range(struct super_block *sb,
1840 : struct ext4_fc_tl_mem *tl, u8 *val)
1841 : {
1842 0 : struct inode *inode;
1843 0 : struct ext4_fc_del_range lrange;
1844 0 : struct ext4_map_blocks map;
1845 0 : ext4_lblk_t cur, remaining;
1846 0 : int ret;
1847 :
1848 0 : memcpy(&lrange, val, sizeof(lrange));
1849 0 : cur = le32_to_cpu(lrange.fc_lblk);
1850 0 : remaining = le32_to_cpu(lrange.fc_len);
1851 :
1852 0 : trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1853 0 : le32_to_cpu(lrange.fc_ino), cur, remaining);
1854 :
1855 0 : inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1856 0 : if (IS_ERR(inode)) {
1857 : ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino));
1858 : return 0;
1859 : }
1860 :
1861 0 : ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1862 0 : if (ret)
1863 0 : goto out;
1864 :
1865 : ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n",
1866 : inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1867 : le32_to_cpu(lrange.fc_len));
1868 0 : while (remaining > 0) {
1869 0 : map.m_lblk = cur;
1870 0 : map.m_len = remaining;
1871 :
1872 0 : ret = ext4_map_blocks(NULL, inode, &map, 0);
1873 0 : if (ret < 0)
1874 0 : goto out;
1875 0 : if (ret > 0) {
1876 0 : remaining -= ret;
1877 0 : cur += ret;
1878 0 : ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1879 : } else {
1880 0 : remaining -= map.m_len;
1881 0 : cur += map.m_len;
1882 : }
1883 : }
1884 :
1885 0 : down_write(&EXT4_I(inode)->i_data_sem);
1886 0 : ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1887 0 : le32_to_cpu(lrange.fc_lblk) +
1888 : le32_to_cpu(lrange.fc_len) - 1);
1889 0 : up_write(&EXT4_I(inode)->i_data_sem);
1890 0 : if (ret)
1891 0 : goto out;
1892 0 : ext4_ext_replay_shrink_inode(inode,
1893 0 : i_size_read(inode) >> sb->s_blocksize_bits);
1894 0 : ext4_mark_inode_dirty(NULL, inode);
1895 0 : out:
1896 0 : iput(inode);
1897 0 : return 0;
1898 : }
1899 :
1900 0 : static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1901 : {
1902 0 : struct ext4_fc_replay_state *state;
1903 0 : struct inode *inode;
1904 0 : struct ext4_ext_path *path = NULL;
1905 0 : struct ext4_map_blocks map;
1906 0 : int i, ret, j;
1907 0 : ext4_lblk_t cur, end;
1908 :
1909 0 : state = &EXT4_SB(sb)->s_fc_replay_state;
1910 0 : for (i = 0; i < state->fc_modified_inodes_used; i++) {
1911 0 : inode = ext4_iget(sb, state->fc_modified_inodes[i],
1912 : EXT4_IGET_NORMAL);
1913 0 : if (IS_ERR(inode)) {
1914 0 : ext4_debug("Inode %d not found.",
1915 : state->fc_modified_inodes[i]);
1916 0 : continue;
1917 : }
1918 0 : cur = 0;
1919 0 : end = EXT_MAX_BLOCKS;
1920 0 : if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) {
1921 0 : iput(inode);
1922 0 : continue;
1923 : }
1924 0 : while (cur < end) {
1925 0 : map.m_lblk = cur;
1926 0 : map.m_len = end - cur;
1927 :
1928 0 : ret = ext4_map_blocks(NULL, inode, &map, 0);
1929 0 : if (ret < 0)
1930 : break;
1931 :
1932 0 : if (ret > 0) {
1933 0 : path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1934 0 : if (!IS_ERR(path)) {
1935 0 : for (j = 0; j < path->p_depth; j++)
1936 0 : ext4_mb_mark_bb(inode->i_sb,
1937 0 : path[j].p_block, 1, 1);
1938 0 : ext4_free_ext_path(path);
1939 : }
1940 0 : cur += ret;
1941 0 : ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1942 0 : map.m_len, 1);
1943 : } else {
1944 0 : cur = cur + (map.m_len ? map.m_len : 1);
1945 : }
1946 : }
1947 0 : iput(inode);
1948 : }
1949 0 : }
1950 :
1951 : /*
1952 : * Check if block is in excluded regions for block allocation. The simple
1953 : * allocator that runs during replay phase is calls this function to see
1954 : * if it is okay to use a block.
