Line data Source code
1 : /*
2 : * Performance events:
3 : *
4 : * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 : * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 : * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 : *
8 : * Data type definitions, declarations, prototypes.
9 : *
10 : * Started by: Thomas Gleixner and Ingo Molnar
11 : *
12 : * For licencing details see kernel-base/COPYING
13 : */
14 : #ifndef _LINUX_PERF_EVENT_H
15 : #define _LINUX_PERF_EVENT_H
16 :
17 : #include <uapi/linux/perf_event.h>
18 : #include <uapi/linux/bpf_perf_event.h>
19 :
20 : /*
21 : * Kernel-internal data types and definitions:
22 : */
23 :
24 : #ifdef CONFIG_PERF_EVENTS
25 : # include <asm/perf_event.h>
26 : # include <asm/local64.h>
27 : #endif
28 :
29 : #define PERF_GUEST_ACTIVE 0x01
30 : #define PERF_GUEST_USER 0x02
31 :
32 : struct perf_guest_info_callbacks {
33 : unsigned int (*state)(void);
34 : unsigned long (*get_ip)(void);
35 : unsigned int (*handle_intel_pt_intr)(void);
36 : };
37 :
38 : #ifdef CONFIG_HAVE_HW_BREAKPOINT
39 : #include <linux/rhashtable-types.h>
40 : #include <asm/hw_breakpoint.h>
41 : #endif
42 :
43 : #include <linux/list.h>
44 : #include <linux/mutex.h>
45 : #include <linux/rculist.h>
46 : #include <linux/rcupdate.h>
47 : #include <linux/spinlock.h>
48 : #include <linux/hrtimer.h>
49 : #include <linux/fs.h>
50 : #include <linux/pid_namespace.h>
51 : #include <linux/workqueue.h>
52 : #include <linux/ftrace.h>
53 : #include <linux/cpu.h>
54 : #include <linux/irq_work.h>
55 : #include <linux/static_key.h>
56 : #include <linux/jump_label_ratelimit.h>
57 : #include <linux/atomic.h>
58 : #include <linux/sysfs.h>
59 : #include <linux/perf_regs.h>
60 : #include <linux/cgroup.h>
61 : #include <linux/refcount.h>
62 : #include <linux/security.h>
63 : #include <linux/static_call.h>
64 : #include <linux/lockdep.h>
65 : #include <asm/local.h>
66 :
67 : struct perf_callchain_entry {
68 : __u64 nr;
69 : __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */
70 : };
71 :
72 : struct perf_callchain_entry_ctx {
73 : struct perf_callchain_entry *entry;
74 : u32 max_stack;
75 : u32 nr;
76 : short contexts;
77 : bool contexts_maxed;
78 : };
79 :
80 : typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
81 : unsigned long off, unsigned long len);
82 :
83 : struct perf_raw_frag {
84 : union {
85 : struct perf_raw_frag *next;
86 : unsigned long pad;
87 : };
88 : perf_copy_f copy;
89 : void *data;
90 : u32 size;
91 : } __packed;
92 :
93 : struct perf_raw_record {
94 : struct perf_raw_frag frag;
95 : u32 size;
96 : };
97 :
98 : static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
99 : {
100 : return frag->pad < sizeof(u64);
101 : }
102 :
103 : /*
104 : * branch stack layout:
105 : * nr: number of taken branches stored in entries[]
106 : * hw_idx: The low level index of raw branch records
107 : * for the most recent branch.
108 : * -1ULL means invalid/unknown.
109 : *
110 : * Note that nr can vary from sample to sample
111 : * branches (to, from) are stored from most recent
112 : * to least recent, i.e., entries[0] contains the most
113 : * recent branch.
114 : * The entries[] is an abstraction of raw branch records,
115 : * which may not be stored in age order in HW, e.g. Intel LBR.
116 : * The hw_idx is to expose the low level index of raw
117 : * branch record for the most recent branch aka entries[0].
118 : * The hw_idx index is between -1 (unknown) and max depth,
119 : * which can be retrieved in /sys/devices/cpu/caps/branches.
120 : * For the architectures whose raw branch records are
121 : * already stored in age order, the hw_idx should be 0.
122 : */
123 : struct perf_branch_stack {
124 : __u64 nr;
125 : __u64 hw_idx;
126 : struct perf_branch_entry entries[];
127 : };
128 :
129 : struct task_struct;
130 :
131 : /*
132 : * extra PMU register associated with an event
133 : */
134 : struct hw_perf_event_extra {
135 : u64 config; /* register value */
136 : unsigned int reg; /* register address or index */
137 : int alloc; /* extra register already allocated */
138 : int idx; /* index in shared_regs->regs[] */
139 : };
140 :
141 : /**
142 : * hw_perf_event::flag values
143 : *
144 : * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific
145 : * usage.
146 : */
147 : #define PERF_EVENT_FLAG_ARCH 0x000fffff
148 : #define PERF_EVENT_FLAG_USER_READ_CNT 0x80000000
149 :
150 : static_assert((PERF_EVENT_FLAG_USER_READ_CNT & PERF_EVENT_FLAG_ARCH) == 0);
151 :
152 : /**
153 : * struct hw_perf_event - performance event hardware details:
154 : */
155 : struct hw_perf_event {
156 : #ifdef CONFIG_PERF_EVENTS
157 : union {
158 : struct { /* hardware */
159 : u64 config;
160 : u64 last_tag;
161 : unsigned long config_base;
162 : unsigned long event_base;
163 : int event_base_rdpmc;
164 : int idx;
165 : int last_cpu;
166 : int flags;
167 :
168 : struct hw_perf_event_extra extra_reg;
169 : struct hw_perf_event_extra branch_reg;
170 : };
171 : struct { /* software */
172 : struct hrtimer hrtimer;
173 : };
174 : struct { /* tracepoint */
175 : /* for tp_event->class */
176 : struct list_head tp_list;
177 : };
178 : struct { /* amd_power */
179 : u64 pwr_acc;
180 : u64 ptsc;
181 : };
182 : #ifdef CONFIG_HAVE_HW_BREAKPOINT
183 : struct { /* breakpoint */
184 : /*
185 : * Crufty hack to avoid the chicken and egg
186 : * problem hw_breakpoint has with context
187 : * creation and event initalization.
188 : */
189 : struct arch_hw_breakpoint info;
190 : struct rhlist_head bp_list;
191 : };
192 : #endif
193 : struct { /* amd_iommu */
194 : u8 iommu_bank;
195 : u8 iommu_cntr;
196 : u16 padding;
197 : u64 conf;
198 : u64 conf1;
199 : };
200 : };
201 : /*
202 : * If the event is a per task event, this will point to the task in
203 : * question. See the comment in perf_event_alloc().
204 : */
205 : struct task_struct *target;
206 :
207 : /*
208 : * PMU would store hardware filter configuration
209 : * here.
210 : */
211 : void *addr_filters;
212 :
213 : /* Last sync'ed generation of filters */
214 : unsigned long addr_filters_gen;
215 :
216 : /*
217 : * hw_perf_event::state flags; used to track the PERF_EF_* state.
218 : */
219 : #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
220 : #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
221 : #define PERF_HES_ARCH 0x04
222 :
223 : int state;
224 :
225 : /*
226 : * The last observed hardware counter value, updated with a
227 : * local64_cmpxchg() such that pmu::read() can be called nested.
228 : */
229 : local64_t prev_count;
230 :
231 : /*
232 : * The period to start the next sample with.
233 : */
234 : u64 sample_period;
235 :
236 : union {
237 : struct { /* Sampling */
238 : /*
239 : * The period we started this sample with.
240 : */
241 : u64 last_period;
242 :
243 : /*
244 : * However much is left of the current period;
245 : * note that this is a full 64bit value and
246 : * allows for generation of periods longer
247 : * than hardware might allow.
248 : */
249 : local64_t period_left;
250 : };
251 : struct { /* Topdown events counting for context switch */
252 : u64 saved_metric;
253 : u64 saved_slots;
254 : };
255 : };
256 :
257 : /*
258 : * State for throttling the event, see __perf_event_overflow() and
259 : * perf_adjust_freq_unthr_context().
260 : */
261 : u64 interrupts_seq;
262 : u64 interrupts;
263 :
264 : /*
265 : * State for freq target events, see __perf_event_overflow() and
266 : * perf_adjust_freq_unthr_context().
267 : */
268 : u64 freq_time_stamp;
269 : u64 freq_count_stamp;
270 : #endif
271 : };
272 :
273 : struct perf_event;
274 : struct perf_event_pmu_context;
275 :
276 : /*
277 : * Common implementation detail of pmu::{start,commit,cancel}_txn
278 : */
279 : #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
280 : #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
281 :
282 : /**
283 : * pmu::capabilities flags
284 : */
285 : #define PERF_PMU_CAP_NO_INTERRUPT 0x0001
286 : #define PERF_PMU_CAP_NO_NMI 0x0002
287 : #define PERF_PMU_CAP_AUX_NO_SG 0x0004
288 : #define PERF_PMU_CAP_EXTENDED_REGS 0x0008
289 : #define PERF_PMU_CAP_EXCLUSIVE 0x0010
290 : #define PERF_PMU_CAP_ITRACE 0x0020
291 : #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x0040
292 : #define PERF_PMU_CAP_NO_EXCLUDE 0x0080
293 : #define PERF_PMU_CAP_AUX_OUTPUT 0x0100
294 : #define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0200
295 :
296 : struct perf_output_handle;
297 :
298 : #define PMU_NULL_DEV ((void *)(~0UL))
299 :
300 : /**
301 : * struct pmu - generic performance monitoring unit
302 : */
303 : struct pmu {
304 : struct list_head entry;
305 :
306 : struct module *module;
307 : struct device *dev;
308 : struct device *parent;
309 : const struct attribute_group **attr_groups;
310 : const struct attribute_group **attr_update;
311 : const char *name;
312 : int type;
313 :
314 : /*
315 : * various common per-pmu feature flags
316 : */
317 : int capabilities;
318 :
319 : int __percpu *pmu_disable_count;
320 : struct perf_cpu_pmu_context __percpu *cpu_pmu_context;
321 : atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
322 : int task_ctx_nr;
323 : int hrtimer_interval_ms;
324 :
325 : /* number of address filters this PMU can do */
326 : unsigned int nr_addr_filters;
327 :
328 : /*
329 : * Fully disable/enable this PMU, can be used to protect from the PMI
330 : * as well as for lazy/batch writing of the MSRs.
331 : */
332 : void (*pmu_enable) (struct pmu *pmu); /* optional */
333 : void (*pmu_disable) (struct pmu *pmu); /* optional */
334 :
335 : /*
336 : * Try and initialize the event for this PMU.
337 : *
338 : * Returns:
339 : * -ENOENT -- @event is not for this PMU
340 : *
341 : * -ENODEV -- @event is for this PMU but PMU not present
342 : * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
343 : * -EINVAL -- @event is for this PMU but @event is not valid
344 : * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
345 : * -EACCES -- @event is for this PMU, @event is valid, but no privileges
346 : *
347 : * 0 -- @event is for this PMU and valid
348 : *
349 : * Other error return values are allowed.
350 : */
351 : int (*event_init) (struct perf_event *event);
352 :
353 : /*
354 : * Notification that the event was mapped or unmapped. Called
355 : * in the context of the mapping task.
356 : */
357 : void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
358 : void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
359 :
360 : /*
361 : * Flags for ->add()/->del()/ ->start()/->stop(). There are
362 : * matching hw_perf_event::state flags.
363 : */
364 : #define PERF_EF_START 0x01 /* start the counter when adding */
365 : #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
366 : #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
367 :
368 : /*
369 : * Adds/Removes a counter to/from the PMU, can be done inside a
370 : * transaction, see the ->*_txn() methods.
371 : *
372 : * The add/del callbacks will reserve all hardware resources required
373 : * to service the event, this includes any counter constraint
374 : * scheduling etc.
375 : *
376 : * Called with IRQs disabled and the PMU disabled on the CPU the event
377 : * is on.
378 : *
379 : * ->add() called without PERF_EF_START should result in the same state
380 : * as ->add() followed by ->stop().
381 : *
382 : * ->del() must always PERF_EF_UPDATE stop an event. If it calls
383 : * ->stop() that must deal with already being stopped without
384 : * PERF_EF_UPDATE.
385 : */
386 : int (*add) (struct perf_event *event, int flags);
387 : void (*del) (struct perf_event *event, int flags);
388 :
389 : /*
390 : * Starts/Stops a counter present on the PMU.
391 : *
392 : * The PMI handler should stop the counter when perf_event_overflow()
393 : * returns !0. ->start() will be used to continue.
394 : *
395 : * Also used to change the sample period.
396 : *
397 : * Called with IRQs disabled and the PMU disabled on the CPU the event
398 : * is on -- will be called from NMI context with the PMU generates
399 : * NMIs.
400 : *
401 : * ->stop() with PERF_EF_UPDATE will read the counter and update
402 : * period/count values like ->read() would.
403 : *
404 : * ->start() with PERF_EF_RELOAD will reprogram the counter
405 : * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
406 : */
407 : void (*start) (struct perf_event *event, int flags);
408 : void (*stop) (struct perf_event *event, int flags);
409 :
410 : /*
411 : * Updates the counter value of the event.
412 : *
413 : * For sampling capable PMUs this will also update the software period
414 : * hw_perf_event::period_left field.
415 : */
416 : void (*read) (struct perf_event *event);
417 :
418 : /*
419 : * Group events scheduling is treated as a transaction, add
420 : * group events as a whole and perform one schedulability test.
421 : * If the test fails, roll back the whole group
422 : *
423 : * Start the transaction, after this ->add() doesn't need to
424 : * do schedulability tests.
425 : *
426 : * Optional.
427 : */
428 : void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
429 : /*
430 : * If ->start_txn() disabled the ->add() schedulability test
431 : * then ->commit_txn() is required to perform one. On success
432 : * the transaction is closed. On error the transaction is kept
433 : * open until ->cancel_txn() is called.
434 : *
435 : * Optional.
436 : */
437 : int (*commit_txn) (struct pmu *pmu);
438 : /*
439 : * Will cancel the transaction, assumes ->del() is called
440 : * for each successful ->add() during the transaction.
441 : *
442 : * Optional.
443 : */
444 : void (*cancel_txn) (struct pmu *pmu);
445 :
446 : /*
447 : * Will return the value for perf_event_mmap_page::index for this event,
448 : * if no implementation is provided it will default to: event->hw.idx + 1.
449 : */
450 : int (*event_idx) (struct perf_event *event); /*optional */
451 :
452 : /*
453 : * context-switches callback
454 : */
455 : void (*sched_task) (struct perf_event_pmu_context *pmu_ctx,
456 : bool sched_in);
457 :
458 : /*
459 : * Kmem cache of PMU specific data
460 : */
461 : struct kmem_cache *task_ctx_cache;
462 :
463 : /*
464 : * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
465 : * can be synchronized using this function. See Intel LBR callstack support
466 : * implementation and Perf core context switch handling callbacks for usage
467 : * examples.
468 : */
469 : void (*swap_task_ctx) (struct perf_event_pmu_context *prev_epc,
470 : struct perf_event_pmu_context *next_epc);
471 : /* optional */
472 :
473 : /*
474 : * Set up pmu-private data structures for an AUX area
475 : */
476 : void *(*setup_aux) (struct perf_event *event, void **pages,
477 : int nr_pages, bool overwrite);
478 : /* optional */
479 :
480 : /*
481 : * Free pmu-private AUX data structures
482 : */
483 : void (*free_aux) (void *aux); /* optional */
484 :
485 : /*
486 : * Take a snapshot of the AUX buffer without touching the event
487 : * state, so that preempting ->start()/->stop() callbacks does
488 : * not interfere with their logic. Called in PMI context.
489 : *
490 : * Returns the size of AUX data copied to the output handle.
491 : *
492 : * Optional.
493 : */
494 : long (*snapshot_aux) (struct perf_event *event,
495 : struct perf_output_handle *handle,
496 : unsigned long size);
497 :
498 : /*
499 : * Validate address range filters: make sure the HW supports the
500 : * requested configuration and number of filters; return 0 if the
501 : * supplied filters are valid, -errno otherwise.
502 : *
503 : * Runs in the context of the ioctl()ing process and is not serialized
504 : * with the rest of the PMU callbacks.