1955 : */
1956 0 : bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1957 : {
1958 0 : int i;
1959 0 : struct ext4_fc_replay_state *state;
1960 :
1961 0 : state = &EXT4_SB(sb)->s_fc_replay_state;
1962 0 : for (i = 0; i < state->fc_regions_valid; i++) {
1963 0 : if (state->fc_regions[i].ino == 0 ||
1964 0 : state->fc_regions[i].len == 0)
1965 0 : continue;
1966 0 : if (in_range(blk, state->fc_regions[i].pblk,
1967 : state->fc_regions[i].len))
1968 : return true;
1969 : }
1970 : return false;
1971 : }
1972 :
1973 : /* Cleanup function called after replay */
1974 2536 : void ext4_fc_replay_cleanup(struct super_block *sb)
1975 : {
1976 2536 : struct ext4_sb_info *sbi = EXT4_SB(sb);
1977 :
1978 2536 : sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1979 2536 : kfree(sbi->s_fc_replay_state.fc_regions);
1980 2536 : kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1981 2536 : }
1982 :
1983 0 : static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi,
1984 : int tag, int len)
1985 : {
1986 0 : switch (tag) {
1987 0 : case EXT4_FC_TAG_ADD_RANGE:
1988 0 : return len == sizeof(struct ext4_fc_add_range);
1989 0 : case EXT4_FC_TAG_DEL_RANGE:
1990 0 : return len == sizeof(struct ext4_fc_del_range);
1991 0 : case EXT4_FC_TAG_CREAT:
1992 : case EXT4_FC_TAG_LINK:
1993 : case EXT4_FC_TAG_UNLINK:
1994 0 : len -= sizeof(struct ext4_fc_dentry_info);
1995 0 : return len >= 1 && len <= EXT4_NAME_LEN;
1996 0 : case EXT4_FC_TAG_INODE:
1997 0 : len -= sizeof(struct ext4_fc_inode);
1998 0 : return len >= EXT4_GOOD_OLD_INODE_SIZE &&
1999 0 : len <= sbi->s_inode_size;
2000 : case EXT4_FC_TAG_PAD:
2001 : return true; /* padding can have any length */
2002 0 : case EXT4_FC_TAG_TAIL:
2003 0 : return len >= sizeof(struct ext4_fc_tail);
2004 0 : case EXT4_FC_TAG_HEAD:
2005 0 : return len == sizeof(struct ext4_fc_head);
2006 : }
2007 0 : return false;
2008 : }
2009 :
2010 : /*
2011 : * Recovery Scan phase handler
2012 : *
2013 : * This function is called during the scan phase and is responsible
2014 : * for doing following things:
2015 : * - Make sure the fast commit area has valid tags for replay
2016 : * - Count number of tags that need to be replayed by the replay handler
2017 : * - Verify CRC
2018 : * - Create a list of excluded blocks for allocation during replay phase
2019 : *
2020 : * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
2021 : * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
2022 : * to indicate that scan has finished and JBD2 can now start replay phase.
2023 : * It returns a negative error to indicate that there was an error. At the end
2024 : * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
2025 : * to indicate the number of tags that need to replayed during the replay phase.
2026 : */
2027 0 : static int ext4_fc_replay_scan(journal_t *journal,
2028 : struct buffer_head *bh, int off,
2029 : tid_t expected_tid)
2030 : {
2031 0 : struct super_block *sb = journal->j_private;
2032 0 : struct ext4_sb_info *sbi = EXT4_SB(sb);
2033 0 : struct ext4_fc_replay_state *state;
2034 0 : int ret = JBD2_FC_REPLAY_CONTINUE;
2035 0 : struct ext4_fc_add_range ext;
2036 0 : struct ext4_fc_tl_mem tl;
2037 0 : struct ext4_fc_tail tail;
2038 0 : __u8 *start, *end, *cur, *val;
2039 0 : struct ext4_fc_head head;
2040 0 : struct ext4_extent *ex;
2041 :
2042 0 : state = &sbi->s_fc_replay_state;
2043 :
2044 0 : start = (u8 *)bh->b_data;
2045 0 : end = start + journal->j_blocksize;
2046 :
2047 0 : if (state->fc_replay_expected_off == 0) {
2048 0 : state->fc_cur_tag = 0;
2049 0 : state->fc_replay_num_tags = 0;
2050 0 : state->fc_crc = 0;
2051 0 : state->fc_regions = NULL;
2052 0 : state->fc_regions_valid = state->fc_regions_used =
2053 0 : state->fc_regions_size = 0;
2054 : /* Check if we can stop early */
2055 0 : if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
2056 : != EXT4_FC_TAG_HEAD)
2057 : return 0;
2058 : }
2059 :
2060 0 : if (off != state->fc_replay_expected_off) {
2061 0 : ret = -EFSCORRUPTED;
2062 0 : goto out_err;
2063 : }
2064 :
2065 0 : state->fc_replay_expected_off++;
2066 0 : for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2067 0 : cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2068 0 : ext4_fc_get_tl(&tl, cur);
2069 0 : val = cur + EXT4_FC_TAG_BASE_LEN;
2070 0 : if (tl.fc_len > end - val ||
2071 0 : !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) {
2072 0 : ret = state->fc_replay_num_tags ?