505 : */
506 : int (*addr_filters_validate) (struct list_head *filters);
507 : /* optional */
508 :
509 : /*
510 : * Synchronize address range filter configuration:
511 : * translate hw-agnostic filters into hardware configuration in
512 : * event::hw::addr_filters.
513 : *
514 : * Runs as a part of filter sync sequence that is done in ->start()
515 : * callback by calling perf_event_addr_filters_sync().
516 : *
517 : * May (and should) traverse event::addr_filters::list, for which its
518 : * caller provides necessary serialization.
519 : */
520 : void (*addr_filters_sync) (struct perf_event *event);
521 : /* optional */
522 :
523 : /*
524 : * Check if event can be used for aux_output purposes for
525 : * events of this PMU.
526 : *
527 : * Runs from perf_event_open(). Should return 0 for "no match"
528 : * or non-zero for "match".
529 : */
530 : int (*aux_output_match) (struct perf_event *event);
531 : /* optional */
532 :
533 : /*
534 : * Skip programming this PMU on the given CPU. Typically needed for
535 : * big.LITTLE things.
536 : */
537 : bool (*filter) (struct pmu *pmu, int cpu); /* optional */
538 :
539 : /*
540 : * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
541 : */
542 : int (*check_period) (struct perf_event *event, u64 value); /* optional */
543 : };
544 :
545 : enum perf_addr_filter_action_t {
546 : PERF_ADDR_FILTER_ACTION_STOP = 0,
547 : PERF_ADDR_FILTER_ACTION_START,
548 : PERF_ADDR_FILTER_ACTION_FILTER,
549 : };
550 :
551 : /**
552 : * struct perf_addr_filter - address range filter definition
553 : * @entry: event's filter list linkage
554 : * @path: object file's path for file-based filters
555 : * @offset: filter range offset
556 : * @size: filter range size (size==0 means single address trigger)
557 : * @action: filter/start/stop
558 : *
559 : * This is a hardware-agnostic filter configuration as specified by the user.
560 : */
561 : struct perf_addr_filter {
562 : struct list_head entry;
563 : struct path path;
564 : unsigned long offset;
565 : unsigned long size;
566 : enum perf_addr_filter_action_t action;
567 : };
568 :
569 : /**
570 : * struct perf_addr_filters_head - container for address range filters
571 : * @list: list of filters for this event
572 : * @lock: spinlock that serializes accesses to the @list and event's
573 : * (and its children's) filter generations.
574 : * @nr_file_filters: number of file-based filters
575 : *
576 : * A child event will use parent's @list (and therefore @lock), so they are
577 : * bundled together; see perf_event_addr_filters().
578 : */
579 : struct perf_addr_filters_head {
580 : struct list_head list;
581 : raw_spinlock_t lock;
582 : unsigned int nr_file_filters;
583 : };
584 :
585 : struct perf_addr_filter_range {
586 : unsigned long start;
587 : unsigned long size;
588 : };
589 :
590 : /**
591 : * enum perf_event_state - the states of an event:
592 : */
593 : enum perf_event_state {
594 : PERF_EVENT_STATE_DEAD = -4,
595 : PERF_EVENT_STATE_EXIT = -3,
596 : PERF_EVENT_STATE_ERROR = -2,
597 : PERF_EVENT_STATE_OFF = -1,
598 : PERF_EVENT_STATE_INACTIVE = 0,
599 : PERF_EVENT_STATE_ACTIVE = 1,
600 : };
601 :
602 : struct file;
603 : struct perf_sample_data;
604 :
605 : typedef void (*perf_overflow_handler_t)(struct perf_event *,
606 : struct perf_sample_data *,
607 : struct pt_regs *regs);
608 :
609 : /*
610 : * Event capabilities. For event_caps and groups caps.
611 : *
612 : * PERF_EV_CAP_SOFTWARE: Is a software event.
613 : * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
614 : * from any CPU in the package where it is active.
615 : * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
616 : * cannot be a group leader. If an event with this flag is detached from the
617 : * group it is scheduled out and moved into an unrecoverable ERROR state.
618 : */
619 : #define PERF_EV_CAP_SOFTWARE BIT(0)
620 : #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
621 : #define PERF_EV_CAP_SIBLING BIT(2)
622 :
623 : #define SWEVENT_HLIST_BITS 8
624 : #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
625 :
626 : struct swevent_hlist {
627 : struct hlist_head heads[SWEVENT_HLIST_SIZE];
628 : struct rcu_head rcu_head;
629 : };
630 :
631 : #define PERF_ATTACH_CONTEXT 0x01
632 : #define PERF_ATTACH_GROUP 0x02
633 : #define PERF_ATTACH_TASK 0x04
634 : #define PERF_ATTACH_TASK_DATA 0x08
635 : #define PERF_ATTACH_ITRACE 0x10
636 : #define PERF_ATTACH_SCHED_CB 0x20
637 : #define PERF_ATTACH_CHILD 0x40
638 :
639 : struct bpf_prog;
640 : struct perf_cgroup;
641 : struct perf_buffer;
642 :
643 : struct pmu_event_list {
644 : raw_spinlock_t lock;
645 : struct list_head list;
646 : };
647 :
648 : /*
649 : * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex
650 : * as such iteration must hold either lock. However, since ctx->lock is an IRQ
651 : * safe lock, and is only held by the CPU doing the modification, having IRQs
652 : * disabled is sufficient since it will hold-off the IPIs.
653 : */
654 : #ifdef CONFIG_PROVE_LOCKING
655 : #define lockdep_assert_event_ctx(event) \
656 : WARN_ON_ONCE(__lockdep_enabled && \
657 : (this_cpu_read(hardirqs_enabled) && \
658 : lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD))
659 : #else
660 : #define lockdep_assert_event_ctx(event)
661 : #endif
662 :
663 : #define for_each_sibling_event(sibling, event) \
664 : lockdep_assert_event_ctx(event); \
665 : if ((event)->group_leader == (event)) \
666 : list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
667 :
668 : /**
669 : * struct perf_event - performance event kernel representation:
670 : */
671 : struct perf_event {
672 : #ifdef CONFIG_PERF_EVENTS
673 : /*
674 : * entry onto perf_event_context::event_list;
675 : * modifications require ctx->lock
676 : * RCU safe iterations.
677 : */
678 : struct list_head event_entry;
679 :
680 : /*
681 : * Locked for modification by both ctx->mutex and ctx->lock; holding
682 : * either sufficies for read.
683 : */
684 : struct list_head sibling_list;
685 : struct list_head active_list;
686 : /*
687 : * Node on the pinned or flexible tree located at the event context;
688 : */
689 : struct rb_node group_node;
690 : u64 group_index;
691 : /*
692 : * We need storage to track the entries in perf_pmu_migrate_context; we
693 : * cannot use the event_entry because of RCU and we want to keep the
694 : * group in tact which avoids us using the other two entries.
695 : */
696 : struct list_head migrate_entry;
697 :
698 : struct hlist_node hlist_entry;
699 : struct list_head active_entry;
700 : int nr_siblings;
701 :
702 : /* Not serialized. Only written during event initialization. */
703 : int event_caps;
704 : /* The cumulative AND of all event_caps for events in this group. */
705 : int group_caps;
706 :
707 : struct perf_event *group_leader;
708 : /*
709 : * event->pmu will always point to pmu in which this event belongs.
710 : * Whereas event->pmu_ctx->pmu may point to other pmu when group of
711 : * different pmu events is created.
712 : */
713 : struct pmu *pmu;
714 : void *pmu_private;
715 :
716 : enum perf_event_state state;
717 : unsigned int attach_state;
718 : local64_t count;
719 : atomic64_t child_count;
720 :
721 : /*
722 : * These are the total time in nanoseconds that the event
723 : * has been enabled (i.e. eligible to run, and the task has
724 : * been scheduled in, if this is a per-task event)
725 : * and running (scheduled onto the CPU), respectively.
726 : */
727 : u64 total_time_enabled;
728 : u64 total_time_running;
729 : u64 tstamp;
730 :
731 : struct perf_event_attr attr;
732 : u16 header_size;
733 : u16 id_header_size;
734 : u16 read_size;
735 : struct hw_perf_event hw;
736 :
737 : struct perf_event_context *ctx;
738 : /*
739 : * event->pmu_ctx points to perf_event_pmu_context in which the event
740 : * is added. This pmu_ctx can be of other pmu for sw event when that
741 : * sw event is part of a group which also contains non-sw events.
742 : */
743 : struct perf_event_pmu_context *pmu_ctx;
744 : atomic_long_t refcount;
745 :
746 : /*
747 : * These accumulate total time (in nanoseconds) that children
748 : * events have been enabled and running, respectively.
749 : */
750 : atomic64_t child_total_time_enabled;
751 : atomic64_t child_total_time_running;
752 :
753 : /*
754 : * Protect attach/detach and child_list:
755 : */
756 : struct mutex child_mutex;
757 : struct list_head child_list;
758 : struct perf_event *parent;
759 :
760 : int oncpu;
761 : int cpu;
762 :
763 : struct list_head owner_entry;
764 : struct task_struct *owner;
765 :
766 : /* mmap bits */
767 : struct mutex mmap_mutex;
768 : atomic_t mmap_count;
769 :
770 : struct perf_buffer *rb;
771 : struct list_head rb_entry;
772 : unsigned long rcu_batches;
773 : int rcu_pending;
774 :
775 : /* poll related */
776 : wait_queue_head_t waitq;
777 : struct fasync_struct *fasync;
778 :
779 : /* delayed work for NMIs and such */
780 : unsigned int pending_wakeup;
781 : unsigned int pending_kill;
782 : unsigned int pending_disable;
783 : unsigned int pending_sigtrap;
784 : unsigned long pending_addr; /* SIGTRAP */
785 : struct irq_work pending_irq;
786 : struct callback_head pending_task;
787 : unsigned int pending_work;
788 :
789 : atomic_t event_limit;
790 :
791 : /* address range filters */
792 : struct perf_addr_filters_head addr_filters;
793 : /* vma address array for file-based filders */
794 : struct perf_addr_filter_range *addr_filter_ranges;
795 : unsigned long addr_filters_gen;
796 :
797 : /* for aux_output events */
798 : struct perf_event *aux_event;
799 :
800 : void (*destroy)(struct perf_event *);
801 : struct rcu_head rcu_head;
802 :
803 : struct pid_namespace *ns;
804 : u64 id;
805 :
806 : atomic64_t lost_samples;
807 :
808 : u64 (*clock)(void);
809 : perf_overflow_handler_t overflow_handler;
810 : void *overflow_handler_context;
811 : #ifdef CONFIG_BPF_SYSCALL
812 : perf_overflow_handler_t orig_overflow_handler;
813 : struct bpf_prog *prog;
814 : u64 bpf_cookie;
815 : #endif
816 :
817 : #ifdef CONFIG_EVENT_TRACING
818 : struct trace_event_call *tp_event;
819 : struct event_filter *filter;
820 : #ifdef CONFIG_FUNCTION_TRACER
821 : struct ftrace_ops ftrace_ops;
822 : #endif
823 : #endif
824 :
825 : #ifdef CONFIG_CGROUP_PERF
826 : struct perf_cgroup *cgrp; /* cgroup event is attach to */
827 : #endif
828 :
829 : #ifdef CONFIG_SECURITY
830 : void *security;
831 : #endif
832 : struct list_head sb_list;
833 :
834 : /*
835 : * Certain events gets forwarded to another pmu internally by over-
836 : * writing kernel copy of event->attr.type without user being aware
837 : * of it. event->orig_type contains original 'type' requested by
838 : * user.
839 : */
840 : __u32 orig_type;
841 : #endif /* CONFIG_PERF_EVENTS */
842 : };
843 :
844 : /*
845 : * ,-----------------------[1:n]----------------------.
846 : * V V
847 : * perf_event_context <-[1:n]-> perf_event_pmu_context <--- perf_event
848 : * ^ ^ | |
849 : * `--------[1:n]---------' `-[n:1]-> pmu <-[1:n]-'
850 : *
851 : *
852 : * struct perf_event_pmu_context lifetime is refcount based and RCU freed
853 : * (similar to perf_event_context). Locking is as if it were a member of
854 : * perf_event_context; specifically:
855 : *
856 : * modification, both: ctx->mutex && ctx->lock
857 : * reading, either: ctx->mutex || ctx->lock
858 : *
859 : * There is one exception to this; namely put_pmu_ctx() isn't always called
860 : * with ctx->mutex held; this means that as long as we can guarantee the epc
861 : * has events the above rules hold.
862 : *
863 : * Specificially, sys_perf_event_open()'s group_leader case depends on
864 : * ctx->mutex pinning the configuration. Since we hold a reference on
865 : * group_leader (through the filedesc) it can't go away, therefore it's
866 : * associated pmu_ctx must exist and cannot change due to ctx->mutex.
867 : */
868 : struct perf_event_pmu_context {
869 : struct pmu *pmu;
870 : struct perf_event_context *ctx;
871 :
872 : struct list_head pmu_ctx_entry;
873 :
874 : struct list_head pinned_active;
875 : struct list_head flexible_active;
876 :
877 : /* Used to avoid freeing per-cpu perf_event_pmu_context */
878 : unsigned int embedded : 1;
879 :
880 : unsigned int nr_events;
881 :
882 : atomic_t refcount; /* event <-> epc */
883 : struct rcu_head rcu_head;
884 :
885 : void *task_ctx_data; /* pmu specific data */
886 : /*
887 : * Set when one or more (plausibly active) event can't be scheduled
888 : * due to pmu overcommit or pmu constraints, except tolerant to
889 : * events not necessary to be active due to scheduling constraints,
890 : * such as cgroups.
891 : */
892 : int rotate_necessary;
893 : };
894 :
895 : struct perf_event_groups {
896 : struct rb_root tree;
897 : u64 index;
898 : };
899 :
900 :
901 : /**
902 : * struct perf_event_context - event context structure
903 : *
904 : * Used as a container for task events and CPU events as well:
905 : */
906 : struct perf_event_context {
907 : /*
908 : * Protect the states of the events in the list,
909 : * nr_active, and the list:
910 : */
911 : raw_spinlock_t lock;
912 : /*
913 : * Protect the list of events. Locking either mutex or lock
914 : * is sufficient to ensure the list doesn't change; to change
915 : * the list you need to lock both the mutex and the spinlock.
916 : */
917 : struct mutex mutex;
918 :
919 : struct list_head pmu_ctx_list;
920 : struct perf_event_groups pinned_groups;
921 : struct perf_event_groups flexible_groups;
922 : struct list_head event_list;
923 :
924 : int nr_events;
925 : int nr_user;
926 : int is_active;
927 :
928 : int nr_task_data;
929 : int nr_stat;
930 : int nr_freq;
931 : int rotate_disable;
932 :
933 : refcount_t refcount; /* event <-> ctx */
934 : struct task_struct *task;
935 :
936 : /*
937 : * Context clock, runs when context enabled.
938 : */
939 : u64 time;
940 : u64 timestamp;
941 : u64 timeoffset;
942 :
943 : /*
944 : * These fields let us detect when two contexts have both
945 : * been cloned (inherited) from a common ancestor.
946 : */
947 : struct perf_event_context *parent_ctx;
948 : u64 parent_gen;
949 : u64 generation;
950 : int pin_count;
951 : #ifdef CONFIG_CGROUP_PERF
952 : int nr_cgroups; /* cgroup evts */
953 : #endif
954 : struct rcu_head rcu_head;
955 :
956 : /*
957 : * Sum (event->pending_sigtrap + event->pending_work)
958 : *
959 : * The SIGTRAP is targeted at ctx->task, as such it won't do changing
960 : * that until the signal is delivered.
961 : */
962 : local_t nr_pending;
963 : };
964 :
965 : /*
966 : * Number of contexts where an event can trigger:
967 : * task, softirq, hardirq, nmi.
968 : */
969 : #define PERF_NR_CONTEXTS 4
970 :
971 : struct perf_cpu_pmu_context {
972 : struct perf_event_pmu_context epc;
973 : struct perf_event_pmu_context *task_epc;
974 :
975 : struct list_head sched_cb_entry;
976 : int sched_cb_usage;
977 :
978 : int active_oncpu;
979 : int exclusive;
980 :
981 : raw_spinlock_t hrtimer_lock;
982 : struct hrtimer hrtimer;
983 : ktime_t hrtimer_interval;
984 : unsigned int hrtimer_active;
985 : };
986 :
987 : /**
988 : * struct perf_event_cpu_context - per cpu event context structure
989 : */
990 : struct perf_cpu_context {
991 : struct perf_event_context ctx;
992 : struct perf_event_context *task_ctx;
993 : int online;
994 :
995 : #ifdef CONFIG_CGROUP_PERF
996 : struct perf_cgroup *cgrp;
997 : #endif
998 :
999 : /*
1000 : * Per-CPU storage for iterators used in visit_groups_merge. The default
1001 : * storage is of size 2 to hold the CPU and any CPU event iterators.