2073 0 : JBD2_FC_REPLAY_STOP : -ECANCELED;
2074 0 : goto out_err;
2075 : }
2076 0 : ext4_debug("Scan phase, tag:%s, blk %lld\n",
2077 : tag2str(tl.fc_tag), bh->b_blocknr);
2078 0 : switch (tl.fc_tag) {
2079 0 : case EXT4_FC_TAG_ADD_RANGE:
2080 0 : memcpy(&ext, val, sizeof(ext));
2081 0 : ex = (struct ext4_extent *)&ext.fc_ex;
2082 0 : ret = ext4_fc_record_regions(sb,
2083 : le32_to_cpu(ext.fc_ino),
2084 : le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
2085 : ext4_ext_get_actual_len(ex), 0);
2086 0 : if (ret < 0)
2087 : break;
2088 : ret = JBD2_FC_REPLAY_CONTINUE;
2089 0 : fallthrough;
2090 0 : case EXT4_FC_TAG_DEL_RANGE:
2091 : case EXT4_FC_TAG_LINK:
2092 : case EXT4_FC_TAG_UNLINK:
2093 : case EXT4_FC_TAG_CREAT:
2094 : case EXT4_FC_TAG_INODE:
2095 : case EXT4_FC_TAG_PAD:
2096 0 : state->fc_cur_tag++;
2097 0 : state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2098 0 : EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2099 0 : break;
2100 0 : case EXT4_FC_TAG_TAIL:
2101 0 : state->fc_cur_tag++;
2102 0 : memcpy(&tail, val, sizeof(tail));
2103 0 : state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2104 : EXT4_FC_TAG_BASE_LEN +
2105 : offsetof(struct ext4_fc_tail,
2106 : fc_crc));
2107 0 : if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2108 : le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2109 0 : state->fc_replay_num_tags = state->fc_cur_tag;
2110 0 : state->fc_regions_valid =
2111 0 : state->fc_regions_used;
2112 : } else {
2113 0 : ret = state->fc_replay_num_tags ?
2114 0 : JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2115 : }
2116 0 : state->fc_crc = 0;
2117 0 : break;
2118 0 : case EXT4_FC_TAG_HEAD:
2119 0 : memcpy(&head, val, sizeof(head));
2120 0 : if (le32_to_cpu(head.fc_features) &
2121 : ~EXT4_FC_SUPPORTED_FEATURES) {
2122 : ret = -EOPNOTSUPP;
2123 : break;
2124 : }
2125 0 : if (le32_to_cpu(head.fc_tid) != expected_tid) {
2126 : ret = JBD2_FC_REPLAY_STOP;
2127 : break;
2128 : }
2129 0 : state->fc_cur_tag++;
2130 0 : state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2131 0 : EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2132 0 : break;
2133 0 : default:
2134 0 : ret = state->fc_replay_num_tags ?
2135 0 : JBD2_FC_REPLAY_STOP : -ECANCELED;
2136 : }
2137 0 : if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2138 : break;
2139 : }
2140 :
2141 0 : out_err:
2142 0 : trace_ext4_fc_replay_scan(sb, ret, off);
2143 0 : return ret;
2144 : }
2145 :
2146 : /*
2147 : * Main recovery path entry point.
2148 : * The meaning of return codes is similar as above.