1002 : */
1003 : int heap_size;
1004 : struct perf_event **heap;
1005 : struct perf_event *heap_default[2];
1006 : };
1007 :
1008 : struct perf_output_handle {
1009 : struct perf_event *event;
1010 : struct perf_buffer *rb;
1011 : unsigned long wakeup;
1012 : unsigned long size;
1013 : u64 aux_flags;
1014 : union {
1015 : void *addr;
1016 : unsigned long head;
1017 : };
1018 : int page;
1019 : };
1020 :
1021 : struct bpf_perf_event_data_kern {
1022 : bpf_user_pt_regs_t *regs;
1023 : struct perf_sample_data *data;
1024 : struct perf_event *event;
1025 : };
1026 :
1027 : #ifdef CONFIG_CGROUP_PERF
1028 :
1029 : /*
1030 : * perf_cgroup_info keeps track of time_enabled for a cgroup.
1031 : * This is a per-cpu dynamically allocated data structure.
1032 : */
1033 : struct perf_cgroup_info {
1034 : u64 time;
1035 : u64 timestamp;
1036 : u64 timeoffset;
1037 : int active;
1038 : };
1039 :
1040 : struct perf_cgroup {
1041 : struct cgroup_subsys_state css;
1042 : struct perf_cgroup_info __percpu *info;
1043 : };
1044 :
1045 : /*
1046 : * Must ensure cgroup is pinned (css_get) before calling
1047 : * this function. In other words, we cannot call this function
1048 : * if there is no cgroup event for the current CPU context.
1049 : */
1050 : static inline struct perf_cgroup *
1051 : perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
1052 : {
1053 : return container_of(task_css_check(task, perf_event_cgrp_id,
1054 : ctx ? lockdep_is_held(&ctx->lock)
1055 : : true),
1056 : struct perf_cgroup, css);
1057 : }
1058 : #endif /* CONFIG_CGROUP_PERF */
1059 :
1060 : #ifdef CONFIG_PERF_EVENTS
1061 :
1062 : extern struct perf_event_context *perf_cpu_task_ctx(void);
1063 :
1064 : extern void *perf_aux_output_begin(struct perf_output_handle *handle,
1065 : struct perf_event *event);
1066 : extern void perf_aux_output_end(struct perf_output_handle *handle,
1067 : unsigned long size);
1068 : extern int perf_aux_output_skip(struct perf_output_handle *handle,
1069 : unsigned long size);
1070 : extern void *perf_get_aux(struct perf_output_handle *handle);
1071 : extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
1072 : extern void perf_event_itrace_started(struct perf_event *event);
1073 :
1074 : extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
1075 : extern void perf_pmu_unregister(struct pmu *pmu);
1076 :
1077 : extern void __perf_event_task_sched_in(struct task_struct *prev,
1078 : struct task_struct *task);
1079 : extern void __perf_event_task_sched_out(struct task_struct *prev,
1080 : struct task_struct *next);
1081 : extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
1082 : extern void perf_event_exit_task(struct task_struct *child);
1083 : extern void perf_event_free_task(struct task_struct *task);
1084 : extern void perf_event_delayed_put(struct task_struct *task);
1085 : extern struct file *perf_event_get(unsigned int fd);
1086 : extern const struct perf_event *perf_get_event(struct file *file);
1087 : extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
1088 : extern void perf_event_print_debug(void);
1089 : extern void perf_pmu_disable(struct pmu *pmu);
1090 : extern void perf_pmu_enable(struct pmu *pmu);
1091 : extern void perf_sched_cb_dec(struct pmu *pmu);
1092 : extern void perf_sched_cb_inc(struct pmu *pmu);
1093 : extern int perf_event_task_disable(void);
1094 : extern int perf_event_task_enable(void);
1095 :
1096 : extern void perf_pmu_resched(struct pmu *pmu);
1097 :
1098 : extern int perf_event_refresh(struct perf_event *event, int refresh);
1099 : extern void perf_event_update_userpage(struct perf_event *event);
1100 : extern int perf_event_release_kernel(struct perf_event *event);
1101 : extern struct perf_event *
1102 : perf_event_create_kernel_counter(struct perf_event_attr *attr,
1103 : int cpu,
1104 : struct task_struct *task,
1105 : perf_overflow_handler_t callback,
1106 : void *context);
1107 : extern void perf_pmu_migrate_context(struct pmu *pmu,
1108 : int src_cpu, int dst_cpu);
1109 : int perf_event_read_local(struct perf_event *event, u64 *value,
1110 : u64 *enabled, u64 *running);
1111 : extern u64 perf_event_read_value(struct perf_event *event,
1112 : u64 *enabled, u64 *running);
1113 :
1114 : extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1115 :
1116 : static inline bool branch_sample_no_flags(const struct perf_event *event)
1117 : {
1118 : return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_FLAGS;
1119 : }
1120 :
1121 : static inline bool branch_sample_no_cycles(const struct perf_event *event)
1122 : {
1123 : return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_CYCLES;
1124 : }
1125 :
1126 : static inline bool branch_sample_type(const struct perf_event *event)
1127 : {
1128 : return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_TYPE_SAVE;
1129 : }
1130 :
1131 : static inline bool branch_sample_hw_index(const struct perf_event *event)
1132 : {
1133 : return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
1134 : }
1135 :
1136 : static inline bool branch_sample_priv(const struct perf_event *event)
1137 : {
1138 : return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_PRIV_SAVE;
1139 : }
1140 :
1141 :
1142 : struct perf_sample_data {
1143 : /*
1144 : * Fields set by perf_sample_data_init() unconditionally,
1145 : * group so as to minimize the cachelines touched.
1146 : */
1147 : u64 sample_flags;
1148 : u64 period;
1149 : u64 dyn_size;
1150 :
1151 : /*
1152 : * Fields commonly set by __perf_event_header__init_id(),
1153 : * group so as to minimize the cachelines touched.
1154 : */
1155 : u64 type;
1156 : struct {
1157 : u32 pid;
1158 : u32 tid;
1159 : } tid_entry;
1160 : u64 time;
1161 : u64 id;
1162 : struct {
1163 : u32 cpu;
1164 : u32 reserved;
1165 : } cpu_entry;
1166 :
1167 : /*
1168 : * The other fields, optionally {set,used} by
1169 : * perf_{prepare,output}_sample().
1170 : */
1171 : u64 ip;
1172 : struct perf_callchain_entry *callchain;
1173 : struct perf_raw_record *raw;
1174 : struct perf_branch_stack *br_stack;
1175 : union perf_sample_weight weight;
1176 : union perf_mem_data_src data_src;
1177 : u64 txn;
1178 :
1179 : struct perf_regs regs_user;
1180 : struct perf_regs regs_intr;
1181 : u64 stack_user_size;
1182 :
1183 : u64 stream_id;
1184 : u64 cgroup;
1185 : u64 addr;
1186 : u64 phys_addr;
1187 : u64 data_page_size;
1188 : u64 code_page_size;
1189 : u64 aux_size;
1190 : } ____cacheline_aligned;
1191 :
1192 : /* default value for data source */
1193 : #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
1194 : PERF_MEM_S(LVL, NA) |\
1195 : PERF_MEM_S(SNOOP, NA) |\
1196 : PERF_MEM_S(LOCK, NA) |\
1197 : PERF_MEM_S(TLB, NA))
1198 :
1199 : static inline void perf_sample_data_init(struct perf_sample_data *data,
1200 : u64 addr, u64 period)
1201 : {
1202 : /* remaining struct members initialized in perf_prepare_sample() */
1203 : data->sample_flags = PERF_SAMPLE_PERIOD;
1204 : data->period = period;
1205 : data->dyn_size = 0;
1206 :
1207 : if (addr) {
1208 : data->addr = addr;
1209 : data->sample_flags |= PERF_SAMPLE_ADDR;
1210 : }
1211 : }
1212 :
1213 : static inline void perf_sample_save_callchain(struct perf_sample_data *data,
1214 : struct perf_event *event,
1215 : struct pt_regs *regs)
1216 : {
1217 : int size = 1;
1218 :
1219 : data->callchain = perf_callchain(event, regs);
1220 : size += data->callchain->nr;
1221 :
1222 : data->dyn_size += size * sizeof(u64);
1223 : data->sample_flags |= PERF_SAMPLE_CALLCHAIN;
1224 : }
1225 :
1226 : static inline void perf_sample_save_raw_data(struct perf_sample_data *data,
1227 : struct perf_raw_record *raw)
1228 : {
1229 : struct perf_raw_frag *frag = &raw->frag;
1230 : u32 sum = 0;
1231 : int size;
1232 :
1233 : do {
1234 : sum += frag->size;
1235 : if (perf_raw_frag_last(frag))
1236 : break;
1237 : frag = frag->next;
1238 : } while (1);
1239 :
1240 : size = round_up(sum + sizeof(u32), sizeof(u64));
1241 : raw->size = size - sizeof(u32);
1242 : frag->pad = raw->size - sum;
1243 :
1244 : data->raw = raw;
1245 : data->dyn_size += size;
1246 : data->sample_flags |= PERF_SAMPLE_RAW;
1247 : }
1248 :
1249 : static inline void perf_sample_save_brstack(struct perf_sample_data *data,
1250 : struct perf_event *event,
1251 : struct perf_branch_stack *brs)
1252 : {
1253 : int size = sizeof(u64); /* nr */
1254 :
1255 : if (branch_sample_hw_index(event))
1256 : size += sizeof(u64);
1257 : size += brs->nr * sizeof(struct perf_branch_entry);
1258 :
1259 : data->br_stack = brs;
1260 : data->dyn_size += size;
1261 : data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
1262 : }
1263 :
1264 : static inline u32 perf_sample_data_size(struct perf_sample_data *data,
1265 : struct perf_event *event)
1266 : {
1267 : u32 size = sizeof(struct perf_event_header);
1268 :
1269 : size += event->header_size + event->id_header_size;
1270 : size += data->dyn_size;
1271 :
1272 : return size;
1273 : }
1274 :
1275 : /*
1276 : * Clear all bitfields in the perf_branch_entry.
1277 : * The to and from fields are not cleared because they are
1278 : * systematically modified by caller.
1279 : */
1280 : static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br)
1281 : {
1282 : br->mispred = 0;
1283 : br->predicted = 0;
1284 : br->in_tx = 0;
1285 : br->abort = 0;
1286 : br->cycles = 0;
1287 : br->type = 0;
1288 : br->spec = PERF_BR_SPEC_NA;
1289 : br->reserved = 0;
1290 : }
1291 :
1292 : extern void perf_output_sample(struct perf_output_handle *handle,
1293 : struct perf_event_header *header,
1294 : struct perf_sample_data *data,
1295 : struct perf_event *event);
1296 : extern void perf_prepare_sample(struct perf_sample_data *data,
1297 : struct perf_event *event,
1298 : struct pt_regs *regs);
1299 : extern void perf_prepare_header(struct perf_event_header *header,
1300 : struct perf_sample_data *data,
1301 : struct perf_event *event,
1302 : struct pt_regs *regs);
1303 :
1304 : extern int perf_event_overflow(struct perf_event *event,
1305 : struct perf_sample_data *data,
1306 : struct pt_regs *regs);
1307 :
1308 : extern void perf_event_output_forward(struct perf_event *event,
1309 : struct perf_sample_data *data,
1310 : struct pt_regs *regs);
1311 : extern void perf_event_output_backward(struct perf_event *event,
1312 : struct perf_sample_data *data,
1313 : struct pt_regs *regs);
1314 : extern int perf_event_output(struct perf_event *event,
1315 : struct perf_sample_data *data,
1316 : struct pt_regs *regs);
1317 :
1318 : static inline bool
1319 : is_default_overflow_handler(struct perf_event *event)
1320 : {
1321 : if (likely(event->overflow_handler == perf_event_output_forward))
1322 : return true;
1323 : if (unlikely(event->overflow_handler == perf_event_output_backward))
1324 : return true;
1325 : return false;
1326 : }
1327 :
1328 : extern void
1329 : perf_event_header__init_id(struct perf_event_header *header,
1330 : struct perf_sample_data *data,
1331 : struct perf_event *event);
1332 : extern void
1333 : perf_event__output_id_sample(struct perf_event *event,
1334 : struct perf_output_handle *handle,
1335 : struct perf_sample_data *sample);
1336 :
1337 : extern void
1338 : perf_log_lost_samples(struct perf_event *event, u64 lost);
1339 :
1340 : static inline bool event_has_any_exclude_flag(struct perf_event *event)
1341 : {
1342 : struct perf_event_attr *attr = &event->attr;
1343 :
1344 : return attr->exclude_idle || attr->exclude_user ||
1345 : attr->exclude_kernel || attr->exclude_hv ||
1346 : attr->exclude_guest || attr->exclude_host;
1347 : }
1348 :
1349 : static inline bool is_sampling_event(struct perf_event *event)
1350 : {
1351 : return event->attr.sample_period != 0;
1352 : }
1353 :
1354 : /*
1355 : * Return 1 for a software event, 0 for a hardware event
1356 : */
1357 : static inline int is_software_event(struct perf_event *event)
1358 : {
1359 : return event->event_caps & PERF_EV_CAP_SOFTWARE;
1360 : }
1361 :
1362 : /*
1363 : * Return 1 for event in sw context, 0 for event in hw context
1364 : */
1365 : static inline int in_software_context(struct perf_event *event)
1366 : {
1367 : return event->pmu_ctx->pmu->task_ctx_nr == perf_sw_context;
1368 : }
1369 :
1370 : static inline int is_exclusive_pmu(struct pmu *pmu)
1371 : {
1372 : return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1373 : }
1374 :
1375 : extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1376 :
1377 : extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1378 : extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1379 :
1380 : #ifndef perf_arch_fetch_caller_regs
1381 : static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1382 : #endif
1383 :
1384 : /*
1385 : * When generating a perf sample in-line, instead of from an interrupt /
1386 : * exception, we lack a pt_regs. This is typically used from software events
1387 : * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1388 : *
1389 : * We typically don't need a full set, but (for x86) do require:
1390 : * - ip for PERF_SAMPLE_IP
1391 : * - cs for user_mode() tests
1392 : * - sp for PERF_SAMPLE_CALLCHAIN
1393 : * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1394 : *
1395 : * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1396 : * things like PERF_SAMPLE_REGS_INTR.
1397 : */
1398 : static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1399 : {
1400 0 : perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1401 : }
1402 :
1403 : static __always_inline void
1404 : perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1405 : {
1406 : if (static_key_false(&perf_swevent_enabled[event_id]))
1407 : __perf_sw_event(event_id, nr, regs, addr);
1408 : }
1409 :
1410 : DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1411 :
1412 : /*
1413 : * 'Special' version for the scheduler, it hard assumes no recursion,
1414 : * which is guaranteed by us not actually scheduling inside other swevents
1415 : * because those disable preemption.