2149 : */
2150 0 : static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2151 : enum passtype pass, int off, tid_t expected_tid)
2152 : {
2153 0 : struct super_block *sb = journal->j_private;
2154 0 : struct ext4_sb_info *sbi = EXT4_SB(sb);
2155 0 : struct ext4_fc_tl_mem tl;
2156 0 : __u8 *start, *end, *cur, *val;
2157 0 : int ret = JBD2_FC_REPLAY_CONTINUE;
2158 0 : struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2159 0 : struct ext4_fc_tail tail;
2160 :
2161 0 : if (pass == PASS_SCAN) {
2162 0 : state->fc_current_pass = PASS_SCAN;
2163 0 : return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2164 : }
2165 :
2166 0 : if (state->fc_current_pass != pass) {
2167 0 : state->fc_current_pass = pass;
2168 0 : sbi->s_mount_state |= EXT4_FC_REPLAY;
2169 : }
2170 0 : if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2171 0 : ext4_debug("Replay stops\n");
2172 0 : ext4_fc_set_bitmaps_and_counters(sb);
2173 0 : return 0;
2174 : }
2175 :
2176 : #ifdef CONFIG_EXT4_DEBUG
2177 0 : if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2178 0 : pr_warn("Dropping fc block %d because max_replay set\n", off);
2179 0 : return JBD2_FC_REPLAY_STOP;
2180 : }
2181 : #endif
2182 :
2183 0 : start = (u8 *)bh->b_data;
2184 0 : end = start + journal->j_blocksize;
2185 :
2186 0 : for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2187 0 : cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2188 0 : ext4_fc_get_tl(&tl, cur);
2189 0 : val = cur + EXT4_FC_TAG_BASE_LEN;
2190 :
2191 0 : if (state->fc_replay_num_tags == 0) {
2192 0 : ret = JBD2_FC_REPLAY_STOP;
2193 0 : ext4_fc_set_bitmaps_and_counters(sb);
2194 0 : break;
2195 : }
2196 :
2197 0 : ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag));
2198 0 : state->fc_replay_num_tags--;
2199 0 : switch (tl.fc_tag) {
2200 0 : case EXT4_FC_TAG_LINK:
2201 0 : ret = ext4_fc_replay_link(sb, &tl, val);
2202 0 : break;
2203 0 : case EXT4_FC_TAG_UNLINK:
2204 0 : ret = ext4_fc_replay_unlink(sb, &tl, val);
2205 0 : break;
2206 0 : case EXT4_FC_TAG_ADD_RANGE:
2207 0 : ret = ext4_fc_replay_add_range(sb, &tl, val);
2208 0 : break;
2209 0 : case EXT4_FC_TAG_CREAT:
2210 0 : ret = ext4_fc_replay_create(sb, &tl, val);
2211 0 : break;
2212 0 : case EXT4_FC_TAG_DEL_RANGE:
2213 0 : ret = ext4_fc_replay_del_range(sb, &tl, val);
2214 0 : break;
2215 0 : case EXT4_FC_TAG_INODE:
2216 0 : ret = ext4_fc_replay_inode(sb, &tl, val);
2217 0 : break;
2218 0 : case EXT4_FC_TAG_PAD:
2219 0 : trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2220 0 : tl.fc_len, 0);
2221 0 : break;
2222 0 : case EXT4_FC_TAG_TAIL:
2223 0 : trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL,
2224 0 : 0, tl.fc_len, 0);
2225 0 : memcpy(&tail, val, sizeof(tail));
2226 0 : WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2227 : break;
2228 : case EXT4_FC_TAG_HEAD:
2229 : break;
2230 0 : default:
2231 0 : trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0);
2232 0 : ret = -ECANCELED;
2233 0 : break;
2234 : }
2235 0 : if (ret < 0)
2236 : break;
2237 0 : ret = JBD2_FC_REPLAY_CONTINUE;
2238 : }
2239 : return ret;
2240 : }
2241 :
2242 3139 : void ext4_fc_init(struct super_block *sb, journal_t *journal)
2243 : {
2244 : /*
2245 : * We set replay callback even if fast commit disabled because we may
2246 : * could still have fast commit blocks that need to be replayed even if
2247 : * fast commit has now been turned off.
2248 : */
2249 3139 : journal->j_fc_replay_callback = ext4_fc_replay;
2250 3139 : if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2251 : return;
2252 0 : journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2253 : }
2254 :
2255 : static const char * const fc_ineligible_reasons[] = {
2256 : [EXT4_FC_REASON_XATTR] = "Extended attributes changed",
2257 : [EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
2258 : [EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
2259 : [EXT4_FC_REASON_NOMEM] = "Insufficient memory",
2260 : [EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
2261 : [EXT4_FC_REASON_RESIZE] = "Resize",
2262 : [EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
2263 : [EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
2264 : [EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
2265 : [EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
2266 : };
2267 :
2268 0 : int ext4_fc_info_show(struct seq_file *seq, void *v)
2269 : {
2270 0 : struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2271 0 : struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2272 0 : int i;
2273 :
2274 0 : if (v != SEQ_START_TOKEN)
2275 : return 0;
2276 :
2277 0 : seq_printf(seq,
2278 : "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2279 : stats->fc_num_commits, stats->fc_ineligible_commits,
2280 : stats->fc_numblks,
2281 : div_u64(stats->s_fc_avg_commit_time, 1000));
2282 0 : seq_puts(seq, "Ineligible reasons:\n");
2283 0 : for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2284 0 : seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2285 0 : stats->fc_ineligible_reason_count[i]);
2286 :
2287 : return 0;
2288 : }
2289 :
2290 12 : int __init ext4_fc_init_dentry_cache(void)
2291 : {
2292 12 : ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2293 : SLAB_RECLAIM_ACCOUNT);
2294 :
2295 12 : if (ext4_fc_dentry_cachep == NULL)
2296 0 : return -ENOMEM;
2297 :
2298 : return 0;
2299 : }
2300 :
2301 0 : void ext4_fc_destroy_dentry_cache(void)
2302 : {
2303 0 : kmem_cache_destroy(ext4_fc_dentry_cachep);
2304 0 : }
|