1416 : */
1417 : static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1418 : {
1419 : struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1420 :
1421 : perf_fetch_caller_regs(regs);
1422 : ___perf_sw_event(event_id, nr, regs, addr);
1423 : }
1424 :
1425 : extern struct static_key_false perf_sched_events;
1426 :
1427 : static __always_inline bool __perf_sw_enabled(int swevt)
1428 : {
1429 : return static_key_false(&perf_swevent_enabled[swevt]);
1430 : }
1431 :
1432 : static inline void perf_event_task_migrate(struct task_struct *task)
1433 : {
1434 : if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS))
1435 : task->sched_migrated = 1;
1436 : }
1437 :
1438 : static inline void perf_event_task_sched_in(struct task_struct *prev,
1439 : struct task_struct *task)
1440 : {
1441 : if (static_branch_unlikely(&perf_sched_events))
1442 : __perf_event_task_sched_in(prev, task);
1443 :
1444 : if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) &&
1445 : task->sched_migrated) {
1446 : __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1447 : task->sched_migrated = 0;
1448 : }
1449 : }
1450 :
1451 : static inline void perf_event_task_sched_out(struct task_struct *prev,
1452 : struct task_struct *next)
1453 : {
1454 : if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES))
1455 : __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1456 :
1457 : #ifdef CONFIG_CGROUP_PERF
1458 : if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) &&
1459 : perf_cgroup_from_task(prev, NULL) !=
1460 : perf_cgroup_from_task(next, NULL))
1461 : __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0);
1462 : #endif
1463 :
1464 : if (static_branch_unlikely(&perf_sched_events))
1465 : __perf_event_task_sched_out(prev, next);
1466 : }
1467 :
1468 : extern void perf_event_mmap(struct vm_area_struct *vma);
1469 :
1470 : extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1471 : bool unregister, const char *sym);
1472 : extern void perf_event_bpf_event(struct bpf_prog *prog,
1473 : enum perf_bpf_event_type type,
1474 : u16 flags);
1475 :
1476 : #ifdef CONFIG_GUEST_PERF_EVENTS
1477 : extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
1478 :
1479 : DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state);
1480 : DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
1481 : DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
1482 :
1483 : static inline unsigned int perf_guest_state(void)
1484 : {
1485 : return static_call(__perf_guest_state)();
1486 : }
1487 : static inline unsigned long perf_guest_get_ip(void)
1488 : {
1489 : return static_call(__perf_guest_get_ip)();
1490 : }
1491 : static inline unsigned int perf_guest_handle_intel_pt_intr(void)
1492 : {
1493 : return static_call(__perf_guest_handle_intel_pt_intr)();
1494 : }
1495 : extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1496 : extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1497 : #else
1498 : static inline unsigned int perf_guest_state(void) { return 0; }
1499 : static inline unsigned long perf_guest_get_ip(void) { return 0; }
1500 : static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; }
1501 : #endif /* CONFIG_GUEST_PERF_EVENTS */
1502 :
1503 : extern void perf_event_exec(void);
1504 : extern void perf_event_comm(struct task_struct *tsk, bool exec);
1505 : extern void perf_event_namespaces(struct task_struct *tsk);
1506 : extern void perf_event_fork(struct task_struct *tsk);
1507 : extern void perf_event_text_poke(const void *addr,
1508 : const void *old_bytes, size_t old_len,
1509 : const void *new_bytes, size_t new_len);
1510 :
1511 : /* Callchains */
1512 : DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1513 :
1514 : extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1515 : extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1516 : extern struct perf_callchain_entry *
1517 : get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1518 : u32 max_stack, bool crosstask, bool add_mark);
1519 : extern int get_callchain_buffers(int max_stack);
1520 : extern void put_callchain_buffers(void);
1521 : extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1522 : extern void put_callchain_entry(int rctx);
1523 :
1524 : extern int sysctl_perf_event_max_stack;
1525 : extern int sysctl_perf_event_max_contexts_per_stack;
1526 :
1527 : static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1528 : {
1529 : if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1530 : struct perf_callchain_entry *entry = ctx->entry;
1531 : entry->ip[entry->nr++] = ip;
1532 : ++ctx->contexts;
1533 : return 0;
1534 : } else {
1535 : ctx->contexts_maxed = true;
1536 : return -1; /* no more room, stop walking the stack */
1537 : }
1538 : }
1539 :
1540 : static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1541 : {
1542 : if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1543 : struct perf_callchain_entry *entry = ctx->entry;
1544 : entry->ip[entry->nr++] = ip;
1545 : ++ctx->nr;
1546 : return 0;
1547 : } else {
1548 : return -1; /* no more room, stop walking the stack */
1549 : }
1550 : }
1551 :
1552 : extern int sysctl_perf_event_paranoid;
1553 : extern int sysctl_perf_event_mlock;
1554 : extern int sysctl_perf_event_sample_rate;
1555 : extern int sysctl_perf_cpu_time_max_percent;
1556 :
1557 : extern void perf_sample_event_took(u64 sample_len_ns);
1558 :
1559 : int perf_proc_update_handler(struct ctl_table *table, int write,
1560 : void *buffer, size_t *lenp, loff_t *ppos);
1561 : int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1562 : void *buffer, size_t *lenp, loff_t *ppos);
1563 : int perf_event_max_stack_handler(struct ctl_table *table, int write,
1564 : void *buffer, size_t *lenp, loff_t *ppos);
1565 :
1566 : /* Access to perf_event_open(2) syscall. */
1567 : #define PERF_SECURITY_OPEN 0
1568 :
1569 : /* Finer grained perf_event_open(2) access control. */
1570 : #define PERF_SECURITY_CPU 1
1571 : #define PERF_SECURITY_KERNEL 2
1572 : #define PERF_SECURITY_TRACEPOINT 3
1573 :
1574 : static inline int perf_is_paranoid(void)
1575 : {
1576 : return sysctl_perf_event_paranoid > -1;
1577 : }
1578 :
1579 : static inline int perf_allow_kernel(struct perf_event_attr *attr)
1580 : {
1581 : if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1582 : return -EACCES;
1583 :
1584 : return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1585 : }
1586 :
1587 : static inline int perf_allow_cpu(struct perf_event_attr *attr)
1588 : {
1589 : if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1590 : return -EACCES;
1591 :
1592 : return security_perf_event_open(attr, PERF_SECURITY_CPU);
1593 : }
1594 :
1595 : static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1596 : {
1597 : if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1598 : return -EPERM;
1599 :
1600 : return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1601 : }
1602 :
1603 : extern void perf_event_init(void);
1604 : extern void perf_tp_event(u16 event_type, u64 count, void *record,
1605 : int entry_size, struct pt_regs *regs,
1606 : struct hlist_head *head, int rctx,
1607 : struct task_struct *task);
1608 : extern void perf_bp_event(struct perf_event *event, void *data);
1609 :
1610 : #ifndef perf_misc_flags
1611 : # define perf_misc_flags(regs) \
1612 : (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1613 : # define perf_instruction_pointer(regs) instruction_pointer(regs)
1614 : #endif
1615 : #ifndef perf_arch_bpf_user_pt_regs
1616 : # define perf_arch_bpf_user_pt_regs(regs) regs
1617 : #endif
1618 :
1619 : static inline bool has_branch_stack(struct perf_event *event)
1620 : {
1621 : return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1622 : }
1623 :
1624 : static inline bool needs_branch_stack(struct perf_event *event)
1625 : {
1626 : return event->attr.branch_sample_type != 0;
1627 : }
1628 :
1629 : static inline bool has_aux(struct perf_event *event)
1630 : {
1631 : return event->pmu->setup_aux;
1632 : }
1633 :
1634 : static inline bool is_write_backward(struct perf_event *event)
1635 : {
1636 : return !!event->attr.write_backward;
1637 : }
1638 :
1639 : static inline bool has_addr_filter(struct perf_event *event)
1640 : {
1641 : return event->pmu->nr_addr_filters;
1642 : }
1643 :
1644 : /*
1645 : * An inherited event uses parent's filters
1646 : */
1647 : static inline struct perf_addr_filters_head *
1648 : perf_event_addr_filters(struct perf_event *event)
1649 : {
1650 : struct perf_addr_filters_head *ifh = &event->addr_filters;
1651 :
1652 : if (event->parent)
1653 : ifh = &event->parent->addr_filters;
1654 :
1655 : return ifh;
1656 : }
1657 :
1658 : extern void perf_event_addr_filters_sync(struct perf_event *event);
1659 : extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id);
1660 :
1661 : extern int perf_output_begin(struct perf_output_handle *handle,
1662 : struct perf_sample_data *data,
1663 : struct perf_event *event, unsigned int size);
1664 : extern int perf_output_begin_forward(struct perf_output_handle *handle,
1665 : struct perf_sample_data *data,
1666 : struct perf_event *event,
1667 : unsigned int size);
1668 : extern int perf_output_begin_backward(struct perf_output_handle *handle,
1669 : struct perf_sample_data *data,
1670 : struct perf_event *event,
1671 : unsigned int size);
1672 :
1673 : extern void perf_output_end(struct perf_output_handle *handle);
1674 : extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1675 : const void *buf, unsigned int len);
1676 : extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1677 : unsigned int len);
1678 : extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1679 : struct perf_output_handle *handle,
1680 : unsigned long from, unsigned long to);
1681 : extern int perf_swevent_get_recursion_context(void);
1682 : extern void perf_swevent_put_recursion_context(int rctx);
1683 : extern u64 perf_swevent_set_period(struct perf_event *event);
1684 : extern void perf_event_enable(struct perf_event *event);
1685 : extern void perf_event_disable(struct perf_event *event);
1686 : extern void perf_event_disable_local(struct perf_event *event);
1687 : extern void perf_event_disable_inatomic(struct perf_event *event);
1688 : extern void perf_event_task_tick(void);
1689 : extern int perf_event_account_interrupt(struct perf_event *event);
1690 : extern int perf_event_period(struct perf_event *event, u64 value);
1691 : extern u64 perf_event_pause(struct perf_event *event, bool reset);
1692 : #else /* !CONFIG_PERF_EVENTS: */
1693 : static inline void *
1694 : perf_aux_output_begin(struct perf_output_handle *handle,
1695 : struct perf_event *event) { return NULL; }
1696 : static inline void
1697 : perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1698 : { }
1699 : static inline int
1700 : perf_aux_output_skip(struct perf_output_handle *handle,
1701 : unsigned long size) { return -EINVAL; }
1702 : static inline void *
1703 : perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1704 : static inline void
1705 : perf_event_task_migrate(struct task_struct *task) { }
1706 : static inline void
1707 : perf_event_task_sched_in(struct task_struct *prev,
1708 : struct task_struct *task) { }
1709 : static inline void
1710 : perf_event_task_sched_out(struct task_struct *prev,
1711 : struct task_struct *next) { }
1712 : static inline int perf_event_init_task(struct task_struct *child,
1713 : u64 clone_flags) { return 0; }
1714 : static inline void perf_event_exit_task(struct task_struct *child) { }
1715 : static inline void perf_event_free_task(struct task_struct *task) { }
1716 : static inline void perf_event_delayed_put(struct task_struct *task) { }
1717 : static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
1718 : static inline const struct perf_event *perf_get_event(struct file *file)
1719 : {
1720 : return ERR_PTR(-EINVAL);
1721 : }
1722 : static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1723 : {
1724 : return ERR_PTR(-EINVAL);
1725 : }
1726 : static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1727 : u64 *enabled, u64 *running)
1728 : {
1729 : return -EINVAL;
1730 : }
1731 : static inline void perf_event_print_debug(void) { }
1732 : static inline int perf_event_task_disable(void) { return -EINVAL; }
1733 : static inline int perf_event_task_enable(void) { return -EINVAL; }
1734 : static inline int perf_event_refresh(struct perf_event *event, int refresh)
1735 : {
1736 : return -EINVAL;
1737 : }
1738 :
1739 : static inline void
1740 : perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1741 : static inline void
1742 : perf_bp_event(struct perf_event *event, void *data) { }
1743 :
1744 : static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1745 :
1746 : typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1747 : static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1748 : bool unregister, const char *sym) { }
1749 : static inline void perf_event_bpf_event(struct bpf_prog *prog,
1750 : enum perf_bpf_event_type type,
1751 : u16 flags) { }
1752 : static inline void perf_event_exec(void) { }
1753 : static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
1754 : static inline void perf_event_namespaces(struct task_struct *tsk) { }
1755 : static inline void perf_event_fork(struct task_struct *tsk) { }
1756 : static inline void perf_event_text_poke(const void *addr,
1757 : const void *old_bytes,
1758 : size_t old_len,
1759 : const void *new_bytes,
1760 : size_t new_len) { }
1761 : static inline void perf_event_init(void) { }
1762 : static inline int perf_swevent_get_recursion_context(void) { return -1; }
1763 : static inline void perf_swevent_put_recursion_context(int rctx) { }
1764 : static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
1765 : static inline void perf_event_enable(struct perf_event *event) { }
1766 : static inline void perf_event_disable(struct perf_event *event) { }
1767 : static inline int __perf_event_disable(void *info) { return -1; }
1768 : static inline void perf_event_task_tick(void) { }
1769 : static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
1770 : static inline int perf_event_period(struct perf_event *event, u64 value)
1771 : {
1772 : return -EINVAL;
1773 : }
1774 : static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1775 : {
1776 : return 0;
1777 : }
1778 : #endif
1779 :
1780 : #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1781 : extern void perf_restore_debug_store(void);
1782 : #else
1783 : static inline void perf_restore_debug_store(void) { }
1784 : #endif
1785 :
1786 : #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1787 :
1788 : struct perf_pmu_events_attr {
1789 : struct device_attribute attr;
1790 : u64 id;
1791 : const char *event_str;
1792 : };
1793 :
1794 : struct perf_pmu_events_ht_attr {
1795 : struct device_attribute attr;
1796 : u64 id;
1797 : const char *event_str_ht;
1798 : const char *event_str_noht;
1799 : };
1800 :
1801 : struct perf_pmu_events_hybrid_attr {
1802 : struct device_attribute attr;
1803 : u64 id;
1804 : const char *event_str;
1805 : u64 pmu_type;
1806 : };
1807 :
1808 : struct perf_pmu_format_hybrid_attr {
1809 : struct device_attribute attr;
1810 : u64 pmu_type;
1811 : };
1812 :
1813 : ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1814 : char *page);
1815 :
1816 : #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1817 : static struct perf_pmu_events_attr _var = { \
1818 : .attr = __ATTR(_name, 0444, _show, NULL), \
1819 : .id = _id, \
1820 : };
1821 :
1822 : #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1823 : static struct perf_pmu_events_attr _var = { \
1824 : .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1825 : .id = 0, \
1826 : .event_str = _str, \
1827 : };
1828 :
1829 : #define PMU_EVENT_ATTR_ID(_name, _show, _id) \
1830 : (&((struct perf_pmu_events_attr[]) { \
1831 : { .attr = __ATTR(_name, 0444, _show, NULL), \
1832 : .id = _id, } \
1833 : })[0].attr.attr)
1834 :
1835 : #define PMU_FORMAT_ATTR_SHOW(_name, _format) \
1836 : static ssize_t \
1837 : _name##_show(struct device *dev, \
1838 : struct device_attribute *attr, \
1839 : char *page) \
1840 : { \
1841 : BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1842 : return sprintf(page, _format "\n"); \
1843 : } \
1844 :
1845 : #define PMU_FORMAT_ATTR(_name, _format) \
1846 : PMU_FORMAT_ATTR_SHOW(_name, _format) \
1847 : \
1848 : static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1849 :
1850 : /* Performance counter hotplug functions */
1851 : #ifdef CONFIG_PERF_EVENTS
1852 : int perf_event_init_cpu(unsigned int cpu);
1853 : int perf_event_exit_cpu(unsigned int cpu);
1854 : #else
1855 : #define perf_event_init_cpu NULL
1856 : #define perf_event_exit_cpu NULL
1857 : #endif
1858 :
1859 : extern void arch_perf_update_userpage(struct perf_event *event,
1860 : struct perf_event_mmap_page *userpg,
1861 : u64 now);
1862 :
1863 : #ifdef CONFIG_MMU
1864 : extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr);
1865 : #endif
1866 :
1867 : /*
1868 : * Snapshot branch stack on software events.
1869 : *
1870 : * Branch stack can be very useful in understanding software events. For
1871 : * example, when a long function, e.g. sys_perf_event_open, returns an
1872 : * errno, it is not obvious why the function failed. Branch stack could
1873 : * provide very helpful information in this type of scenarios.
1874 : *
1875 : * On software event, it is necessary to stop the hardware branch recorder
1876 : * fast. Otherwise, the hardware register/buffer will be flushed with
1877 : * entries of the triggering event. Therefore, static call is used to
1878 : * stop the hardware recorder.
1879 : */
1880 :
1881 : /*
1882 : * cnt is the number of entries allocated for entries.
1883 : * Return number of entries copied to .
1884 : */
1885 : typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries,
1886 : unsigned int cnt);
1887 : DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
1888 :
1889 : #ifndef PERF_NEEDS_LOPWR_CB
1890 : static inline void perf_lopwr_cb(bool mode)
1891 : {
1892 : }
1893 : #endif
1894 :
1895 : #endif /* _LINUX_PERF_EVENT_H */
|